
Citation: Kim, Y.-S.; Lee, A.-S.; Hur,

H.-J.; Lee, S.-H.; Na, H.-J.; Sung, M.-J.

Renoprotective Effect of

Chrysanthemum coronarium L. Extract

on Adenine-Induced Chronic Kidney

Disease in Mice. Pharmaceuticals 2023,

16, 1048. https://doi.org/

10.3390/ph16071048

Academic Editor: Monika

Stompor-Gorący
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Abstract: Chronic kidney disease (CKD) gradually leads to loss of renal function and is associated
with inflammation and fibrosis. Chrysanthemum coronarium L., a leafy vegetable, possesses various
beneficial properties, including anti-oxidative, anti-inflammatory, and antiproliferative effects. In
this study, we investigated the renoprotective effect of Chrysanthemum coronarium L. extract (CC) on
adenine (AD)-induced CKD in mice. CKD was induced by feeding mice with an AD diet (0.25% w/w)
for 4 weeks. Changes in renal function, histopathology, inflammation, and renal interstitial fibrosis
were analyzed. The adenine-fed mice were characterized by increased blood urea nitrogen, serum
creatinine, and histological changes, including inflammation and fibrosis; however, these changes
were significantly restored by treatment with CC. Additionally, CC inhibited the expression of the
inflammatory markers, monocyte chemoattractant protein-1, interleukins-6 and -1β, intercellular
adhesion molecule-1, and cyclooxygenase 2. Moreover, CC suppressed the expression of the fibrotic
markers, type IV collagen, and fibronectin. Furthermore, CC attenuated the expression of profibrotic
genes (tumor growth factor-β and α-smooth muscle actin) in AD-induced renal injury mice. Thus,
our results suggest that CC has the potential to attenuate AD-induced renal injury and might offer a
new option as a renoprotective agent or functional food supplement to manage CKD.

Keywords: Chrysanthemum coronarium L. extract; inflammation; fibrosis; chronic kidney disease

1. Introduction

Chronic kidney disease (CKD) is a global health challenge in both developed and
underdeveloped countries. It is characterized by a progressive and irreversible loss of
kidney function, with the rate of functional decline varying based on the disease severity
and patient co-morbidity [1]. When CKD progresses to end-stage kidney failure, dialysis
and transplantation are needed, which usually result in a decline in functional capacity
and a loss of personal independence, and places a burden on health and societal support
systems as well as economic burden on family and society [2,3]. Moreover, CKD seriously
worsens the health conditions of patients and decreases their quality of life. Although
intensive efforts have been made to discover efficient treatments that target the progression
of tubulointerstitial fibrosis, there are no therapeutic agents for several types of CKD.
Currently, alternatives to manage CKD rely on hypertension control through the inhibition
of the renin–angiotensin system [4]. Additionally, although previous studies have focused
on developing new and efficient treatments, effective agents for preventing or delaying the
development of CKD remain limited [5]. Therefore, identifying an effective agent that can
satisfactorily treat CKD is crucial.

There is evidence that oxidative stress and inflammation are involved in the patho-
physiology of CKD [6]. Renal fibrosis, the most common feature of CKD, is characterized
by the infiltration of inflammatory cells, injury to renal tubules, and tubulointerstitial
fibrosis [7]. These features are observed in both humans and animals [8]. Some animal
models of CKD are commonly used to confirm the progression of the disease and identify
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effective therapies. Adenine (AD), which is metabolized to form 2,8 dihydroxyadenine,
induces renal damage via the accumulation of its metabolite. AD-induced CKD in rodents
is a common technique for mimicking the functional abnormality in patients with renal
failure [9,10].

Several studies have documented the beneficial effects of herbs, edible medicinal
products, and traditional foods on CKD [11,12]. Several edible medicinal foods reportedly
have renoprotective effects on AD-induced CKD. These edible natural products contain
many bioactive components that can act on multiple targets and exert various protective
effects against CKD. For example, the ErHuang Formula exhibits renoprotective effects
via suppressing inflammatory and fibrotic effects [3]. Garcinia lucida Vesque (Clusiaceae),
which contains gallic acid and quercetin, ameliorates renal damage by exerting anti-oxidant
effects [4]; Laminaria japonica, which contains polysaccharides, improves chronic renal
failure [13]; Lindera aggregate, which mainly contains furan sesquiterpenes, lactones, volatile
oils, flavonoids, and isoquinoline alkaloids, had renoprotective effects on CKD [14]; and
Salvia miltiorrhiza, which contains salvianolic acids and tanshinones, exhibited renoprotec-
tive effects by regulating the metabolic profile [15]. Based on these results, many researchers,
including us, have focused on in-depth studies of edible natural products to identify agents
for protecting against or delaying CKD progression.

