
Citation: Shaikh, S.A.; Muthuraman,

A. Tocotrienol-Rich Fraction

Ameliorates the Aluminium

Chloride-Induced Neurovascular

Dysfunction-Associated Vascular

Dementia in Rats. Pharmaceuticals

2023, 16, 828. https://doi.org/

10.3390/ph16060828

Academic Editor: Angel

Josabad Alonso-Castro

Received: 15 March 2023

Revised: 11 May 2023

Accepted: 25 May 2023

Published: 1 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceuticals

Article

Tocotrienol-Rich Fraction Ameliorates the Aluminium
Chloride-Induced Neurovascular Dysfunction-Associated
Vascular Dementia in Rats
Sohrab A. Shaikh and Arunachalam Muthuraman *

Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, Bedong 08100, Kedah, Malaysia
* Correspondence: arunachalammu@gmail.com or muthuraman.a@aimst.edu.my; Tel.: +60-174509806

Abstract: Neurovascular dysfunction leads to the second most common type of dementia, i.e., vascu-
lar dementia (VaD). Toxic metals, such as aluminium, increase the risk of neurovascular dysfunction-
associated VaD. Hence, we hypothesized that a natural antioxidant derived from palm oil, i.e.,
tocotrienol-rich fraction (TRF), can attenuate the aluminium chloride (AlCl3)-induced VaD in rats.
Rats were induced with AlCl3 (150 mg/kg) intraperitoneally for seven days followed by TRF treat-
ment for twenty-one days. The elevated plus maze test was performed for memory assessment.
Serum nitrite and plasma myeloperoxidase (MPO) levels were measured as biomarkers for endothe-
lial dysfunction and small vessel disease determination. Thiobarbituric acid reactive substance
(TBARS) was determined as brain oxidative stress marker. Platelet-derived growth factor-C (PDGF-
C) expression in the hippocampus was identified using immunohistochemistry for detecting the
neovascularisation process. AlCl3 showed a significant decrease in memory and serum nitrite lev-
els, while MPO and TBARS levels were increased; moreover, PDGF-C was not expressed in the
hippocampus. However, TRF treatment significantly improved memory, increased serum nitrite,
decreased MPO and TBARS, and expressed PDGF-C in hippocampus. Thus, the results imply that
TRF reduces brain oxidative stress, improves endothelial function, facilitates hippocampus PDGF-C
expression for neovascularisation process, protects neurons, and improves memory in neurovascular
dysfunction-associated VaD rats.

Keywords: endothelial dysfunction; myeloperoxidase; platelet-derived growth factor-C; serum
nitrite; tocotrienol-rich fraction; vascular dementia

1. Introduction

Dementia is a long-term, progressive condition that impairs cognitive function in a
way that is not related to natural ageing [1]. Neurovascular dysfunction is associated with
an increasing list of pathologies that includes vascular dementia [2]. Vascular dementia
(VaD) is the second most prevalent type of dementia, and the incidence of an overlapping
syndrome of Alzheimer’s disease and VaD is higher than initially thought. Furthermore,
developing nations have a higher prevalence [3]. There are currently no approved standard
treatments for VaD because the underlying cause of the disease is not fully understood [4].
In cerebrovascular diseases, such as VaD, the endothelium is essential. After a stroke,
endothelial dysfunction (ED) develops, which damages the blood-brain barrier and causes
oxidative stress, inflammation, and increased vascular tone [5]. Moreover, damage to
the endothelium and the neurovascular unit (NVU) appears to be a major factor in the
pathogenesis of vascular cognitive impairment [6] or VaD. It is crucial to know that cere-
bral small vessel disease (SVD), the leading cause of vascular dementia, triples the risk
of stroke [7] and that the NVU plays a major role in the pathophysiological process of
ischemic stroke [8]. The known pathophysiological changes in VaD have led to the sug-
gestion of different pharmacological treatment options [4]. However, there is a gap in
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understanding the management of VaD caused due to risk factors, such as heavy metals
and its treatment approach.

