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Abstract: Benzofuran and 1,3,4-oxadiazole are privileged and versatile heterocyclic pharmacophores
which display a broad spectrum of biological and pharmacological therapeutic potential against
a wide variety of diseases. This article reports in silico CADD (computer-aided drug design) and
molecular hybridization approaches for the evaluation of the chemotherapeutic efficacy of 16 S-linked
N-phenyl acetamide moiety containing benzofuran-1,3,4-oxadiazole scaffolds BF1–BF16. This vir-
tual screening was carried out to discover and assess the chemotherapeutic efficacy of BF1–BF16
structural motifs as Mycobacterium tuberculosis polyketide synthase 13 (Mtb Pks13) enzyme inhibitors.
The CADD study results revealed that the benzofuran clubbed oxadiazole derivatives BF3, BF4,
and BF8 showed excellent and remarkably significant binding energies against the Mtb Pks13 en-
zyme comparable with the standard benzofuran-based TAM-16 inhibitor. The best binding affinity
scores were displayed by 1,3,4-oxadiazoles-based benzofuran scaffolds BF3 (−14.23 kcal/mol), BF4
(−14.82 kcal/mol), and BF8 (−14.11 kcal/mol), in comparison to the binding affinity score of the
standard reference TAM-16 drug (−14.61 kcal/mol). 2,5-Dimethoxy moiety-based bromobenzofuran-
oxadiazole derivative BF4 demonstrated the highest binding affinity score amongst the screened
compounds, and was higher than the reference Pks13 inhibitor TAM-16 drug. The bindings of these
three leads BF3, BF4, and BF8 were further confirmed by the MM-PBSA investigations in which
they also exhibited strong bindings with the Pks13 of Mtb. Moreover, the stability analysis of these
benzofuran-1,3,4-oxadiazoles in the active sites of the Pks13 enzyme was achieved through molecular
dynamic (MD) simulations at 250 ns virtual simulation time, which indicated that these three in silico
predicted bio-potent benzofuran tethered oxadiazole molecules BF3, BF4, and BF8 demonstrated
stability with the active site of the Pks13 enzyme.

Keywords: benzofuran-1,3,4-oxadiazole; tuberclosis; Pks13 inhibitor; molecular docking; MM-PBSA;
MD simulations; ADMET study; SAR
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1. Introduction

TB (tuberculosis) is among the deadliest transmittable infectious lung disease caused
by Mycobacterium tuberculosis (Mtb). The global TB report 2018 described that Mtb is the
leading cause of single infectious disease [1]. TB and its percentage are higher than human
immunodeficiency virus (HIV) and AIDS. Amongst the infectious diseases after HIV, TB is
a global health issue, being the second major cause of death across the world. In today’s
world, antibiotic resistance is a major global problem in curing contagious microbial dis-
eases (CMD) caused by deadly microbes [2,3]. The drug-resistant TB is a major health
concern of today’s scientific community due to its resistance against the first-line drug
rifampicin (RR-TB) [4,5]. To counter multi-drug resistance (MDR) and pan-drug resis-
tance bacteria resulting from the development of mutagenicity [4–8], novel wide spectrum
chemotherapeutic agents are urgently necessitated. It is imperative to discover novel
anti-tuberculosis chemotherapeutic agents to stop resistance in Mtb strains, and ideally
cure the disease in a shorter time [4–10]. There is an urgent demand and necessity for
the designing, discovery, and development of novel curative candidates active against all
forms of Mtb [8–13]. Heterocycles-based ring systems such as quinoxalines, coumarins,
benzothiazoles, benzoxazoles, thiadiazoles, benzofurans, and oxadiazoles, etc., constitute a
powerful backbone of different chemotherapeutic agents with a wide spectrum of biological
activities in medicine, pharmacology, and pharmaceutics [14–21]. Benzofuran (Figure 1)
is a five-membered oxygen containing a fused heterocyclic compound first synthesized
by Perkin in 1870 [22]. Benzofuran moiety is an important structural unit of many of the
natural and synthetic derivatives (Figure 1) displaying a versatile array of biological activi-
ties against a wide variety of diseases, such as anti-cancer, hemolytic, thrombolytic [23],
anti-microbial [24], anti-tuberculosis [25,26], anti-Alzheimer’s [27,28], inflammation in-
hibitory activity [29], anti-parasitic [30], anti-viral [31], analgesic, anti-pyretic [32], anti-
bacterial [33], anti-hyperglycemic [34], and anti-oxidant activities [33,35]. On the other
hand, 1,3,4-oxadiazole scaffolds showed a broad spectrum of pharmacological applications;
for example, anti-Alzheimer’s [36], anti-neoplastic [37], anti-viral [38], anti-cancer [39],
FAK inhibitors [40], anti-fungal [41], anti-inflammatory [42], anti-bacterial [43] and anti-
tubular activities [44]. The benzofuran-oxadiazoles also exhibited anti-lung cancer, human
tyrosinase inhibitors, anti-HepG-2, anti-hemolytic, and anti-thrombotic activities [24,45].
The different marketed anti-TB drugs are listed in Figure 2, while potent anti-TB bioactive
compounds with oxadiazole and furan cores are depicted in Figure 3 [46–52].
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Figure 3. Structures of oxadiazole and benzofuran-based anti-TB scaffolds. Figure 3. Structures of oxadiazole and benzofuran-based anti-TB scaffolds.