Glebionis coronaria (Chrysanthemum coronarium L.) is widely distributed in the Mediter-
ranean region. It is considered a healthy food in Asia. It is also known as Ssukgat in Korea
and is a precious vegetable and medicinal plant [16,17]. Studies have shown that Chrysan-
themum coronarium L. extract (CC) exerts potent antioxidant effects [18–20]. Similarly, we
previously found the preventive effects of CC on bone metabolism in vitro and in vivo [16].
In addition, we recently showed that CC protects against premature senescence in vitro [17].
Based on these results, it is likely that the beneficial effects of CC are due to the complex
interaction of its multiple compounds. We previously analyzed the components of CC
and found that it contains several compounds, such as rutin, chlorogenic acid, cynarine,
3,4-dicaffeoylquinic acid, and 3,5-dicaffeoyl-succinoylquinic acid [14,15]. Although CC
and CC-derived compounds have been shown to possess various activities, their role in
CKD is unknown. Hence, in the present study, we aimed to determine whether CC exerted
renoprotective effects against AD-induced renal injury.

2. Results
2.1. Ultraperformance Liquid Chromatography (UPLC)-Quadrupole Time-of-Flight Mass
Spectrometry (QTOF/MS) Analysis of CC

The UPLC analysis revealed several peaks at 254 nm for CC at retention times, in-
dicating the presence of several compounds (Figure 1A). The CC was then subjected to
UPLC-QTOF/MS in the negative ion mode. The base peak intensity chromatograms and
their chemical structures are presented (Figure 1B). Putative metabolite identification was
conducted through a database search of accurate mass and MS fragmentation patterns. The
following compounds were identified as constituents of CC: gentisic glucoside, chlorogenic
acid, quercetin-glucosyl-rhamnosyl-galactoside, patuletin-3-(4′′-acetyl-rhamnopyranosyl)-
7-(2′′-acetyl-rhamnopyranoside), rutin, cynarine, and 3,5-dicaffeoyl-4-succinoylquinic acid
(Figure 1C).
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using UPLC equipped with an Acquity BEH C18 column (2.1 × 100 mm, 1.7 µm, Waters) at 254 nm 
(A), and the eluted compounds were ionized by negative electrospray ionization and analyzed us-
ing Q-TOF (B). The compounds were identified using their MS spectra (C) and the online database 
connected to the UNIFI 1.9.2.045 software. Blue symbols are fragment. 
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Mice were fed an AD diet for 4 weeks to establish a CKD model. The body weight 

(BW) in the Cont group increased; however, it decreased in the Ade group. Although the 
BW of mice in the Ade+CC group was decreased, it was higher than that in the Ade group 
(Figure 2A). Blood urea nitrogen (BUN) and serum creatinine (SCr) levels are known in-
dicators of kidney function. Next, the levels of BUN and SCr in the Ade group were sig-
nificantly increased compared with those in the Cont group (p < 0.0001 for both). However, 
compared with those in the Ade group, BUN and SCr levels in the Ade+CC group were 
reduced (p < 0.01, p < 0.05, respectively). CKD is associated with an imbalance in calcium 
and phosphorus homeostasis (Figure 2B,C). The levels of calcium and phosphorus in the 
Ade group were significantly increased compared with those in the Cont group (p < 
0.0001, for both). However, compared with those in the Ade group, the levels of calcium 
and phosphorus in the Ade+CC group were decreased (ns and p < 0.01, respectively) (Fig-
ure 2D,E). Hematoxylin and eosin (H&E), periodic acid–Schiff (PAS), and Masson’s tri-
chrome (MT) staining were performed on the kidney sections from each group to investi-
gate the effects of CC on histopathological changes. As shown in Figure 3A,B,D, there 
were no specific changes in the Cont group. However, renal damage, evidenced by in-
flammatory cell infiltration, renal tubular dilation, and atrophic basal membranes, was 
observed in the Ade group. Nonetheless, the renal damage was significantly reduced in 

