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Abstract: Chemoinformatics involves integrating the principles of physical chemistry with computer-
based and information science methodologies, commonly referred to as “in silico techniques”, in order
to address a wide range of descriptive and prescriptive chemistry issues, including applications to
biology, drug discovery, and related molecular areas. On the other hand, the incorporation of machine
learning has been considered of high importance in the field of drug design, enabling the extraction
of chemical data from enormous compound databases to develop drugs endowed with significant
biological features. The present review discusses the field of cheminformatics and proposes the use
of virtual chemical libraries in virtual screening methods to increase the probability of discovering
novel hit chemicals. The virtual libraries address the need to increase the quality of the compounds
as well as discover promising ones. On the other hand, various applications of bioinformatics in
disease classification, diagnosis, and identification of multidrug-resistant organisms were discussed.
The use of ensemble models and brute-force feature selection methodology has resulted in high
accuracy rates for heart disease and COVID-19 diagnosis, along with the role of special formulations
for targeting meningitis and Alzheimer’s disease. Additionally, the correlation between genomic
variations and disease states such as obesity and chronic progressive external ophthalmoplegia,
the investigation of the antibacterial activity of pyrazole and benzimidazole-based compounds
against resistant microorganisms, and its applications in chemoinformatics for the prediction of drug
properties and toxicity—all the previously mentioned—were presented in the current review.

Keywords: chemoinformatics; bioinformatics; applications; formulation; advances

1. Introduction

Chemoinformatics, a new area of information technology, is primarily concerned with
collecting, retaining, examining, and reorganizing chemical information. Small molecule
formulae, structures, characteristics, spectra, and activities (biological or industrial) are
typical examples of chemical data of interest. It began as an aiding tool in the process of
drug discovery and development; however, presently, its significance has grown multifold,
making it an essential component in numerous domains of chemistry, biochemistry, and
biology [1].

The identification of hits is the first and most important stage in small-molecule drug
discovery [2]. The employment of virtual chemical libraries in diverse virtual screening
methods has become a promising approach to discovering novel hit chemicals. In this
regard, several scholars are developing innovative de novo chemical and on-demand
libraries using various in silico methodologies [3].

The chart (Figure 1) showed that chemoinformatics analysis involves a computational
workflow utilizing machine learning. The process includes the following steps: The initial
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step involves extraction involving compound characterization by its substructure fragments
or other chemical descriptors. Representation of the chemical features of the compound by
chemical fingerprints, which are then used to compare the similarities between different
compounds based on shared chemical features. Moreover, these chemical fingerprints can
be utilized in various machine learning models, including instance- and/or model-based
learning, to predict other chemical and physiochemical properties in QSAR/QSPR analysis.
Such models can be trained using statistical models and then used to make inferences from
the training data by comparison [4].
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In general, virtual libraries address the requirement for increasing compound quality
in order to discover promising compounds. In this context, the virtual libraries’ structural
complexity, size, and variety are important factors in boosting the likelihood of favorable
outcomes in drug discovery and development. Moreover, the establishment of virtual
libraries is of immense advantage as the identified chemicals possess a certain degree of
novelty and are synthetically viable [5]. There are several methods for creating a virtual
chemical compound, including employing a known reaction schema and readily available
chemicals, de novo-based design, morphing/transformation, or painting a molecular
graph [6].

It is worth mentioning that both metabolism and conveyance are important factors in
determining a molecule’s bioavailability and biological activity. Keeping organized and
reliable experimental data in a suitable repository as a relational database promotes straight-
forward computer processing and hence allows computational analyses to effectively infer
high-quality information/knowledge. Metrabase is an exemplary database that combines
both cheminformatics and bioinformatics resources, including thoroughly examined data
on the transportation and metabolism of chemical substances in humans. Its major compo-
nents consist of around 11,500 instances of interaction involving almost 3500 small molecule
substrates and transport protein modulators, as well as CYP450 metabolic enzymes [7].

From the aforementioned, it is clear that bioinformatics and chemoinformatics are
becoming essential with the continuous growth of both biological and chemical data, as
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these fields have the potential to revolutionize the life sciences and make a significant
impact on human health. Understanding and developing new methods and tools that can
be used to identify new drug targets, develop new diagnostic tests, and track the spread
of diseases, as well as helping scientists better understand and manage biological and
chemical data.