Heavy metal exposure is associated with SVD because it can cause oxidative stress,
which interferes with the nitric oxide signalling system and eventually results in ED [9].
Importantly, ED is also considered a key in the pathogenesis of SVD and VaD [10]. Alu-
minium is one of the harmful metals that are frequently utilised in daily life. It enters the
body easily from several sources, mainly through drinking water and eating food [11].
Additionally, it is well-known that aluminium is neurotoxic and that exposure to it is linked
to the development of neurodegenerative diseases, such as dementia. This association may
be explained by the buildup of aluminium in vulnerable brain regions, such as the hip-
pocampus and frontal cortex [12]. Hence, exposure to aluminium increases the likelihood
of developing VaD, possibly by increasing the oxidative stress in the brain, which may then
result in the development of SVD and eventually lead to ischemic stroke and ED, impairing
the functioning of NVU.

Targeting the NVU should lead to new insights for potent therapeutic approaches
and make it easier to translate experimental results into clinical setup [13]. Medications
that target the NVU can prevent ischemic stroke [8], and using antioxidants in particular
may have the desired effect by lowering brain oxidative stress and improving endothelial
function. In this context, numerous studies on stroke emphasise how drugs or naturally
occurring plant-derived substances (curcumin, carnosic acid, and epicatechin) can prevent
stroke [13]. Furthermore, individuals with VaD exhibit perfusional changes and neovas-
cularisation; nevertheless, studies show that neoangiogenesis is not effectively able to
occur in VaD patients due to their narrower vessels [6,14]. Therefore, to induce neovas-
cularisation, activating PDGF-C with exogenous substances may be a novel strategy in
VaD management.

In this situation, using a natural compound with known antioxidant activity would
be a good choice to halt the advancement of VaD brought on by aluminium. One of the
naturally occurring antioxidants is palm oil tocotrienol-rich fraction (TRF) which is a mix-
ture of tocotrienols and tocopherols extracted from palm plant fruit (Elaeis guineensis) [15].
Several pharmacological effects of TRF, including antioxidant [16,17], anti-inflammatory,
and neuroprotective, have been documented [18]. A rising body of clinical trial data also
supports that palm oil tocotrienol may aid in the prevention of dementia and Alzheimer’s
disease [19]. Recently, we have reported the TRF effectiveness in managing VaD in type
2 diabetic rats [20]. However, TRF effects in reducing neurovascular ED brought on by
aluminium chloride (AlCl3)-induced VaD in rats is not yet reported. Biomarkers, such as
serum nitrite for ED and plasma myeloperoxidase for SVD, can help identify cerebrovascu-
lar functioning; moreover, identifying PDGF-C expression in the hippocampus may help in
understanding the neovascularisation process. Hence, this study focuses on neurovascular
endothelial dysfunction-associated VaD in rats and its treatment approach. Therefore,
based on the facts, we hypothesized that TRF treatment may attenuate the AlCl3-induced
neurovascular dysfunction-associated VaD in rats, perhaps by reducing oxidative stress,
SVD, ED, and facilitating the neovascularisation process by activating PDGF-C.

2. Results
2.1. Effect of TRF on Learning and Memory Function during the Elevated Plus Maze (EPM) Test

There was a highly significant (p < 0.01) decrease in day 2 transfer latency (TL) com-
pared to day 1 TL in the normal control (CON) group rats, indicating normal learning ability.
Further, there was a highly significant (p < 0.01) increase in day 2 TL in the AlCl3 group
rats compared to day 2 TL of the CON group rats, indicating AlCl3-induced impairment of
memory. However, there was a significant (p < 0.05) and (p < 0.01) decrease in day 2 TL
in the TRF 60 and TRF 120 group rats, respectively, compared to day 2 TL of the AlCl3
group rats. Similarly, there was a highly significant (p < 0.001) decrease in day 2 TL found
in the donepezil (DON) group rats compared to day 2 TL of the AlCl3 group rats, hence,
indicating that TRF and DON mitigate AlCl3-induced impairment of memory (Figure 1).
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Figure 1. Effect of TRF on transfer latency (TL) time in an elevated plus maze test. a = p < 0.05 vs. day
1 TL of CON; b = p < 0.05 vs. day 2 TL of CON; c = p < 0.05 vs. day 2 TL of AlCl3. Each group (n = 8)
represents mean ± SEM. Abbreviations: AlCl3, aluminium chloride; CON, control; DON, donepezil;
EPM, elevated plus maze; and TRF, tocotrienol-rich fraction.