Figure 1. Qualitative analysis of bioactive compounds from CC. The sample extract was analyzed
using UPLC equipped with an Acquity BEH C18 column (2.1 × 100 mm, 1.7 µm, Waters) at 254 nm
(A), and the eluted compounds were ionized by negative electrospray ionization and analyzed using
Q-TOF (B). The compounds were identified using their MS spectra (C) and the online database
connected to the UNIFI 1.9.2.045 software. Blue symbols are fragment.

2.2. CC Attenuates AD-Induced Renal Injury

Mice were fed an AD diet for 4 weeks to establish a CKD model. The body weight
(BW) in the Cont group increased; however, it decreased in the Ade group. Although
the BW of mice in the Ade+CC group was decreased, it was higher than that in the
Ade group (Figure 2A). Blood urea nitrogen (BUN) and serum creatinine (SCr) levels
are known indicators of kidney function. Next, the levels of BUN and SCr in the Ade
group were significantly increased compared with those in the Cont group (p < 0.0001
for both). However, compared with those in the Ade group, BUN and SCr levels in the
Ade+CC group were reduced (p < 0.01, p < 0.05, respectively). CKD is associated with an
imbalance in calcium and phosphorus homeostasis (Figure 2B,C). The levels of calcium
and phosphorus in the Ade group were significantly increased compared with those in the
Cont group (p < 0.0001, for both). However, compared with those in the Ade group, the
levels of calcium and phosphorus in the Ade+CC group were decreased (ns and p < 0.01,
respectively) (Figure 2D,E). Hematoxylin and eosin (H&E), periodic acid–Schiff (PAS), and
Masson’s trichrome (MT) staining were performed on the kidney sections from each group
to investigate the effects of CC on histopathological changes. As shown in Figure 3A,B,D,
there were no specific changes in the Cont group. However, renal damage, evidenced by
inflammatory cell infiltration, renal tubular dilation, and atrophic basal membranes, was
observed in the Ade group. Nonetheless, the renal damage was significantly reduced in the
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Ade+CC group. As shown in Figure 3C,D, the fibrosis in the Ade group was significantly
increased compared with that in the Cont group. However, the fibrosis was significantly
reduced in the Ade+CC group. These results suggest that CC could improve renal function
and suppress renal damage in CKD mice.
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tative fibrosis scoring. The yellow arrows indicate interstitial fibrosis. (D) Histopathology was eval-
uated from the kidney stained with HE, PAS, and MT. All data are presented as mean ± SD. n = 8. 
**** p < 0.0001 vs. control group. # p < 0.05, vs. Ade group. 
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Figure 3. CC attenuates AD-induced morphological changes. (A) H&E staining was used for identi-
fication and semiquantitative scoring of inflammation. The orange arrows indicate inflammatory cell
infiltration. (B) PAS staining was used for identification and semiquantitative scoring of basal membrane
atrophy and dilatation. Green arrows indicate examples of atrophic basal membranes and red stars
indicate tubule dilation. (C) MT staining was used for identification and semiquantitative fibrosis
scoring. The yellow arrows indicate interstitial fibrosis. (D) Histopathology was evaluated from the
kidney stained with HE, PAS, and MT. All data are presented as mean ± SD. n = 8. **** p < 0.0001 vs.
control group. # p < 0.05, vs. Ade group.

2.3. CC Suppresses Inflammatory Responses in AD-Induced Renal Injury Mice

There is evidence that chronic inflammation accelerates the progression of fibrosis [6]. To
define the effect of CC in regulating inflammation, we analyzed the expression of inflammatory
cytokines, including monocyte chemoattractant protein (MCP)-1, interleukins (IL)-6 and IL-1β,
and intercellular adhesion molecule (ICAM)-1, cyclooxygenase (COX)-2, and macrophage
activation markers F4/80. Quantitative real-time polymerase chain reaction (qRT-PCR) data
indicated that MCP-1, IL-6, and IL-1β levels were markedly increased in the Ade group
compared with those in the Cont group (p < 0.0001, for all), which were decreased in the
Ade+CC group (p < 0.01, p < 0.001, and p < 0.05, respectively; Figure 4A–C). In addition,
Western blotting analysis showed that the expression levels of ICAM-1 and COX-2 were
increased in the Ade group compared with those in the Cont group (Figure 4D–F, p < 0.0001)
and were decreased in the Ade+CC group (p < 0.05). Moreover, qRT-PCR results revealed
that the expression level of F4/80 was increased in the Ade group compared with that in the
Cont group (Figure 4G, p < 0.0001), which was decreased by CC treatment (p < 0.05). These
data indicate that CC attenuated inflammation in AD-induced renal injury by suppressing
inflammatory cytokine production and macrophage infiltration.