Figure 2 showed that bioinformatics and chemoinformatics tools are both comple-
mentary to each other in the drug discovery journey, where target identification represents
the initial step in this journey, which can be done by various tools such as genomics and
proteomics. The lead finding and optimization can be performed by several tools, such as
data mining, QSAR, and insilico-ADME, where the resulting product is an active medicinal
molecule that provides therapeutic response with low or minimal adverse effects [8].
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2. Materials and Methods

The following sources were considered in the current review: retrospective and
prospective comparative cohort studies, randomized controlled trials, case studies, re-
views, controlled non-randomized clinical trials, and systematic reviews.

The search strategy employed medical subject headings (MeSH) to ensure efficient
retrieval of relevant scholarly articles. The MeSH terminology of chemoinformatics, bioin-
formatics, antimicrobial medications, and Egypt was used to search PubMed and MEDLINE
databases. Only studies in the English language were included. All relevant publications
up to 2023 were included (Figure 3). No specific constraints were imposed on the search in
terms of the design of the study. Following the removal of duplicate studies from our study
pool, each of the included studies underwent a rigorous screening process against both the
inclusion and exclusion criteria. The primary focus of the inclusion criteria was scrutinizing
published literature, which evaluated the recent applications of bio- and chemoinformatics.
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3. Drug Discovery and Design
3.1. Chemoinformatics and New Tetracycline Analogue

Antimicrobial resistance to existing antibiotics indicates a critical global crossroads [9].
Unfortunately, widespread antibiotic use has resulted in the emergence of multi-drug-
resistant pathogenic organisms and a reduction in the efficacy of many of our most potent
antibiotics [10]. In addition, various harmful consequences of antibiotics, most notably
the rising prevalence of Clostridium difficile-associated inflammatory bowel disease were
investigated [11].

Tetracycline, a bacteriostatic agent, has the ability to inhibit the growth of a diverse
array of microorganisms, encompassing Gram-negative and Gram-positive bacteria, my-
coplasmas, chlamydiae, and rickettsiae [12]. The mechanism of bacterial resistance to
tetracycline antibiotics includes mutations within the ribosome binding site or the acquisi-
tion of mobile genetic elements containing tetracycline-specific resistance genes [13]. The
process of protein synthesis can be hindered by the binding of tetracycline to the 30S ribo-
somal subunit, which ultimately prevents aminoacyl transfer RNA (tRNA) from accessing
the acceptor site on the ribosome [14].

The in vitro antibacterial activity of a new tetracycline analogue generated semi-
synthetically from Streptomyces species was investigated to determine the minimum
inhibitory concentrations (MICs) for the growth of several harmful bacteria. The chemo-
informatics approach was used to create tetracycline analogue B (iodocycline), which
was more active as a bacteriostatic antibacterial agent than tetracycline and thus had less
bacterial resistance. In comparison to the chloramphenicol prototype antibiotic, tetracycline
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analogue B has MICs of less than 10 micrograms/mL for bacterial growth, indicating its
potent antibacterial action [15].

3.2. Bio- and Chemoinformatics in Identification of Novel Pyrazole and Benzimidazole Based
Derivatives as Penicillin-Binding Protein 2a Inhibitors

Methicillin-resistant Staph aureus’s (MRSA’s) extensive resistance to the lactam class
is associated with the characteristics of its primary resistance mechanism, the “acquired”
penicillin-binding protein 2a (PBP2a). The PBP2a’s innate reduced sensitivity towards
β-lactam inactivation is attributed to its affinity for a closed active-site conformation, regu-
lated by allostery [16]. PBP2a may cross-link the cell wall even when β-lactam antibiotics
are present, whereas the other four native PBPs are restrained [17].

A research project involved the development, synthesis, and examination of ten
compounds based on pyrazole and benzimidazole to investigate their antibacterial activity
against two strains of Staphylococcus aureus, namely, MSSA ATTC6538 and MRSA USA300.
The findings revealed that three of the investigated compounds showed modest bactericidal
efficacy against MRSA, VRSA, and MSSA. Furthermore, the compounds were docked into
the allosteric region of PBP2a and exhibited binding patterns similar to those of the lead
quinazolinone PBP2a inhibitors, suggesting a comparable mechanism of action [18].

3.3. Chemoinformatics Application in Phytochemistry

Natural products are thought to be a promising source of antifibrotic medicines;
however, finding and isolating bioactive molecules remains difficult. The good news is
that various computational approaches have emerged on this subject to save time and
effort [19].