The previous work reported on benzofuran-oxadiazoles as anti-microbial agents by
our research group and the current comprehensive literature study (Figure 4) [17,42–52]
is the basis of the rationale to discover novel benzofuran-appended oxadiazole structural
hybrids as anti-TB drug candidates with the help of different in silico techniques.
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2. Results and Discussion
2.1. Evalaution of Anti-Mtb Potenial of Benzofurans-1,3,4-Oxadiazoles Using
Computational Approaches
Mycobacterium Tuberculosis

Benzofuran-1,3,4-oxadiazoles BF1–BF16 [23,45,52] were evaluated for their anti-Mtb
potential using computational approaches. Tuberculosis is a bacterial disease that predom-
inantly affects the lungs and is caused by Mycobacterium tuberculosis [53]. Even though
macrophages are crucial to the host immune system because they identify and eliminate
potential intruders (pathogens), Mtb has developed several tactics that allow it to live and
proliferate inside these lung macrophages, which are the main host cells for Mtb infec-
tion [54]. It is one of the prevalent causes of death worldwide, particularly in people who
have also been infected by other pathogenic viruses and have viral infections. The existing
TB treatment regimens take between six and nine months to complete, which makes it
difficult for patients to adhere to them, which causes multi-drug resistant TB, which is
essentially resistant to antibacterial drug treatments [55]. Hence, new potential anti-TB
chemotherapeutics need to be designed and developed to overcome the MDR problem by
targeting novel pathways and enzymes involved in bacterial growth, with new modes of
action to lessen the likelihood of a relapse of the TB infection when existing medications
are no longer reliable [5,6,13].
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Intensive research has been put into finding new Mtb targets and their inhibitors that
can stop the spread of this bacterial pathogen and mitigate its drug resistance [6,13,56].
Similarly, an important class of enzymes known as polyketide synthases (Pks) has not been
explored as a therapeutic target for microbial infection. The Pks are enzymes that produce
mycolic acids, which are essential for the survival and pathogenicity of Mtb [57]. More
than 20 (Pks) enzymes are a part of various multi-enzyme complexes that work together to
produce mycolic acid in Mtb [58]. These Pks13-derived lipid metabolites (mycolic acids)
are important constituents of Mtb’s distinctively sophisticated and lipid-rich cell wall [59],
which has been suggested as a way for it to live in hostile environments in host macrophages
while also providing an inherent resistance to numerous anti-microbial medications [60]. As
it is recognized that these mycolic acids, a feature of the genus mycobacterium, are essential
for the survival of this pathogen, disruption of this important biosynthesis pathway is a
promising drug target for TB mitigation [59,60].

One of the important enzymes of the Pks enzyme family is Pks13, which is responsible
for the condensation of two fatty acid chains into α-alkyl β-ketoacyl, a primary precursor
of the mycolates. Therefore, Pks13 is a crucial enzyme for mycobacterial survival, making
it a desirable new target for the pursuit of possible anti-tuberculosis drug candidates [61].
Research has been going on to identify drugs targeting this Pks13 enzyme, and several
benzofuran-based scaffold-carrying compounds have been identified as potent repressive
agents of Pks13 using structure-based drug design techniques [17,42,43,62]. These novel
benzofurans oxadiazoles BF1–16 had strong anti-Pks13 activity in various investigational
models [46,63]. Moreover, benzofuran-based compounds have also been identified to target
other vital enzymes of Mtb [64]. Taking into account these potent inhibitory activities
of benzofuran-based compounds against Mycobacterium tuberculosis, we will evaluate the
potential anti-Mtb activities of our synthesized compounds (BF1 to BF16) in this study by
utilizing computer-aided drug discovery techniques (CADD) by targeting the important
Pks13 enzyme of Mtb.