2.4. CC Suppresses Extracellular Matrix (ECM) Deposition and Tubulointerstitial Fibrosis in
AD-Induced Renal Injury Mice

To determine the effect of CC on AD-induced fibrotic responses, we assessed two ECM
proteins, including type IV collagen and fibronectin (FN), using RT-PCR. Compared with
those in the Cont group, the mRNA expression levels of type IV collagen and FN were
significantly increased in the Ade group (p < 0.01 and p < 0.001, respectively). However,
the mRNA expression levels were decreased in the Ade+CC group compared with those in
the Ade group (Figure 5A,B, p < 0.05, p < 0.001, respectively). Our results suggest that CC
attenuated ECM overproduction and renal fibrosis in CKD mice.
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group. # p < 0.05, and ## p < 0.01, #### p < 0.0001, vs. Ade group.
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2.5. CC Attenuates the Expression of Profibrotic Genes in AD-Induced Renal Injury Mice

To define the effect of CC in regulating fibrosis, we assessed the expression levels of
fibrosis-related genes, including transforming growth factor (TGF)-β and α-smooth muscle
actin (SMA), using qRT-PCR. A significant increase in TGF-β and α-SMA expression levels
in the Ade group compared with those in the Cont group was observed (Figure 6A,B,
p < 0.001 and p < 0.01, respectively). However, the Ade+CC group exhibited a reduc-
tion in these parameters related to renal fibrosis (p < 0.001 for both). Furthermore, we
assessed α-SMA by immunohistochemistry (IHC) staining. Tubulointerstitial fibrosis in
the Ade group mice was significantly higher than that in the Cont group (p < 0.0001).
However, compared with that in the Ade group, the tubulointerstitial fibrosis in mice in
the Ade+CC group was also decreased (Figure 6C,D, p < 0.0001). These results suggest that
CC attenuated profibrotic gene expression and tubulointerstitial fibrosis in CKD mice.
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mice. qRT-PCR results of the mRNA levels of TGF-β1 (A) and α-SMA (B). IHC staining showing
the expression of α-SMA (C). ImageJ was used for quantification of the α-SMA area (D). All data are
expressed as mean± SD. n = 8. ** p < 0.01, *** p < 0.001, and **** p < 0.0001, vs. Cont group. ### p < 0.001,
and #### p < 0.0001 vs. Ade group.

3. Discussion

CKD is a progressive and irreversible disease, increasingly becoming more common
and a critical health challenge with no effective therapy. Thus, many researchers have
investigated the pathogenesis of CKD, its underlying mechanisms, and the development of
effective and new treatments. In humans, AD causes metabolic abnormalities that mimic
CKD. Accumulating evidence has shown that CKD is induced in mice fed an AD diet, a
well-established model for exploring renal injury [8,21]. After feeding, AD is metabolized
to 2,8-dihydroxyadenine and deposited and crystallized in the proximal renal tubules
owing to renal injury, leading to the accumulation of urine and inflammation of the tubule,
causing tubulointerstitial fibrosis [9]. Our results indicate that mice fed with AD exhibited
significant weight loss and renal dysfunction owing to markedly increased levels of BUN
and SCr. In addition, our findings showed that the kidneys of AD-fed mice exhibited
significant tubular and interstitial injuries, including tubular atrophy, dilation, interstitial
inflammation, and fibrosis. Consistent with previous studies [9,10,21], these findings
provide sufficient evidence of renal damage in AD-fed mice. In the present study, we
observed that CC treatment effectively reduced the increase in BUN and SCr levels and
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histological renal morphology in AD-induced CKD mice. These findings suggest that CC is
a potential inhibitor of renal injury.