Eucalyptus globulus Labill., a perennial tree belonging to the family Myrtaceae, is
widely cultivated across the globe. Eucalyptus species are commonly planted as line
plantings in Egypt for multiple purposes, including shade provision, building timbers,
poles, and fuelwood. One of the most significant byproducts in the Eucalyptus industry is
its bark. Eucalyptus bark is thought to be an excellent source of phenolic chemicals with a
variety of biological activities [20,21].

Polyphenols have a variety of uses in the cosmetics, food, and pharmaceutical sectors.
This group of chemicals has been shown to have antioxidant, antimicrobial, antidiabetic,
anti-inflammatory, antihyperlipidemic, hepatoprotective, nephroprotective, cardioprotec-
tive, and anticancer properties [22].

In the course of a research project, the chemical and biological characteristics of Euca-
lyptus globulus bark were determined by the use of Sirius software, and 37 compounds
were tentatively identified; 15 of them were newly discovered from this particular species.
In addition, the bio-transformer tool was proficiently applied to conduct an in silico virtual
assessment of the human metabolism of these substances, resulting in the generation of a to-
tal of 1960 unique products through diverse metabolic pathways. In addition, an electronic
database of the discovered chemicals and metabolites was generated and subjected to in
silico docking against eight protein targets that are known to be involved in the liver fibrosis
process. The findings suggest that the extract may have a hepatoprotective impact via many
pathways and that the metabolites have been found to have stronger affinities towards the
relevant enzymes when compared to their parent chemicals. The extract demonstrated
significant cytotoxicity against the hepatic cancer cell lines HEPG2 and HUH-7, and its
cellular uptake was enhanced through nano-formulation, as demonstrated by the ex vivo
everted gut sac technique [19].

4. Clinical Applications
4.1. Bioinformatics and Heart Disease Classification

For decades, heart disease has been regarded as the primary factor contributing to
global death rates. In 2016, the World Health Organization reported that a sizable number
of 17.9 million individuals had passed away due to cardiovascular disease [23]. Thus, data
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mining technologies have been investigated in recent decades to enhance heart disease
prediction processes in the medical field [24].

The practice of discovering hidden patterns, information, and anomalies in massive
data sets is known as data mining, which is regarded as the central component in the
knowledge discovery in databases (KDD) process, which includes a number of phases such
as data preparation, selection, transformation, and mining, which entails diverse activities
such as prediction, clustering, and classification [25,26].

A quantitative study using the ensemble model in conjunction with brute force as a
technique for selecting features to classify heart diseases resulted in a remarkable accuracy
rate of 97.8%. The suggested stacking model has been demonstrated to be efficient and
outperforms existing techniques in the categorization of cardiac disorders [27].

4.2. Bioinformatics and Diagnosis of Coronavirus Disease 2019

The outbreak of COVID-19 has posed a significant threat to the lives and well-being
of many people, causing confusion in the global population’s public life. The escalating
number of COVID-19 cases showed that all countries were faced with the daunting chal-
lenge of depleting resources for virus detection. The unprecedented spread of the virus has
placed an immense strain on the limited resources available for the detection of this highly
infectious disease. In order to effectively combat the spread of COVID-19, it is imperative
to implement a COVID-19 detection system that is readily available, cost-effective, and
capable of automation [28].

Due to the widespread presence of radiology imaging equipment in medical facilities,
radiography-based detection techniques have emerged as a viable detection method to
resolve the shortage of virus testing kits. With the advent of machines and deep learning,
artificial intelligence has become highly advanced and thus fundamental in the field. As
such, leveraging these technologies in radiography-based testing methods can offer an
efficient and effective means of detecting COVID-19 [29].

Deep learning techniques for the purpose of automated COVID-19 identification and
categorization are being widely investigated [30]. As a result, deep learning has emerged
as a critical component of automated clinical decision-making [31].

A study for the diagnosis of COVID-19 using Chest CT and X-ray images provided
multi-classifiers rather than a single classifier layered in an ensemble stacking manner.
When applied to datasets consisting of X-ray pictures and CT scans, the findings showed a
quantitative evaluation of the suggested ensemble stacking technique, with percentages
approaching 99% [32].

Figure 4 represents the utilization of a COVID-19 detection stacking methodology that
comprises two models as follows: The first (base) model is comprised of five classifiers:
SGD, SVM, naive bayes, random forest, and KNN. The reason for selecting five classifiers is
to ensure that there is always a majority identification, as opposed to using an even number
of classifiers, which could result in an equal division of outcomes between two categories.
The second model, referred to as the meta model, is logistic regression. This two-tiered
approach to detecting COVID-19 is expected to yield more accurate results compared to
using a single model alone [32].
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4.3. Bioinformatics and Genomic Correlation with Clinical Information and Disease State

A PCR-based analysis has established a correlation between obesity and specific
polymorphisms, including UCP2 G 866 A, LEPR Gln223Arg, and INSR exon 17, with the
added observation that certain variations of risk are influenced by gender [33].