2.2. Molecular Docking Investigations of BF1–BF16 against the Pks13 Enzyme

The in silico molecular docking approach was utilized to screen the 1,3,4-oxadiazole
based benzofuran compounds via MOE (molecular operating environment) against the
Pks13 of Mtb, and these results were compared with the co-crystallized inhibitor (TAM-16)
of Pks13.The standard reference benzofuran TAM-16 inhibitor of anti-Mtb displayed an
excellent binding affinity score (−14.61 kcal/mol) due to its strong binding interaction
with the Pks13 enzyme active site (which is involved in the Mtb mycolic acid biosynthe-
sis). The conformation analysis of the interaction of TAM-16 inhibitor with the active
site pocket of Pks13 indicated that the TAM-16 inhibitor interacts with multiple amino
acids residues (ASP1644, ASN1640, and GLN1633). The TAM-16 inhibitor made different
multiple conventional and carbon-hydrogen-type hydrogen bonds with different amino
acids of the active site. In the analysis, the Pks13 and TAM-16 protein-ligand complex
demonstrated several other Pi-Pi and Amide-Pi Stacked-type molecular interactions. In
addition, other types of molecular interactions—such as Alkyl, Pi-Alkyl, and Pi-Sigma
interactions, which stabilize a compound inside a pocket—were also observed with the
ILE1643, TYR1663, ALA1667, and TYR1674 between the Pks13 and the TAM-16 inhibitor.
Furthermore, researchers that first discovered TAM-16 against Pks13 have stated that it
exerts its inhibitory action by obstructing access to the Pks13 active site, which houses the
catalytic triad (Ser1533, Asp1560, and His1699); in this study, it can be seen that TAM-16
also occupied the active site pocket and blocked access to these residues, as seen in Figure 5.
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Figure 5. TAM-16 inhibitor (upper panel) 3D pose (obtained through molecular docking) with the
Pks13 interacting residues labeled, and its 2D interactive pose (lower panel) with the Pks13 enzyme.

The afforded benzofuran molecules demonstrated strong binding affinities and robust
interactions with the Pks13 enzyme active site in comparison to the benzofuran-based
TAM-16 reference standard inhibitor. Out of the 16 novel synthesized analogs BF1 to
BF16, three of them, BF3, BF4, and BF8 showed similar affinities to that of TAM-16 with
the Mtb Pks13 enzyme. The conformation analysis of the pose and binding affinity of
benzofuran-appended 1,3,4-oxadiazole derivative BF3 showed the binding affinity score
(−14.23 kcal/mol) with the Pks13 active site due to the multiple molecular interactions
with the Pks13 receptor residues. The benzofuran ring of the derivative BF3 demonstrated
hydrogen bonds of conventional and carbon-hydrogen types with TYR1663, along with
an H-bond between the HIS1664 and the sulphur atom. Moreover, other interactions such
as Pi-Pi T-shaped (With the HIS1699 catalytic residue), Pi-Pi Stacked, Pi-Sigma and Alkyl
were present, as were Pi-Alkyl interactions between the benzofuran ring and the Pks13.
Several of the Pks13 receptor residues also made Van der Waals and Pi-Lone Pair molecular
interactions with this compound; they are graphically presented in Figure 6.
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2D interactive pose (lower panel) with the Pks13 enzyme.

During the molecular docking studies, compound BF4 also showed a strong binding
affinity score with the Pks13 active site (−14.82 kcal/mol) as compared to the TAM-16
binding affinity, which was (−14.61 kcal/mol) with the Pks13 enzyme; BF4 showed rela-
tively stronger binding to the active site of the target protein. Furthermore, the interaction
analysis of BF4 and the Pks13 protein complexes showed that BF4 directly interacted with
the catalytic residues (Ser1533 and His1699), which are directly involved in the mycolic
acid synthesis and are essential to the Pks13 activity. The benzofuran BF4 blocked access to
these catalytic residues by interacting similarly to the TAM-16 inhibitor, as mentioned in
previous paragraphs. It can be seen in Figure 7 that BF4 was able to engage the HIS1699
catalytic residue via a carbon-hydrogen-type hydrogen bonding with the oxygen atom of
the oxadiazole ring. This oxadiazole ring’s nitrogen atom also engaged the other important
catalytic residue (SER1533) by forming a conventional hydrogen bond. Furthermore, the
benzofuran moiety of BF4 also made multiple molecular contacts, as was previously seen
in the BF3 and Pks13 complex, and formed a hydrogen bond with the TYR1663, a Pi-Sigma
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interaction with the ILE1643, and multiple stabilizing interactions with Alkyl, Pi-Alkyl,
Pi-Pi T-shaped and Pi-Pi Stacked; these Pi-Sulfur and Pi-Sigma interactions were also
present in BF4 and the Pks13 complex.
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2D interactive pose (lower panel) with the Pks13 enzyme.