Furthermore, evidence indicates that the progression of CKD involves inflammation
and fibrosis. Accumulating evidence further indicates that the increase in inflammatory
cytokines, including TNF-α, IL-1β, and IL-6, facilitates the progression of CKD [22,23].
Similarly, AD feeding increased the expression of renal inflammatory factors, such as IL-6
and IL-1β [24]. In addition, MCP-1 expression was associated with increased COX-2 [25].
MCP-1, an inflammatory cytokine, increases the proliferation, infiltration, and production
of several cytokines and chemokines in inflammatory cells [24,26]. ICAM-1 is a chemotactic
factor that enables macrophages to maintain an inflammatory response. Activated ICAM-1
recruit macrophages. Thus, ICAM-1 is an essential factor for macrophage infiltration into
the renal tissue. Moreover, F4/80 is commonly recognized as an indicator of macrophage
infiltration. Thus, the increased expression of F4/80 in the kidneys represented a vigorous
inflammatory process and has been well-documented in kidney injuries [27]. In this study,
CC inhibited the increased expression of MCP-1, IL-6, IL-1β, COX-2, ICAM-1, and F4/80 in
AD-induced kidney injury. These findings suggest that CC exerts anti-inflammatory effects
on AD-induced renal injury.

Furthermore, the development of CKD is associated with tubulointerstitial fibrosis [28].
TGF-β1 has a crucial role in the renal fibrosis process [29] and induces epithelial-to-mesenchymal
transition (EMT) [30,31]. Myofibroblasts produce inflammatory cytokines and collagenous
matrix, leading to renal fibrosis. The renal tubules with EMT show an upregulated expression of
α-SMA and ECM proteins (FN and type IV collagen) [9]. TGF-β1 promotes an increased ECM
production, including FN and type IV collagen [32]. Several studies reported that feeding mice
with an AD diet increases the expression of TGF-β1 and ECM proteins, such as type IV collagen
and FN, resulting in renal fibrosis [5,32]. In this study, AD treatment significantly increased
TGF-β1, type IV collagen, FN, and α-SMA expression in the kidneys, which were significantly
suppressed by CC treatment. Our results suggest that CC may possess antifibrotic effects in
patients with CKD.

Epidemiological evidence showed that consuming a diet containing enough vegetables,
medicinal plants, or their derived flavonoids can delay the progression of CKD possibly be
due to the beneficial effect of several components and other phytochemicals that act synergis-
tically. Hence, we investigated whether CC can be used as an alternative target to alleviate
CKD in AD-fed mice. Accumulating evidence indicates that CC and CC-derived compounds
have beneficial effects [16]. Similar to our findings, previous studies have demonstrated
that CC contains caffeic acid, chlorogenic acid, rutin, cynarine, 3,4-dicaffeoylquinic acid, and
3,5-dicaffeoyl-4-succinoylquinic acid [14,15]. Rutin has numerous beneficial health effects,
including anti-inflammatory and antifibrotic effects in CKD [16,17,33]. Caffeic acid exhibits
pharmacological activities, including antioxidant and antifibrotic effects, and reduces renal
tubulointerstitial fibrosis [34,35]. Chlorogenic acid attenuates renal fibrosis [36]. Furthermore,
3,4-dicaffeoylquinic acid possesses antioxidant and anti-inflammatory properties [37]. There-
fore, we hypothesized that the CC extract, containing several bioactive compounds, would
exert an inhibitory effect on AD-induced renal injury. Herein, the CC extract showed protec-
tive effects in improving renal function in AD-induced CKD by suppressing inflammatory
factors and fibrosis, suggesting that the extract might be used as a potential renoprotective
treatment or functional food supplement to manage CKD.