Additionally, a research study using an Illumina short-read sequencer-based investigation
of the entire genomes of nine Egyptian women showed that 12 SNPs were shared by the
majority of the participants related to obesity and were concordant with their clinical
diagnosis using 30x sequencing coverage. Also, the presence of the mtDNA mutation
A4282G in all samples was reported. [34]

4.4. Bioinformatics and Multiple Drug Resistant Escherichia coli (E. coli) Isolation from Pediatric
Cancer Patients

Escherichia coli is the primary etiological organism responsible for the incidence of
bloodstream and urinary system infections globally. A steady growth in E. coli antibiotic
resistance affects medical institutions worldwide by creating difficult-to-treat infections in
patients [35]. Multiple drug resistance (MDR) genetic patterns are widely found in mobile
elements like transposons, integrons, and plasmids that are passed on from foodborne
pathogens to human pathogens, boosting their pathogenicity [36].

The emergence of next-generation sequencing (NGS) has opened up new possibil-
ities for efficient characterization of bacterial infections, enabling the identification of
virulence-associated factors and genes that mediate resistance to antibiotics [37]. It is
worth mentioning that NGS is a widely used technology for studying the evolutionary
connections of MDR E. coli strains from various geographical locations; thus, through the
analysis of genetic variations in diverse E. coli plasmids obtained from multiple sources, it
is plausible to anticipate resistance traits from genomic sequences [38].

Quinolones and aminoglycoside resistance were observed in 21 carbapenem-resistant
E. coli (CRE) isolates by using the Illumina next-generation sequencing platform for plasmid
shot-gun sequencing and data analysis with the bioinformatics pipeline. The highest
represented genes among the 32 antimicrobial resistance genes discovered were the aph(6)-
Id gene, sul2, aph(3′)-Ia, sul1, dfrA12, aph(3′′)-Ib, NDM-11, and TEM-220. Out of all
the isolates, only two of them exhibited virulence factors that were linked with the iroA
gene cluster, and it was found that this gene cluster was present in only one of those
two isolates. The findings indicate that there is a potential for the transfer of resistance
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genes and plasmids between species beyond the scope of nosocomial infections among
hospitalized patients [39].

5. Optimization of Drug Delivery
5.1. Bio- and Chemoinformatics in Nose-To-Brain Formulation Targeting Meningitis

Meningitis is a serious medical condition caused by a diverse range of pathogens that
can result in death. The meninges become infected or inflamed due to various infectious
agents. This condition can be caused by a diverse range of pathogens [40]. It has been
observed that viruses are responsible for nearly 50% of all cases, whereas fungi, usually
cryptococci, are accountable for less than ten percent of all cases [41]. Bacterial meningitis
is an illness that is considered to be the most severe type of meningitis. The majority of
infections in newborns are caused by Group B. Streptococcus agalactiae, Listeria monocyto-
genes, and Escherichia coli, as well as Haemophilus influenzae, have been associated with
bacterial meningitis, with the highest incidence in children under five years of age. Despite
the availability of antibiotics, acute bacterial meningitis is a major cause of morbidity and
mortality. Survivors are at risk of long-term repercussions such as brain damage, hearing
loss, and learning impairments [42].

Bio- and chemoinformatics methods were used for comparative analysis of antimicro-
bial drugs to choose an effective nasal-to-brain delivery formulation that targets meningitis,
where it was found that cephalosporin antibiotics, namely, cefotaxime and ceftriaxone,
were comparable concerning formulation, biopharmaceutical, and therapeutic levels. An
all-atom approach was employed for molecular dynamics simulations using the GRO-
MACS v4.6.5 software, and the results showed that ceftriaxone has a higher affinity for the
biopharmaceutical and therapeutic macromolecules studied than cefotaxime [43].