The third novel benzofuran BF8 also showed comparable binding affinity in compari-
son to that of TAM-16, and was able to bind to the Pks13 active site with a binding affinity
score of −14.11 kcal/mol. It also directly engaged one of the crucial catalytic residues
HIS1699 with its oxadiazole ring’s nitrogen atom via a conventional H-bond. Moreover,
the benzofuran moiety of BF8 also showed stable molecular interactions of multiple types
with the Pks13 receptor residues, and the TYR1663 made an H-bond with the bromine
atom of this ring and made Alkyl and Pi-Alkyl interactions, as previously seen in the
other benzofurans. In addition, other molecular interactions, i.e., Pi-Pi T-shaped, Pi-Pi
Stacked-type, Amide-Pi Stacked, Pi-Sigma, and interactions of fluorine on the phenyl ring
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of BF8 with the ASP1644 of Pks13 receptor were also seen in BF8 and the Pks13 protein
complex, as seen in Figure 8.
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An overview of the binding affinity scores of the studied bromo-substituted benzofuran-
1,3,4-oxadiazoles BF1–BF9 and the interactive residues engaged by these compounds in the
active pocket of the Pks13 enzyme are presented in Table 1; while the bromo-unsubstituted
benzofuran-1,3,4-oxadiazole structural hybrids BF10–BF16 that showed less binding affin-
ity scores with the Pks13 enzyme are presented in the Supplementary Table S1.
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Table 1. The molecular docking profile of bromobenzofuran-oxadiazoles BF1–BF9 against Pks13.

Compounds Binding Affinities Interacting Residues of Pks13 Interaction Types

BF1 −12.93 kcal/mol ILE1643, TYR1663, HIS1632,
HIS1699, ALA1667, TYR1674,

Carbon-Hydrogen Bond, Van der Waals,
Pi-Pi T-Shaped, Pi-Alkyl, and Alkyl.

BF2 −12.71 kcal/mol
ASN1640, ILE1643, TYR1637,
TYR1663, HIS1632, ALA1667,

TYR1674, PHE1670

C-Hydrogen Bond, Van der Waals, Pi-Pi
T-Shaped, Pi-Pi Stacked, and Alkyl.

BF3 −14.23 kcal/mol

VAL1537, ALA1561, PHE1637,
ARG1641, ILE1643, TYR1663,
HIS1664, ALA1667, PHE1670,

TYR1674, HIS1699

Conventional H-bond, C-Hydrogen
Bond, Van der Waals, Pi-Pi T-Shaped,

Pi-Alkyl, Pi-Lone pair, Pi-Sulfur,
Pi-Sigma, and Pi-Pi Stacked

BF4 −14.82 kcal/mol
VAL1537, SER1533, ALA1561,
VAL1537, TYR1674, ILE1643,

PHE1670, ALA1667

Conventional H-bond, C-Hydrogen
Bond, Van der Waals, Pi-Pi T-Shaped,

Pi-Alkyl, Pi-Lone pair, Pi-Sulfur,
Pi-Sigma, and Pi-Pi Stacked

BF5 −12.31 kcal/mol ALA1561, TYR1663, ILE1643,
HIS1664, TYR1674, ALA1667

C-Hydrogen Bond, Van der Waals, Pi-Pi
T-Shaped, Pi-Alkyl, Pi-Lone pair,

and Alkyl.

BF6 −11.89 kcal/mol
SER1533, ALA1667, ALA1561,
TYR1663, ILE1643, HIS1664,

GLN1633, TYR1674

Conventional H-bond, C-Hydrogen
Bond, Van der Waals, Pi-Pi T-Shaped,

Pi-Alkyl, Pi-Lone pair, Halogen,
and Alkyl.

BF7 −12.23 kcal/mol
HIS1632, TYR1637, ILE1643,

TYR1663, ALA1667, PHE1670,
TYR1674

Carbon-Hydrogen Bond, Van der Waals,
Pi-Pi Stacked, Pi-Alkyl, and Alkyl.