2.2. Effect of TRF on Brain-Thiobarbituric Acid Reactive Substances (TBARS) Levels

There was a highly significant (p < 0.01) increase in TBARS levels found in the AlCl3
group rats compared to the CON group rats, indicating AlCl3-induced increased brain
oxidative stress. However, there was a highly significant (p < 0.01) decrease in TBARS
levels found in the TRF 60, TRF 120, and DON group of rats compared to the AlCl3 group
rats; thus, indicating that TRF and DON reduced AlCl3-induced brain oxidative stress level
(Table 1).

Table 1. Effect of TRF on brain thiobarbituric acid reactive substances.

Treatment Brain TBARS
(nM/mg of Protein)

CON 59.40 ± 2.84
AlCl3 83.58 ± 4.80 a

TRF 30 68.71 ± 1.48
TRF 60 53.14 ± 5.21 b

TRF 120 53.84 ± 3.83 b

DON 51.15 ± 1.38 b

Each group (n = 6) represents mean ± SEM. a = p < 0.05 vs. CON; b = p < 0.05 vs. AlCl3. Abbreviations: AlCl3,
aluminium chloride; CON, control; DON, donepezil; TBARS, thiobarbituric acid reactive substances; and TRF,
tocotrienol-rich fraction.

2.3. Effect of TRF on Serum Nitrite Levels

There was a highly significant (p < 0.001) decrease in serum nitrite levels found in the
AlCl3 and TRF 30 group rats compared to the CON group rats, indicating AlCl3-induced
endothelial dysfunction. However, there was a highly significant (p < 0.01) and significant
(p < 0.05) increase in the serum nitrite levels found in the TRF 120 and DON group rats
respectively compared to the AlCl3 group rats; thus, indicating that TRF and DON reduced
AlCl3-induced endothelial dysfunction (Figure 2).
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Figure 2. Effect of TRF on serum nitrite levels. a = p < 0.05 vs. CON; b = p < 0.05 vs. AlCl3. Each
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2.4. Effect of TRF on Plasma Myeloperoxidase (MPO) Levels

There was a highly significant (p < 0.001) increase in plasma MPO levels found in
the AlCl3 and TRF 30 group rats compared to the CON group rats indicating AlCl3-
induced vascular inflammation and SVD development in rats. However, there was a highly
significant (p < 0.001) decrease in plasma MPO levels found in the TRF 60, TRF 120, and
DON group of rats compared to the AlCl3 group rats; thus, indicating that TRF and DON
may have reduced AlCl3-induced vascular inflammation and SVD development in rats
(Figure 3).
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2.5. Effect of TRF on Hippocampus PDGF-C Expression

The PDGF-C expression in the hippocampus was confirmed by observing immunos-
tained coronal brain sections under the microscope and rating the staining intensity. The
CON group rat showed strong positive immunostaining in the cornu ammonis 1 (CA1) area
of the hippocampus; thus, indicating the presence of PDGF-C expression. In contrast, the
AlCl3 and TRF 30 group rats showed faint positive immunostaining; hence, indicating the
decreased or absence of PDGF-C expression, perhaps due to AlCl3-induced neurovascular
toxicity. Notably, the TRF 60 and TRF 120 group rats showed mid-positive immunostaining
while the DON group rats showed strong positive immunostaining in the CA1 area; thus,
indicating the presence of PDGF-C expression perhaps for the neovascularisation process.
These immunohistochemistry findings, therefore, put forward TRF and DON possible roles
in stimulating PDGF-C at the neurovascular site to reduce AlCl3-induced neurovascular
changes (Figure 4).
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Figure 4. Microscopic images representing immunohistochemical staining of PDGF-C expression
in the hippocampus (upper panel 40× magnification; scale bar 500 µm) and its corresponding CA1
area (lower panel 200× magnification; scale bar 100 µm). The high-magnification images in the lower
panel indicate PDGF-C expression in the CA1 area. The PDGF-C expression is strongly positive in the
CON group rats, faintly positive in the AlCl3 and TRF 30 group rats, mid-positive in the TRF 60 and
TRF 120 group rats, and strongly positive in the DON group rats. Abbreviations: AlCl3, aluminium
chloride; CA1, cornu ammonis 1; CON, control; DON, donepezil; PDGF-C, platelet-derived growth
factor-C; and TRF, tocotrienol-rich fraction.