Additionally, cefotaxime and ceftriaxone docked successfully on the P-gp efflux pump,
S. pneumoniae PBP1a and 2b, and mucin, showing that ceftriaxone exhibited a greater
level of affinity towards the P-gp efflux pump and docked more successfully on mucin,
while on the gelatin and tripalmitin matrices, ceftriaxone showed decreased out-of-matrix
diffusion and increased trapping compared to cefotaxime. Thus, the use of ceftriaxone
gelatin nanospheres and tripalmitin solid lipid nanoparticles as a nose-to-brain formulation
aimed at treating meningitis could potentially offer a more feasible and effective approach
than cefotaxime [43].

5.2. Chemoinformatics Targeting Cancer Cell Therapy

Carcinogenesis is a complicated process involving the interplay of various elements
that lead to an alteration in regular cellular functions and the eventual transformation of
cells into a malignant state [44].

A comprehensive analysis of the various functions of the interacting components
within the tumor microenvironment is crucial in the fight against cancer, which could
lead to a better understanding of this unfavorable cell transformation and, as a result, the
identification of potential molecular targets for early prognosis together with the discovery
of chemotherapeutic drugs [45].

Epithelial cell transforming 2 (ECT2) is a putative oncogene that has been linked to
the advancement of numerous human malignancies in recent investigations. Despite the
increased interest in ECT2 in oncology-related papers, there has to be a thorough exami-
nation that consolidates and harmonizes the expression and oncogenic conduct of ECT2
across a range of human malignancies. Using numerous databases, ECT2 could potentially
function as a valuable biomarker across an array of malignancies; thus, chemoinformatics
was used to investigate which ECT2 inhibitors might be used as anticancer medicines r. In
addition, it was found that ECT2 was overexpressed in both mRNA and protein forms in
different types of tumors, causing an increased infiltration of myeloid-derived suppressor
cells and a decrease in the levels of natural killer T-cells, resulting in a poor prognosis for
survival [46]. Figure 5. Presents a summary of cancer informatics which showed that the
incorporation of a range of informatics techniques and instruments makes it possible to
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scrutinize diverse cancer data and the application of artificial intelligence (AI) algorithms
holds the promise of enhancing desired therapeutic outcomes [47].
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(a) The incorporation of a range of informatics techniques and instruments makes it
possible to scrutinize diverse cancer data and generate approaches for preventing,
screening, diagnosing, and treating the disease.

(b) The application of artificial intelligence (AI) algorithms holds the promise of enhanc-
ing desired therapeutic outcomes. The benefits of AI tools in interpreting medical
images have been established in various environments and for a range of diseases.

(c) This technology could be utilized to analyze data from multiple sources to identify
patterns and early warning signs of cancer, thereby enabling prompt intervention and
more effective treatment.

5.3. Bio- and Chemoinformatics in Nose-To-Brain Formulation for Treatment of Alzheimer Disease

It is worthy of mention that delivering drugs to the brain for treatment of severe
CNS illnesses such as Alzheimer’s has remained a significant issue for pharmaceutical
formulation and development. This is primarily attributed to the numerous defense systems
against drugs’ delivery to the brain. These systems present formidable barriers that most
drugs are unable to overcome, making it difficult for them to cross the blood–brain barrier
and penetrate the extracellular matrix of the brain to reach the targeted brain cells [48].

As a result, while directing medications to the brain poses a significant obstacle in the
treatment of many CNS illnesses, a novel route of administration looked promising in tack-
ling this problem. This is known as ‘Nose-to-Brain’ targeting. Recent investigations have
shown that if the medication is delivered intranasally, a part of it can skip the blood–brain
barrier (BBB) and enter the brain directly, which occurs via the olfactory and trigeminal
nerve systems [49].

A research work proposes a novel approach to evaluating two natural compounds,
curcumin and its congener bisdemethoxycurcumin (BDMC), aiming to identify a potential
nose-to-brain treatment for Alzheimer’s disease. It was found that curcumin outperformed
BDMC. Moreover, five novel analogues were also proposed, with diethoxybisdemethoxy-
curcumin being chosen as the best, and thus, it was proposed that the use of bio/chemo
informatics tools be used as a dependable, cost-effective alternative to time-consuming,
resource-intensive laboratory work [50].
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6. Some Advances in New Algorithms and Artificial Intelligence Worldwide
6.1. Chemoinformatics and Hybrid Harris Hawks Optimization with Cuckoo Search

One of the significant problems in cheminformatics is the large datasets containing
a significant amount of redundant information. This redundancy can negatively impact
similarity measurements with respect to drug design and discovery, which could be solved
through a hybrid metaheuristic algorithm called CHHO–CS that combines the Harris–
Hawks optimizer (HHO) with two operators, cuckoo search (CS), and chaotic maps to
balance exploration and exploitation phases and avoid premature convergence. The ex-
perimental and statistical analyses demonstrate that the CHHO–CS method outperforms
competitor algorithms such as HHO, CS, particle swarm optimization, etc. The proposed
algorithm is expected to improve the efficiency and accuracy of similarity measurements
for drug design and discovery [51].