BF8 −14.11 kcal/mol
VAL1537, ALA1561, TYR1663,
ASN1640, ILE1643, PHE1670,
ARG1641, ASP1644, HIS1664

Conventional H-bond, C-Hydrogen
Bond, Van der Waals, Pi-Pi T-Shaped,

Pi-Alkyl, Pi-Lone pair, Amide-Pi Stacked

BF9 −13.44 kcal/mol
ILE1643, ALA1667, PHE1670,
VAL1562, HIS1699, TYR1674,

TYR1637

Conventional H-bond, C-Hydrogen
Bond, Van der Waals, Pi-Pi T-Shaped,

Pi-Pi Stacked, Pi-Alkyl, and Alkyl

TAM-16
(Standard) −14.61 kcal/mol

SER1533, GLN1633, ASN1640,
ASP1644, ILE1643, TYR1663,

ALA1667, PHE1670, TYR1674

Conventional H-bond, C-Hydrogen
Bond, Van der Waals, Pi-Pi Stacked,

Pi-Alkyl, Amide Pi-Stacked, Pi-Sigma,
and Alkyl

2.3. Structure-Activity Relationship (SAR) of Bromobenzofuran-1,3,4-Oxadiazoles BF3, BF4,
and BF8

The analysis of the structure-activity relationship (SAR) of the novel 5-bromobenzofuran-
oxadiazole compounds BF1–BF9 revealed that the simple benzofuran moiety containing
oxadiazole molecules BF10–BF16 showed less binding affinity towards the Pks13 enzyme
active site as compared to the 5-bromo moiety-based benzofuran-oxadiazoles. Among
the 5-bromobenzofuran-oxadiazole compounds, BF3 and BF8 compounds having methyl
(-CH3) and highly electronegative atom fluorine on the phenyl rings (Figure 9) displayed
comparable binding affinities with reference to the benzofuran TAM-16 standard Pks13
inhibitor. Meanwhile, the 2,5-dimehoxy functionality containing the BF4 molecule
demonstrated stronger binding affinities due to stable conformation, alignments, robust
interactions, and direct bindings to the catalytic residues of Pks13 active site pocket
compared to the standard TAM-16 inhibitor, which only blocked access to the Pks13
of Mtb active site pocket residues. Overall, the SAR study of all B1–BF9 predicted that
phenyl position 2 of the N-phenyl acetamide fragment is more active in comparison to
other positions in the S-alkylated 5-bromobenzofuran-oxadiazoles tethered N-phenyl
acetamides BF1–BF9. These findings suggest that the in silico identified compounds
can be effective novel anti-Mtb agents, and may help tackle the resistant strains of Mtb
and reduce the treatment times if used in combinatorial therapy against Mycobacterium
tuberculosis infections.
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2.4. ADMET and Drug-Likeness Studies of Benzofuran-1,3,4-Oxadiazoles BF1–BF16

The ADMET and drug likeness studies of novel benzofuran clubbed 1,3,4-oxadiazole
compounds BF1–BF9 are already reported by Irfan et al. [23,45,52]). In this study, AD-
MET and drug likeness studies of benzofuran oxadiazoles BF10–BF16 (Supplementary
Tables S2 and S3) were carried out in order to check their profile in comparison to previously
reported derivatives BF1–BF9. In general, benzofuran oxadiazoles BF1–BF16 showed good
human intestinal absorptions and were classified as HIA+ based on pharmacokinetics
and ADMET analysis. The novel benzofuran-appended 1,3,4-oxadiazoles demonstrated
acceptable lipophilic (iLogP) characteristics and good Log S (ESOL) water solubility values.
Additionally, they were not P-gp protein substrates (P-glycoprotein, or P-gp, is a transporter
protein of cell membranes that controls the efflux of substances and medications from cells).
Studies on metabolism have revealed that these substances are CYP450 3A4 substrates,
which means that after these drug-like compounds have completed their task inside the
body, the CYP450 3A4 can easily biotransform these substances inside the liver before
sending them to the excretory organs for excretion from the body. These novel compounds
were also non-inhibitors of the renal-OCT proteins (transporter proteins), which are crucial
in the detoxifying/excretion of exogenous chemicals/drugs from the body. The toxicity
investigations of these substances also revealed that they are not carcinogenic, non-AMES
toxic, do not affect or inhibit the ThERG II ion channel that regulates cardiac action po-
tential repolarization, and are non-interferers in its regular operation. According to these
studies, just like BF1–BF9, the derivatives under study BF10–BF16 had shown favorable
ADMET properties compared to the standard TAM-16, which shows that these compounds,
if utilized, would pose no significant health hazards to its subjects upon administration.