4. Materials and Methods
4.1. Materials and Reagents

Chrysanthemum. coronarium L. leaves were purchased from a local market (Jeonju,
Republic of Korea). AD, methanol (MeOH), and ethanol were obtained from Sigma-
Aldrich (St. Louis, MO, USA). Radioimmunoprecipitation assay buffer was purchased from
Beyotime (Los Altos, CA, USA). BCA Protein Assay Kit was purchased from Thermo Fisher
Scientific (Waltham, MA, USA). SDS-PAGE gels and polyvinylidene fluoride membranes
(PVDF) were obtained from Millipore (Burlington, MA, USA). TRIzol reagent and SYBR
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Green PCR Master Mix Kit were obtained from Invitrogen (Waltham, CA, USA). ICAM-1,
COX-2, α-SMA, and β-actin antibodies were purchased from Santa Cruz Biotechnology
(Dallas, TX, USA). Goat anti-rabbit secondary antibodies were obtained from Cell Signaling
Technology (Beverly, MA, USA). iScript cDNA synthesis kit was purchased from Bio-Rad
(Hercules, CA, USA). BUN, SCr, calcium, and phosphorous kits were purchased from
Chema Diagnostica Di Fiore Marco (Monsano, Italy).

4.2. Preparation and Analysis of CC

The dried CC (1 kg) was crushed and extracted twice with 10 L of 50% ethanol for
24 h. After filtration, the extracts were evaporated by rotary evaporator and freeze-dried at
−70 ◦C. The extraction yield was 8% (w/w). All experiments on Chrysanthemum coronarium
L. leaves were performed in accordance with the institutional, national, and international
guidelines and legislation. CC (10 mg) was dissolved in 50% MeOH (10 mL), and the
chemical profile of the extract was analyzed using UPLC-tunable UV (TUV) (Waters,
Milford, MA, USA) with an Acquity UPLC BEH C18 column (100 × 2.1 mm, 1.7 µm;
Waters). The eluted compounds were analyzed by Q-TOF/MS (Waters) in the negative
electrospray ionization mode under optimized conditions as follows: a scan range of
50–1500 m/z, a scan time of 0.2 s, a capillary voltage of 2.5 kV, a sampling cone voltage
of 40 V, a desolvation flow rate of 900 L/h, a desolvation temperature of 400 ◦C, source
temperature of 100 ◦C, and sample injection volume of 1 µL. MS/MS spectra were acquired
under collision energy ramp (10–30 eV). The major compounds were identified based on
the online database UNIFI 1.8.2 (Waters) and other online databases, such as ChemSpider,
Traditional Chinese Medicine database, and METLIN [16].

4.3. Animals

C57BL/6 male mice were obtained from Oriental Biotechnology (Daejeon, Republic of
Korea). The mice were maintained in controlled rooms with a temperature of 22± 2 ◦C and
humidity of 50 ± 60% under a 12:12 h light/dark cycle and had access to food and water ad
libitum. The animal experiments were approved by the Institutional Animal Care and Use
Committee of the Korea Food Research Institute (KFRI: KFRI-M- 22001) and performed in
conformance with the institutional guidelines established by the Committee.

4.4. Experimental Procedure

Thirty mice weighing 20–22 g were randomly assigned into three experimental groups,
namely called control (Cont, n = 10), AD (Ade, n = 10), and AD with CC (Ade+CC, n =
10). The control group was fed normal chow diet. CKD was induced by feeding mice
with an AD diet (0.25% w/w). The Ade group was fed an AD diet supplemented with
saline. The Ade+CC group was fed an AD diet supplemented with CC. CC was orally
administrated once daily at 100 mg/kg/day. The Cont and AD groups were administered
normal saline. Body weights were measured weekly. We tried to minimize animal suffering
and used the appropriate number of mice to obtain reliable data. After 4 weeks of feeding,
all the mice were euthanized with 1.5% isoflurane (BKPharma Corp., Goyang-si, Republic
of Korea). Blood was collected from each mouse, and serum was obtained by centrifugation
at 12,000 rpm and 4 ◦C for 12 min. The kidneys were excised and fixed. Serum and renal
tissues were kept at −80 ◦C.

4.5. Biochemical Parameters

Common serum biochemical parameters, including BUN, SCr, calcium, and phospho-
rous, were measured using a biochemical kit, following the manufacturer’s instructions.

4.6. Histopathological Analysis

The fixed kidneys were dehydrated and paraffin-embedded. The samples were then
sectioned at 4 µm thickness, dewaxed, and rehydrated. Slides were stained with H&E, PAS,
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and MT to analyze inflammation, fibrosis, atrophy, and dilation [38]. The slides were analyzed
under a panoramic microscope (3D HISTECH Panoramic 250, Budapest, Hungary).