6.2. Chemoinformatics and Bioinformatics Integration with Artificial Intelligence (AI)

The insufficiency in effectiveness resulting from issues related to the availability of the
drug in the body and unfavorable reactions to the drug are acknowledged as a primary
reason for the termination of clinical trials. The vast array of potential factors that may lead
to the failure or adverse effects of a compound is expansive. Additionally, the assessment
of a compound’s characteristics through in vitro and in vivo methods can be a significant
investment in terms of both time and resources. As a result, extensive endeavors have been
undertaken to devise computational models that can anticipate absorption, distribution,
metabolism, excretion, and toxicity (ADME-Tox) properties [52]. These efforts are driven
by the need to streamline and improve the process of drug development, especially with
regard to the identification of potential risks associated with new compounds.

The application of AI models has made significant strides in enhancing the precision
of early drug efficacy and safety predictions by leveraging the vast information provided
by heterogeneous ADME-Tox data sets. In recent times, there has been a surge in both
public and private sector initiatives seeking to create and assess prospective models that
would aid decision-making processes and generate innovative approaches for predicting
ADME-Tox properties. As a result, there are ongoing efforts to allow for the public use and
comparison of machine learning (ML)/deep learning (DL) models to bolster confidence
and acceptance of these predictions. An example of this is the Therapeutics Data Commons
(TDC), which offers a platform for systematic access and evaluation of ML models across
the entire range of therapeutics through an open Python library [53,54].

In the domain of machine learning (ML), various models have been developed to
derive hypothetical properties from limited experimental data or to characterize in vivo
properties based on in vitro assay data. However, there are potential limitations to the
accuracy of such models. In this regard, Rodríguez-Pérez et al. demonstrated the effec-
tiveness of multitask learning based on graph neural networks (MT-GNN) in achieving
superior performance compared to other ML approaches that rely solely on in vitro brain
penetration data [55].

There are four areas in computational biology where ML and DL can be integrated
with established bioinformatic methods, namely: molecular evolution, protein structure
analysis, systems biology, and disease genomics. In addition, machine learning algorithms
such as support vector machines (SVM), K-nearest neighbors (KNN), convolutional neural
networks (CNN), recurrent neural networks (RNN), principal component analysis (PCA),
t-distributed stochastic neighbor embedding (t-SNE), and non-negative matrix factorization
(NMF) are frequently used in bioinformatics research [56].

Figure 6 shows that the utilization of integrated machine learning techniques in com-
bination with bioinformatics has proven to be a valuable tool in various fields, namely
molecular evolution, protein structure analysis, systems biology, and disease genomics.
Molecular evolution includes alignment-free sequence classification and phylogenetic in-
terference. Protein structure analysis includes post-translational modifications. Systems
biology includes biological networks and multiomics integration. Disease genomics in-
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cludes disease-causing mutations and biomarker discovery. The end goal of bioinformatics
applications integrated with machine learning is to provide precision medicine applications
for each individual case.
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Integrating machine learning into molecular evolution research has enabled accurate
determination of evolutionary distances between species, reconstruction of evolutionary
histories and ancestries, identification of conserved genomic regions, functional annotation
of genomes, and phylogenetics [56]. Methods such as autoencoders, random forests [57],
convolutional neural networks (CNNs) [58], and deep reinforcement learning [59] have
been used to address the challenges faced by molecular evolution research, particularly in
analyzing increasingly massive sets of sequence and other omics data [60].

Machine learning techniques have been integrated with traditional proteomic meth-
ods to predict and analyze post-translational modifications, including CNN, hierarchical
clustering, and K-means clustering. Ensemble Gly developed an ensemble classifier of
protein glycosylation sites based on a curated glycosylated protein database and SVM.
Several DL models have been incorporated with other modeling techniques and curated
databases for the prediction of phosphorylation sites and protein glycosylation [56].

Moreover, system biology is used with ML to analyze complex omics datasets, inte-
grate different data types, model complex interactions, and model biological systems. ML
methods in network biology can be classified into those that infer the network architecture
and those that integrate existing network architectures with biological data measurements.
These techniques require sophisticated data integration methods to incorporate different
data types into a model [61].