Moreover, the drug-likeness investigations involving identifying these compounds’
physicochemical properties and medicinal chemistry showed that these BF1–BF9 and BF10–
BF16 compounds had an excellent topological surface area (TPSA), acceptable molecular
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weight values, and good synthetic accessibility scores. These benzofuran BF1–BF9 and
BF10–BF16 compounds followed the drug-likeness rules, such as Pfizer and Lipinski’s
drug rules. These compounds also showed no PAINS alerts, and along with this, they
also followed the Golden Triangle rule and had good bioavailability scores (greater than
0.10). ADMET and drug-likeness data of BF10–BF16 along with the reference compound
TAM-16 are presented in the Supplementary Tables S2 and S3, respectively.

2.5. MD Simulations Study of Benzofuran-1,3,4-oxadiazoles BF3, BF4, and BF8

The variation and stability of the in silico predicted bioactive benzofuran-1,3,4-oxadiazoles
BF3, BF4, and BF8 were studied by applying the C-alpha atoms root means square devi-
ation (RMSD) approach. The three complexes displayed the initial upper phase, which
resulted in the flexible behavior depicted in Figure 10. At the 25 ns simulation time, the
complexes reached a steady state and the complexes retained stability until the simulations’
last segment. On the other hand, BF3 had fluctuations at 150 ns, 180 ns, and 230 ns. The
higher RMSD for BF3 than other compounds demonstrates how these complexes are more
adaptable than the other molecules, BF4 and BF8. The analyzed complexes were defined
as having a stable comparative characteristic because their RMSD was below 2.5 during
the simulation. The SASA simulation (solvent-accessible-surface-area) was carried out on
complexes BF3, BF4, and BF8. The SASA simulation approach was utilized to study the
variation of the complexes’ topology, which showed that higher SASA reflected the extent
of the surface volumes, while the elongated nature defined the lower SASA, as shown
in Figure 9. Their stability was proved by the steady-state for BF3, BF4, and BF8 after
48 ns and the low fluctuation degree for SASA profiles along the simulated trajectories.
Additionally, each complex had SASA degrees that were roughly comparable, and the
interaction over BF3, BF4, and BF8 compounds described these protein complexes in their
compact form. The BF3, BF4, and BF8 complexes were analyzed for radius-gyration (RG)
and trajectories. The trajectories demonstrated the flexibility and degree of mobility. The
complexes BF3, BF4, and BF8 RG steady degree appeared at 7 ns.

To assess the flexibility of the residues of amino acids, the root-means-square-fluctuations
(RMSF) were likewise also explored (Figure 10). The high Firmness of BF4 and BF8
complexes was demonstrated by their low RMSF values of 2.5 Å, but the relative flexibility
of the back-bone of amino acid residues in the BF3 complex was demonstrated by its
growing RMSF value of 6Å. Additionally, the small variations in the RMSD of BF3, BF4,
and BF8 systems demonstrated loops variations in Mtb Pks13, which are naturally flexible.
These RMSD variations correspond to enzyme structure adaptations in order to strongly
engage the compounds at the binding site, as suggested by the H-bonding pattern. [65,66].

The H-bond played an important role in identifying the stability of the interaction-
strength in the ligand and protein. The in silico predicted bioactive BF3, BF4, and BF8
have constant H-bonds range between 2 and 10 in the simulation process. The changing
H-bond between the ligand-enzyme may suggest that the conformation around the ligands
inside the binding site change through simulation. Overall, simulations supported the high
stability of all protein-ligand complexes.