4.7. IHC

The expression of α-SMA was analyzed by IHC staining. Sectioned slides were
blocked with 5% BSA /PBS at 25 ◦C for 20 min and then incubated with the anti-α-SMA
(1:500) at 4 ◦C overnight. After incubation with secondary antibodies, the slides were
visualized using 3,3′-diaminobenzidine (Dako, CA, USA). The sections were observed
using a panoramic microscope (3D HISTECH Panoramic 250, Hungary), and analyzed by
ImageJ 1.53a software [39].

4.8. RNA Isolation and qRT-PCR

RNA was isolated from the kidney tissues (100 mg) using an RNeasy RNA isolation kit.
The concentration of the extracted RNA was analyzed by a NanoDrop Spectrophotometer
(Thermo Scientific, Waltham, MA, USA). Subsequently, the RNA was reverse-transcribed
to cDNA by an iScript cDNA synthesis kit with random primers. Finally, the synthesized
cDNA was used for qRT-PCR using the SYBR Green PCR Master Mix Kit. The expres-
sion of the housekeeping gene glyceraldehyde 3-phosphate dehydrogenase served as the
endogenous control. The actual primer sequences are showed in Table 1.

Table 1. List of primers used in the study.

Gene Primer Sequence (5′-3′) Tm (◦C)

MCP-1 F: GCCTGCTGTTCACAGTTGC 59.1
R: CAGGTGAGTGGGGCGTTA 58.0

IL-6 F: TGAGAGTAGTGAGGAACAAG 52.8
R: CGCAGAATGAGATGAGTTG 53.0

IL-1β F: TGAGCTCGCCAGTGAAATGAT 59.1
R: TCCATGGCCACAACAACTGA 58.8

F4/80 F: CCTGGACGAATCCTGTGAAG 57.0
R: GGTGGGACCACAGAGAGTTG 59.0

Type IV collagen F: TTAAAGGACTCCAGGGACCAC 58.0
R: CCCACTGAGCCTGTCACAC 59.3

Fibronectin F: CCCTATCTCTGATACCGTTGTCC 58.8
R: TGCCGCAACTACTGTGATTCGG 62.4

TGFβ-1 F: TCAGACATTCGGGAAGCAGT 58.0
R: ACGCCAGGAATTGTTGCTAT 56.9

α-SMA F: GCCCAGAGCAAGAGAGG 55.6
R: TGTCAGCAGTGTCGGATG 56.1

GAPDH F: AAATGGTGAAGGTCGGTGTG 60.0
R: TGAAGGGGTCGTTGATGG 60.0

4.9. Western Blotting Analysis

Western blotting was performed as previously described [40]. The Kidney tissues
were homogenized in a radioimmunoprecipitation assay buffer. The protein concentration
of kidney samples was determined using the BCA protein assay kit. Similarly, 20 µg of
tissue lysates was loaded onto SDS-PAGE gels, separated, and transferred onto PVDF
membranes. Next, the membranes were applied with 5% skimmed milk and incubated
with ICAM-1, COX-2, and β-actin antibodies. Next, the membranes were incubated with
anti-rabbit secondary antibodies. Finally, signals were visualized using an image analyzer
(ChemiDocTM XRS+ System; Bio-Rad Laboratories) and densitometry was performed using
ImageJ (NIH).

4.10. Statistical Analysis

Results are shown as the mean ± standard derivation (SD) and analyzed using Graph-
Pad Prism software version 9.0 (Inc., La Jolla, CA, USA). One-way analysis of variance,
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together with Tukey’s multiple comparison test, was carried out to detect statistical differ-
ences. Significant differences were regarded at p < 0.05.

5. Conclusions

CC possesses various beneficial effects; however, its protective effect on AD-induced
chronic renal injury remained unclear. In this study, we confirmed that CC could im-
prove renal function and protect against AD-induced chronic renal injury. In addition, we
found that the mechanism of renoprotection may be related to its anti-inflammatory and
antifibrotic activities. Nevertheless, this study had some limitations. First, we focused
on inflammation and fibrosis in the kidneys. Hence, we assessed only the associated pa-
rameters. Second, we did not determine the therapeutic effects of the various CC-derived
compounds. Therefore, further studies are needed to understand the mechanistic signaling
pathways involved in the effects of CC and CC-derived components.
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