On the other hand, genomics and biomarker analysis for disease research are integrated
with ML to identify disease-associated genes and mutations for diagnosis, predict disease
progression and clinical outcome, and enable personalized medicine. Different applications
include the identification of genes associated with complex diseases, the analysis of complex
omics datasets, and the prediction of protein glycosylation and phosphorylation sites. More-
over, ML techniques have been used to address the key challenges in disease research, which
include the identification of disease-associated genes and mutations for diagnosis, prediction
of disease progression and clinical outcome, drug response, and personalized medicine [56].

Table 1 represents the integration of machine learning techniques with bioinformatics
tools applied to address various representative issues in four key domains: molecular
evolution, protein structure analysis, systems biology, and biomarker analysis for disease
research. In each main area, the problem is categorized. Furthermore, the target goals,
bioinformatic tools, and machine learning methods are identified.
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Table 1. Implementation of machine learning techniques in bioinformatics to address representative
problems and explore the effectiveness of such methods.

Reference Problem Category Goal Bioinformatic Tools ML Method Bioinformatics Area

[62]

Biological sequence
clustering

Protein family
prediction

Clusters of Orthologous Groups
(COGs) and G protein-coupled

receptor (GPCR) dataset
CNN

Molecular evolution

[63] Protein function
prediction BLAST and HMMER search deep RNN

[64] Anti-CRISPR
proteins

identification

MSA and PSI-BLAST Random forest

[65] K-mer based clustering (CD-HIT),
BLAST

EXtreme Gradient
Boosting

[66,67] Viral pathogenicity
feature identification

MSA, phylogenetic tree
construction SVM

[68] Alignment free
biological sequence

analysis

Identification of viral
genomes

BLAST, Sequence clustering,
HHPRED RNN

[69] BLAST CNN

[70]

Post translational
modifications

Phosphorylation sites
prediction

Local sequence similarity KNN

protein structure
analysis

[71] K-mer based clustering (CD-HIT),
BLAST CNN

[72] Glycosylation sites
prediction

curated glycosylated protein
database (O-GLYCBASE) ensemble SVM

[73]
Protein structure

prediction

Protein contact
prediction MSA CNN

[74]
Prediction of

distances between
pairs of residues

MSA, HHPRED, PSI-BLAST CNN

[75]

inference of
biological networks

Gene regulatory
network prediction GeneNetWeaver, RegulonDB SVM

systems biology

[76] Protein-protein
interaction network

prediction

Domain affinity and frequency
tables SVM

[77] Protein descriptors Elastic-net regression

[78]

Analysis of biological
networks

Drug target
prediction Network analysis tools K-means

[79] Drug side effect
prediction Genome scale metabolic modeling SVM

[80] Drug Synergism
prediction

A chemical-genetic interaction
matrix

Random Forest
Ensemble

[81]
Multi-omics
integration

Cancer subtype
prediction Similarity based integration Neighborhood based

clustering

[82] Drug response
prediction

Cancer hallmarks datasets,
pathway data logistic regression

[83]

Disease-associated
genes investigation

Pulmonary
sarcoidosis genes

identification
Differential expression analysis Hierarchical

clustering

biomarker analysis
for disease research

[84]
Identification of
miRNA-disease

association

Disease semantic information and
miRNA functional information NMF

[85] Disease-phenotype
visualization

OMIM database and human
disease networks t-SNE

[86]

Biomarker discovery

Cancer diagnosis Reference gene selection SVM

[87] Biomarker signature
identification Network-based gene selection SVM

[88] Cancer outcome
prediction

Evolutionary conservation
estimation Random forest
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Table 2 represents the different chemo/bioinformatics applications, including antibiotic
discovery, disease diagnosis and classification, phytochemistry therapeutic discovery, cancer cell
targeting, special pharmaceutical formulation, identification of multidrug-resistant organisms,
genomic correlation with disease state, and artificial intelligence integration.

Table 2. Summarized Information about Chemo/Bioinformatics Applications.

Reference Informatics Used Application Outcome

[15] Chemoinformatics Antibiotic discovery Tetracycline analogue B (iodocycline).
More active than tetracycline and less bacterial-resistant.

[27] Bioinformatics Disease Classification
The implementation of the ensemble model, in conjunction with brute force as a
feature selection methodology, results in an exceptional accuracy rate of 97.8%

for the categorization of heart disease.