2.6. MM-PBSA Investigations of the Most In Silico Bioactive Benzofuran-1,3,4-oxadiazoles

Deciphering intermolecular interactions and energies at different nanoseconds are im-
portant to unveil microscopic information important for guiding stable docked complexes.
This in turn ensures the selection of compounds that can inhibit the receptor enzyme.
Although the ligand molecules are pretty flexible in the calculations, the Pks13 protein
does not have this flexibility. In Molecular Mechanics-Poisson-Boltzmann surface area
(MM-PSBA) calculations, the interaction between the ligand and Pks13 protein is done at
the ns level. Both the ligand molecule and the Pks13 protein have flexibility in calculations
of MM-PSBA. The interaction occurring in these calculations were examined every 10 ns,
and the energy change is given in Figure 11.
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The generated graph displays the binding free energy variations and changes for each
interval of ten (ns), along with standard deviations (±) given in Table 2. The high affinity
bromobenzofuran-1,3,4-oxadiazole binders to Mtb Pks13 were BF3, BF4, and BF8 molecules,
which were then compared to one another. Using this comparison, calculations were
performed to support the (MM-PBSA) method’s estimation of the bonding’s free energies.
The relevant parameters’ negative values signify stronger binding [67]. According to
calculations using equation-1, the average values of Gibbs free energies are −31.4 kcal/mol
for Pks13+BF3, −48.8 for Pks13+BF4, and −41.5 for Pks13+BF8. It can be seen in Table 2
that at each ns, the compounds showed robust strong intermolecular interactions energy.
This further demonstrates the formation of high stable complexes and the strong binding
of the compounds to the Mtb Pks13 enzyme. However, as standard deviation values
are moderate to high, further extensive calculations are needed to validate the energy
values. In light of these results, it can be seen that the free energy values of these three
molecules show that they may possess better repressive properties against the important
Mtb Pks13 enzyme.

Table 2. The binding free energy changes and deviations in each ten (ns) interval. The energy values
are presented in kcal/mol.

Nanoseconds Pks13+BF3 Pks13+BF4 Pks13+BF8

10 −59.4 ± 149.6 −956.2 ± 586.2 −87.8 ± 235.6
20 −135.2 ± 235.5 −105.3 ± 387.4 −508.9 ± 245.1
30 −95.8 ± 269.3 −912.3 ± 189.3 −354.2 ± 245.3
40 −570.3 ± 684.2 −245.3 ± 245.6 −150.8 ± 250.4
50 −856.2 ± 345.6 −856.3 ± 409.8 −750.4 ± 150.6
60 −135.2 ± 248.6 −301.7 ± 204.8 −723.3 ± 523.6
70 −486.3 ± 367.3 −501.1 ± 193.5 −685.8 ± 351.2
80 −648.8 ± 385.2 −1101.3 ± 497.6 −289.7 ± 487.5
90 −329.2 ± 301.2 −687.5 ± 260.1 −350.4 ± 293.7

100 −300.8 ± 283.2 −423.4 ± 305.3 −145.8 ± 354.6

3. Materials and Methods
3.1. Chemistry

All the benzofuran-oxadiazole structural motifs BF1–16 were afforded, and their
characterization data were published by Irfan et al. [23,45,52]. The structures of benzofuran-
1,3,4-oxadiazoles BF1–BF16 along with the TAM-16 standard reference inhibitor structure
are given in Figure 11.

3.2. Molecular Docking of Benzofuran-1,3,4-oxadiazoles BF1–BF16

The protein PDB structure of the target enzyme Pks13 of Mycobacterium tuberculosis
was achieved from the RCSB to carry out the molecular docking study (computational
research) [68] website with the PDB Identifier (5V3Y) [62]. The molecular docking study
of sixteen novel benzofuran-1,3,4-oxadiazoles was carried out with MOE (Ver-2009.10)
software [69]. The first step was the preparation of protein structure of the Pks13 enzyme
by removing water molecules and heteroatoms from the protein PDB structure with the
help of Biovia DS [70] software for molecular docking study. The Chem-draw professional
(Ver-16) software [71] (by PerkinElmer Informatics) was used to draw the structures of
benzofuran-1,3,4-oxadiazole ligands BF1–BF16 and saved in the mol format for further
studies. Before docking, the ligand structures were loaded in the MOE, and their energy
was minimized via the MMFF94x forcefield, and the partial charges were also added to
the ligand structures. Using the Triangle Matcher placement strategies, the compounds
were docked in the binding pocket and scored by the Dock module using the London-dG
scoring function of MOE. The protein PDB was opened in MOE, and was 3D-protonated
using the Amber99-ff. The active site of the Pks13 was located and selected using the Site
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Finder function of MOE. The ligand-protein interaction was viewed using the software
Biovia DS Studio (Ver-2017) [72].

3.3. ADMET and Drug-Likeness Investigations of Benzofuran-1,3,4-oxadiazoles

The ADME and drug-likeness studies of benzofuran-1,3,4-oxadiaole compounds were
carried out by utilizing the Swissadme (Ver-1) [73] and ADMET lab (Ver-2.0) [74] online
web-servers, while for the toxicity investigations, the ADMETSAR (Ver-1.0) [75,76] online
server was utilized.