3. Discussion

Acute administration of AlCl3 to rats in the current investigation was effective in
causing vascular dementia, which is related to endothelial dysfunction [21]; this may
be because aluminium can remain in the body for a longer time to exert its neurotoxic
effects [22,23]. Moreover, the hippocampus is particularly susceptible to the toxic effects
of aluminium, which could cause neurodegeneration and eventually memory loss or
dementia. The EPM test was used in this work to evaluate memory function, and it was
found that AlCl3 rats showed considerable memory loss. The results are similar with
previously published studies on memory loss caused by aluminium [24,25]. In contrast,
TRF therapy prevented memory loss in AlCl3 rats. TRF, because of its antioxidant ability,
may have improved memory in VaD rats by lowering brain oxidative stress and preventing
neuronal death in the hippocampus caused due to aluminium toxicity. Moreover, these
results are consistent with other research [26–28] that demonstrates the influence of TRF on
memory protection.

Further, this study reveals TRF’s noteworthy antioxidant activity. The oxidative
destruction of lipids is a result of lipid peroxidation. The two main byproducts are hy-
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droperoxides and lipid peroxyl radicals. It has been shown that these oxidised lipids lead to
inflammation and endothelial dysfunction [29]. Cerebrovascular disorders are brought on
by unbalanced lipid peroxidation [30]. Aluminium is a pro-oxidant [31] that can promote
lipid peroxidation and oxidative stress by producing free radicals. AlCl3 has also been
found to disrupt metabolism, particularly for low-molecular-weight antioxidants, such as
glutathione, which accelerates the rate of lipid peroxidation in the brain [32]. Brain lipid
peroxidation in this study was determined by measuring TBARS levels [33]. We found
elevated TBARS levels in AlCl3 rats, demonstrating increased brain oxidative stress. Our
findings are also supported by previously published reports [34,35]. Nevertheless, TRF
administration in AlCl3 rats decreased TBARS levels, indicating its antioxidant action.
Moreover, our findings are consistent with earlier studies with TRF [36–41]. It is suggested
that chelation therapy may be an effective strategy to reduce the toxic metal load and the
associated complications [9]; hence, the possible mechanism of TRF could be not only by
disrupting free radical chain reactions [37] but also by chelating aluminium (prooxidant
metal) and neutralizing free and lipid peroxy radicals [42]. We further presume that TRF
would have engaged the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in our
study to provide antioxidant activity because it has been documented that TRF activates the
Nrf2 pathway [16,17]. Furthermore, according to research, superoxide anion produced by
reactive oxygen species (ROS) quickly reacts with nitric oxide (NO) to form peroxynitrite,
which reduces NO bioavailability and causes endothelial dysfunction [9]. Atherosclerosis
and other macro- and microvascular disorders are caused by a dysfunctional endothelium,
which is essential for the initiation of vascular dysfunction [2]. In the current investigation,
we discovered considerably lower serum nitrite levels in AlCl3-induced rats, which indicate
endothelial dysfunction. Similar decreases in serum nitrite levels have been associated
with exposure to heavy metals [9,43] and these findings are also in line with other studies
that revealed lower serum nitrite levels in VaD [44,45]. Conversely, rats treated with TRF
increased serum nitrite in AlCl3 rats perhaps by reducing the oxidative stress that reverses
the nitric oxide synthase activity, and this findings is in line with previous studies with
TRF [46]. TRF action on the vascular system is further supported by the fact that palm oil is
rich in tocotrienols, a type of vitamin E [19], and more importantly, vitamin E was found to
increase nitric oxide production, which in turn serves to improve the endothelial-dependent
vasodilatation by relaxing the vascular smooth muscle cells, is further evidence of TRF
action on the vascular system [18]. Moreover, earlier studies with compounds such as
lithium suggest that increased nitric oxide production improves the endothelial-dependent
vasodilatation and may be important in cerebrovascular disease [47,48].This finding sug-
gests that TRF therapy reduced neurovascular dysfunction, which may have enhanced
vascular function in NVU and safeguarded neurons and memory in VaD rats.