[32] Bioinformatics Disease Diagnosis
Based on data from X-ray pictures and a CT scan, the findings showed a

quantitative evaluation of COVID-19 using the suggested ensemble stacking
technique, with percentages approaching 99%.

[43] Chemo/
Bio-informatics

Special formulation
for meningitis

The utilization of Ceftriaxone gelatin nanospheres or tripalmitin solid lipid
nanoparticles has been proven to be a more practicable and effective
nasal-to-brain formulation for the purpose of targeting meningitis in

comparison to cefotaxime.

[19] Chemoinformatics Phytochemistry
therapeutic discovery

The cytotoxic activity against HEPG2 and HUH-7 liver cancer cell lines
attributed to the extract of Eucalyptus globulus bark was considerably high, and

its absorption was found to be enhanced through the application of
nanoformulation.

[46] Chemoinformatics Targeting Cancer
Cells

Findings of the study demonstrate that ECT2 is capable of elevating both mRNA
and protein concentrations in different types of human tumors, thereby

enabling greater elimination of myeloid-derived suppressor cells (MDSC) and
reducing the population of natural killer T (NKT) cells, resulting in a poor

prognosis for survival. The investigation looked for medicines that could both
inhibit ECT2 and function as anticancer agents.

[50] Chemo/
Bio-informatics

Special formulation
for Alzheimer disease

Curcumin outperformed bisdemethoxycurcumin (BDMC) in a nose-to-brain
formulation for treatment of Alzheimer’s disease.

[18] Chemo/
Bio-informatics

Testing Antibacterial
activity against

Resistant
microorganisms

Three pyrazole and benzimidazole-based compounds examined showed
modest bactericidal efficacy against MSSA, MRSA, and vancomycin-resistant

Staphylococcus aureus (VRSA).

[34] Bioinformatics Genomic correlation
with disease state

It was discovered that 12 SNPs were shared by the majority of the participants
related to obesity and were concordant with their clinical diagnostics. In

addition, results showed the presence of the mtDNA mutation A4282G in all
samples; moreover, it is linked to chronic progressive external ophthalmoplegia

[39] Bioinformatics
Multidrug-resistant

organism
identification

The highest represented genes among the 32 antimicrobial resistance genes
discovered in pediatric cancer patients that exceeded the study threshold

coverage were the aph(6)-Id gene, sul2, aph(3′)-Ia, sul1, dfrA12, aph(3′′)-Ib,
NDM-11, and TEM-220.

Suggesting a horizontal transfer of resistance genes and plasmids between
species in the context of nosocomial infections.

[51] Cheminformatics
Hybrid Harris

Hawks Optimization
with Cuckoo Search

The experimental and statistical analyses demonstrate that the Hybrid Harris
Hawks Optimization with Cuckoo Search method outperforms competitor

algorithms.

[56–61] Chemo/Bioinformatics Integration with
Artificial Intelligence

Different applications in molecular evolution, protein structure analysis,
genomics for disease research, and system biology

Figure 7 shows the future of SRT-related technology, bioinformatics, and their applica-
tions, which are of great interest and importance in the scientific community. The ongoing
advancements in SRT technologies and bioinformatics algorithms have been instrumental
in accelerating research in fields such as embryonic development, spatial atlases, clinical
diseases, and evolution. These developments have the potential to profoundly impact
both basic science and translational medicine, leading to breakthroughs in the diagnosis,
prevention, and treatment of diseases as well as advancements in our understanding of
fundamental biological processes [89].
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7. Conclusions

Chemo- and bioinformatics showed different applications globally in research stud-
ies. The use of virtual chemical libraries and virtual screening methods can increase the
probability of discovering novel hit chemicals. The outcomes include several benefits
in drug discovery, disease diagnosis and classification, special pharmaceutical formula-
tions for minorities and Alzheimer’s disease, and phytochemistry therapeutic discovery.
Ensemble models and brute force feature selection methodology have resulted in high
accuracy rates for heart disease and COVID-19 diagnosis. Other benefits of pharmaceutical
research include targeted cancer cell therapy, the identification of novel molecules for
antimicrobial resistance, genomic correlation with disease state, and the identification of
multidrug-resistant organisms. Moreover, the use of AI in chemoinformatics can help in
the prediction of drug properties and toxicity, while AI in bioinformatics can aid in the
analysis of large-scale genomic and proteomic data. It is essential to extend the application
of chemoinformatics in drug discovery, clinical pharmacy settings, and the formulation of
targeted dosage forms for special diseases, as there is no broad use of chemoinformatics in
these areas.
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