3.4. MD Simulation Study of the Most In Silico Bioactive BF3, BF4, and BF8 Derivatives

The MD Simulations of the most in silico predicted biologically active benzofuran-1,3,4-
oxadiazole BF3, BF4, and BF8 scaffolds were performed by GROMACS. Using GROMACS
(Ver-2021) and the Linux 5.4 package, MD simulation of the protein-ligand complexes
was carried out. The ligand topologies were created using the PRODRG server, and
the GROMOS96 forcefield was used as the force field for proteins. Simple point charge
(SPC) water molecules in a rectangular box were used to solvate each complex. Na + and
Cl + ions were added to electrically make the simulation system neutral, whereas salt
concentrations of 0.15 mol/L were set in each system. All solvated complexes underwent
energy minimization for 5000 steps using the steepest descent method. Different produc-
tions were run in the MD simulation, including the constant number of particle, pressure,
and temperature (NPT) series and the constant number of particle, volume, and temper-
ature (NVT) series. For the simulation, a V-rescale thermostat and a Parrinello-Rahman
barostat were chosen, and the NVT and NPT series were conducted at 300 K and 1 atm for
300 ps. Finally, the production run was completed after 250 ns at 300 K. [77,78].

3.5. MM-PBSA Binding Free Energy Calculations of the Most In Silico Bioactive BF3, BF4, and
BF8 Derivatives

Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations of
molecules were made with molecular dynamic calculations. The different types of binding
free energies, i.e., Van der Waals, electrostatic, kinetic, and potential energy changes of the
studied BF3, BF4, and BF8 molecules were determined for these calculations. In addition,
this study examined the interactions between BF3, BF4, and BF8 molecules and the 5V3Y
protein, which is the Pks13 protein. These interaction energies were investigated at 100 ns.
As a result of the interaction of the three molecules studied with the protein, the values of
the binding free energy change were calculated. This calculation is given in Equation (1).

∆GBind=Gcomplex−(Gres+Glig) (1)

In the above equation, ∆GBind gives the total binding free energy value between the
ligand and the Pks13 protein. Glig, Gres, and Gcomplex values in the equation are the values
of the ligand molecule, Pks13 receptor protein, and complex molecule, respectively [79].

4. Conclusions

In conclusion, the novel series of sixteen benzofuran-1,3,4-oxadiazoles BF1–BF16 was
evaluated for their therapeutic inhibitory effect on Mtb Pks13 enzyme by applying various
in silico approaches, such as molecular docking, MM-PBSA, pharmacokinetics, ADMET,
and molecular dynamic simulations. The results of the CADD approach indicated that
three in silico predicted lead compounds such as the 2,4-dimethyl moiety containing BF3,
2,5-dimethoxy moiety-based BF4, and 2-flouro moiety containing BF8 displayed excellent
in silico anti-TB chemotherapeutic potential due to the strong interaction with the active
site of the Pks13 enzyme and the greater stability of these complexes in comparison to the
standard reference benzofuran drug TAM-16. The conformational pose and binding affinity
analysis of BF3, BF4, and BF8 showed that these derivatives bind to the Pks13 active site
with a binding affinity score of −14.23 kcal/mol, −14.82 kcal/mol, and of −14.11 kcal/mol,
respectively, in comparison with the standard reference TAM-16 (−14.61 kcal/mol). The
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BF4 bromobenzofuran-1,3,4-oxadiazole showed higher binding affinity −14.82 kcal/mol
than the reference Pks13 inhibitor TAM-16 (−14.61 kcal/mol), which was further confirmed
by the MM-PBSA calculations and the MD simulations studies. The ADMET studies of all
the screened bromobenzofuran-oxadiazole structural hybrids demonstrated a high degree
of drug-likeness profile. Overall, it is seen that the bromobenzofuran-1,3,4-oxadiazole
BF4 derivative has a more stable total binding free energy value against the 5V3Y pro-
tein. On the basis of different in silico techniques, 2,5-dimethoxy phenyl-substituted
bromobenzofuran-1,3,4-oxdiazole BF4 is a more in silico predicted effective reagent than
TAM-16, so this in silico bioactive BF4 can be a future lead anti-TB chemotherapeutic can-
didate after further in vitro and in vivo evaluations, which would be necessary to establish
its chemotherapeutic efficacy against Mtb.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph16060829/s1. Binding affinities of benzofuran-1,3,4-oxadiazole
BF10–16 are present in the supplementary Table S1; ADMET and drug-likeness data is depicted in
Tables S2 and S3, respectively.
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