ROS are also important contributors to SVD. It is reported that MPO levels were
significantly found to be elevated in patients with cerebral SVD [49]. In the present study,
we found elevated plasma MPO in AlCl3-induced rats; thus, indicating the sign of vascular
damage, perhaps cerebrovascular damage, since, MPO has the unique capacity to oxidise
calcium ions utilising hydrogen peroxide and consequently induce vascular injury [50], it
is possible that cerebrovascular damage would result. Additionally, MPO has been demon-
strated to exhibit pro-atherogenic and pro-oxidant capabilities, suggesting that it may act as
a marker and mediator of vascular inflammation [51,52]. However, treatment with TRF was
able to attenuate the raised plasma MPO in AlCl3-induced VaD rats, indicating reduction
in proatherogenic markers. Moreover, our findings are in accordance with previous studies
suggesting that TRF eliminated excessive myeloperoxidase activation, which is in line with
the TRF plasma antioxidant activity [53,54]. Thereby, this finding may suggest that TRF
therapy halted the vascular inflammation process possibly the cerebral SVD development
and improved the neurovascular functioning in VaD rats.

The key finding of this research was the immunohistochemistry-based identification
of PDGF-C expression in the hippocampus. According to reports, aluminium may play
a role in the pathophysiology of stroke [23] and may result in an ischemic stroke in the
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cerebral small vessels. Furthermore, one-fourth of ischemic strokes are caused by cerebral
small vessel disease, and it is a major factor in the development of vascular dementia [49].
In humans, PDGF-C is typically expressed in the majority of adult organs and tissues, in-
cluding the brain, and is necessary for the proper development of the vascular network [55].
According to studies, after an ischemic insult, PDGF-C increases angiogenesis and revascu-
larises ischemic tissues [56]. Furthermore, it appears that PDGF-C-based investigations are
undertaken in particular to promote its neuroprotection, proliferation, angiogenesis, and
anti-apoptotic characteristics [57]. In this investigation, we found reduced PDGF-C expres-
sion in the hippocampus of AlCl3-induced VaD rats, which may indicate either reduced
or no neovascularisation process in the damaged region of the hippocampus. Moreover,
according to earlier studies, PDGF-C expression is downregulated in ischemic tissues,
which impairs angiogenic activity [56]. However, AlCl3-induced VaD rats treated with
TRF exhibited significant PDGF-C expression, suggesting that TRF may have promoted
the endogenous PDGF-C, a neuroprotective factor, to protect neurons from AlCl3-induced
apoptosis. Moreover, it is possible that TRF-mediated PDGF-C activation would have
provided the antioxidant effect, since, it has recently been reported that PDGF-C dimin-
ishes the oxidative stress brought on by high glucose levels by increasing superoxide
dismutase 2 (SOD2) expression and SOD activity and modulating the Keap1 expression
gene [58]. Furthermore, we correlate our PDGF-C findings with recent research on the
role of TRF in promoting PDGF-BB during the initial wound-healing stage [59,60]. Hence,
we suggest that TRF in this study possibly enhanced PDGF-C to help ischemic tissues
revascularise and induce angiogenesis, as well as contributed to the development of normal
cerebral vascularization and eventually increased blood flow to reduce the neurovascular
dysfunction-associated VaD in rats.

4. Materials and Methods
4.1. Animals

Sprague-Dawley (SD) male rats weighing around 180–200 g were used for this study.
The SD rats were procured from the AIMST University central animal house. The ani-
mal study protocol was approved by the AIMST University Animal Ethics Committee
(AUAEC/FOP/2020/12). Rats were housed in the AIMST University central animal house
and were fed with a normal pellet diet and fresh water.

4.2. Chemicals and Assay Kits

TRF (Gold Tri. E™ 70; Liquid) was received as a gift sample from Sime Darby Oils
Nutrition Sdn Bhd. Petaling Jaya, Malaysia. AlCl3 (Friendemann Schmidt Chemical,
Malaysia), myeloperoxidase activity assay kit (Elabscience Biotechnology Inc., Houston,
TX, USA), nitrite assay kit (Sigma-Aldrich, St. Louis, MO, USA), rabbit polyclonal against
platelet-derived growth factor C (Abbexa, Cambridge, UK) and rabbit specific HRP_DAB
IHC detection kit—micro-polymer v2d, ab236469 (Abcam, Waltham/Boston, MA, USA)
were used. All other chemicals used for biochemical estimations were of analytical grade.

4.3. Experimental Design

The rats were divided into six groups with 9 rats in each group. The duration of
the study was for twenty-eight days. All the rats except normal control (CON) rats were
induced with AlCl3 (150 mg/kg/bw; i.p) dissolved in normal saline [61] for the first
seven days. The AlCl3-induced rats were further treated with three different doses of
TRF dissolved in olive oil (Basso, Italy) as a vehicle [46,62] for the next twenty-one days.
Additionally, a standard drug treatment group treated with donepezil (DON) was also
included. The animal grouping with their respective treatment is detailed below.

CON: Normal control rats received an equal volume of vehicle.
AlCl3: AlCl3-induced rats received an equal volume of vehicle.
TRF 30: AlCl3-induced rats received TRF 30 mg/kg/bw; p.o.
TRF 60: AlCl3-induced rats received TRF 60 mg/kg/bw; p.o.
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TRF 120: AlCl3-induced rats received TRF 120 mg/kg/bw; p.o.
DON: AlCl3-induced rats received DON 1 mg/kg/bw; p.o. [63].

4.4. Elevated Plus Maze (EPM) Test

The EPM test was performed toward the end of the study to evaluate learning and
memory in rats. The EPM apparatus consists of two open arms (50 cm × 10 cm) and two
covered arms (50 cm × 10 cm × 40 cm). The arms were connected to a central platform
(10 cm × 10 cm) and the maze was elevated to a height of 50 cm from the floor. On day
1 of the EPM test, the rats were individually placed at the end of either of the open arms
facing away from the centre and the time taken for the rat to move from the open arm to
anyone covered arms was noted as initial transfer latency. Transfer latency is used as a
parameter for the estimation of the memory-enhancing property. If the rat did not enter the
covered arm within the 90 s, it was gently pushed on the back into one of the covered arms
and the transfer latency was recorded as 90 s. Once the rat entered in covered arms it was
allowed to explore the arms for at least 20 s. Later, the rats were returned to their home
cages and transfer latency was recorded again after 24 h of the first exposure, i.e., on day 2
of the EPM test, and considered as retention transfer latency. The maze was cleaned with a
10% ethanol solution and dried before the next rat was placed on the maze to diminish any
odor cues. The transfer latency measured on the first day of the trial served as acquisition
(learning) and the second day of the trial served as retention (memory) [64–66].

4.5. Blood Sample Collection and Brain Homogenate Preparation

Blood was withdrawn from an anaesthetized rat using the retro-orbital puncture
method. Plasma and serum were separated from the blood and kept at −80 ◦C until the
time of biochemical estimations. Later, the rats were individually sacrificed, and the brains
were isolated. The whole rat brain was then further homogenized in phosphate buffer, and
the homogenate was centrifuged at 3000 rpm for 15 min to yield a clear supernatant. The
supernatant was collected and kept at −80 ◦C until the time of biochemical estimations. In
addition, two brain samples from each group were taken and preserved into 10% neutral
buffered formalin for the immunohistochemistry evaluation.

4.6. Estimation of Brain-Thiobarbituric Acid Reactive Substances

The whole brain thiobarbituric acid reactive substances (TBARS) content was esti-
mated following the method of Buege and Aust [67]. Briefly, 0.2 mL of brain homogenate
supernatant was mixed with 2 mL of thiobarbituric acid, trichloroacetic acid, and hydrochlo-
ric acid reagents in the test tube. Further, all the mixed reagents in the test tube were heated
for 10 min in a boiling water bath to develop pink colour chromogen. Later, test tubes
were cooled under running tap water and then centrifuged at 5500 rpm for 15 min and the
absorbance was recorded spectrophotometrically. The changes in absorbance were recorded
using a UV visible spectrophotometer (UV-1800 Shimadzu Spectrophotometer, Shimadzu
Corporation, Kyoto, Japan) at 532 nm wavelength. A standard curve was plotted using
0–100 µM of tetramethoxypropane. The brain’s total protein was estimated by following
Lowry’s method [68].

4.7. Estimation of Serum Nitrite

A nitrite assay kit (Griess Reagent) was used to measure the serum nitrite levels.
The assay was performed as per the manufacturer’s (Sigma-Aldrich; Catalog Number:
MAK367) instructions. According to the manufacturer’s (Sigma-Aldrich) technical bulletin,
‘The Nitrite assay kit utilises the Griess reagent, a classic protocol for the estimation of
nitrite. In the assay, nitrite is reduced to nitrogen oxide using Griess reagent I. Then,
nitrogen oxide reacts with Griess reagent II, forming a stable product that can be detected
by its absorbance at 540 nm’.
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4.8. Estimation of Plasma Myeloperoxidase

A myeloperoxidase (MPO) activity assay kit was used to measure the plasma myeloper-
oxidase levels. The assay was performed as per the manufacturer’s (Elabscience Biotechnol-
ogy Inc.; Catalog Number: E-BC-K074-S) instructions. The detection principle stated in the
manual by the manufacturer (Elabscience Biotechnology Inc.) is ‘myeloperoxidase reduces
hydrogen peroxide to a complex. The complex react with o-dianisidine (as hydrogen donor)
to produce a yellow product which has a maximum absorption peak at 460 nm. The activity
of MPO can be calculated indirectly by measuring the OD value at 460 nm’.

4.9. Immunohistochemistry Study for Identification of PDGF-C Expression in Hippocampus

The expression of platelet-derived growth factor-C (PDGF-C) in the rat brain’s hip-
pocampus tissue was determined using an immunohistochemistry (IHC) analysis. A total
of 2–3 mm thick coronal sections were cut throughout the dorsal hippocampus. Brain
sections were processed in a Thermo tissue processor, according to the manufacturer’s
protocol for 16 h, this included fixation, dehydration, clearing, and wax infiltration. Brain
tissues sections were embedded in molten paraffin wax (Thermo, Waltham, MA, USA) and
cooled out; the formed paraffin wax mould was then trimmed for obtaining 3 um sections
using a Leica microtome, and the sections were fished out using Poly-Lysin coated slides
(Thermo) for IHC staining. All the prepared slides were left at room temperature overnight
for dehydration. The IHC-optimized protocol (Abcam) was followed. The primary anti-
body (Rabbit Polyclonal against PDGF-C, Abbexa) and secondary antibody (Rabbit specific
HRP_DAB IHC Detection Kit—Micro-polymer v2d, ab236469, Abcam) were used. The
method was performed according to the manufacturer’s (Abcam) instructions. No primary
antibody control slide for each sample was run in parallel with the tested slide. The slides
were observed under the microscope to score the intensity of staining.

4.10. Statistical Analysis

A two-way analysis of variance (ANOVA) followed by the Bonferroni post-test was
applied for EPM data, while a one-way ANOVA followed by Tukey’s multiple compar-
ison test was applied for the biochemical data. The probability value of p < 0.05 was
considered statistically significant. The data were analysed using GraphPad Prism version
5.03 software.

5. Conclusions

The study findings suggest that palm oil TRF can reduce AlCl3-induced neurovascular
dysfunction-associated VaD in rats perhaps by exerting its antioxidant and neuroprotective
effects on NVU. Moreover, our study with TRF suggests that PDGF-C activation using
natural antioxidants for facilitating the neovascularisation process in the ischemic tissue
could be a new approach in the management of VaD; however, detailed research in this
context is recommended.
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