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Abstract: Antibiotic resistance is a growing global health threat, requiring urgent attention. One ap-
proach to overcome antibiotic resistance is to discover and develop new antibiotic enhancers,
molecules that work with legacy antibiotics to enhance their efficacy against resistant bacteria.
Our previous screening of a library of purified marine natural products and their synthetic analogues
led to the discovery of an indolglyoxyl-spermine derivative that exhibited intrinsic antimicrobial
properties and was also able to potentiate the action of doxycycline towards the difficult to treat,
Gram-negative bacterium Pseudomonas aeruginosa. A set of analogues have now been prepared,
exploring the influence of indole substitution at the 5- and 7- positions and length of the polyamine
chain on biological activity. While limiting cytotoxicity and/or hemolytic activities were observed
for many analogues, two 7-methyl substituted analogues (23b and 23c) were found to exhibit strong
activity towards Gram-positive bacteria with no detectable cytotoxicity or hemolytic properties.
Different molecular attributes were required for antibiotic enhancing properties, with one example
identified, a 5-methoxy-substitiuted analogue (19a), as being a non-toxic, non-hemolytic enhancer of
the action of two tetracycline antibiotics, doxycycline and minocycline, towards P. aeruginosa. These
results provide further stimulation for the search for novel antimicrobials and antibiotic enhancers
amongst marine natural products and related synthetic analogues.

Keywords: indole; potentiator; antimicrobial; polyamine; antibiotics; antifungal agents; structure–
activity relationships

1. Introduction

The global increase in microbial antibiotic resistance is a growing health threat, re-
quiring urgent attention. With only limited numbers of new antibiotics being approved
for clinical use [1–3] the search is on for novel strategies that can prove effective against
drug-resistant pathogens. One option for treatment is to restore the antibiotic action of
legacy antibiotics, requiring the discovery of antibiotic adjuvants or enhancers [4–8]. Ma-
rine natural products represent an excellent reservoir of small drug-like molecules from
which to discover both new classes of antimicrobial agents [9–11] as well as antibiotic
enhancers [8,12–14].

Our screening of a library of marine natural product-related α,ω-disubstituted sper-
mine analogues for antimicrobial and antibiotic enhancing properties identified the
6-bromoindolglyoxyl derivative 1 (Figure 1) as a moderately active antimicrobial towards
the Gram-positive bacteria Staphylococcus aureus ATCC 25923 (MIC 6.25 µM) and the fungus
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Cryptococcus neoformans (MIC 1.1 µM). In addition, the combination of 1 with doxycycline
exhibited a strong antibiotic enhancement effect towards the Gram-negative bacterium
Pseudomonas aeruginosa [15]. Interest in these activities was somewhat tempered by the ob-
servation of associated cytotoxicity (human embryonic kidney cell line HEK293, IC50 5.1 µM;
rat skeletal myoblast cell line L6, IC50 7.7 µM), prompting the search for less toxic analogues.
Subsequent studies identified the requirement of substitution on the indole ring for activity,
with 2 being inactive as an antimicrobial or antibiotic enhancer, and that some examples
of 5- and 7- substituted analogues (3–8), notably including halogen, methoxy or methyl
functionality, exhibited more modest antimicrobial activities (Table 1), were moderate to
excellent antibiotic enhancers (Table 2) and were generally less cytotoxic and non-hemolytic
(Table 3) [16].
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Taken together, these studies enabled the identification of the structural requirements
for antibiotic enhancement properties amongst a limited set of indolglyoxyl-spermine
conjugates, summarized in Figure 2.
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A component of the structure–activity relationship yet to be addressed in this com-
pound series is the effect, if any, of variation in the polyamine (PA) chain length on intrinsic
antimicrobial, antibiotic enhancement and cytotoxicity/hemolysis biological activities. Pre-
vious studies investigating disubstituted polyamine-bearing arylacyl [17] head groups



Pharmaceuticals 2023, 16, 823 3 of 22

identified that changes in the chain length of the core polyamine fragment can lead to wide
variation in antimicrobial and/or antibiotic enhancing properties. Herein we report details
on the synthesis of a new set of indolglyoxyl-polyamine conjugates that vary in substitution
at the 5- and 7- positions on the indole ring and that vary in polyamine chain length, and
the abilities of these analogues to exhibit intrinsic antimicrobial properties and to potentiate
the activity of doxycycline towards the Gram-negative bacteria Pseudomonas aeruginosa.

2. Results and Discussion
2.1. Chemistry

The Boc-protected polyamine scaffolds used in this study were the five examples 9a–e
covering core chain lengths of 6, 7, 8, 10 and 12 methylenes (Figure 3). The preparation
of 9a–e has been previously described [18–21].
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The indole-3-glyoxyl head groups used in the current study (10–16) (Figure 4) were
the same set previously explored in analogues 2–8 [16]. Syntheses of 10–15, as either the
glyoxylic acid or glyoxylchloride, have been previously reported [22–25].
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In the case of the 7-methyl analogue 16, it was prepared using the two-step protocol
shown in Scheme 1. Reaction of 7-methyl-1H-indole with excess oxalyl chloride afforded
the oxalylchloride intermediate which was not isolated but hydrolyzed by heating with
saturated aq. NaHCO3 solution to afford 2-(7-methyl-1H-indol-3-yl)-2-oxoacetic acid (16)
(Figure S1) in 95% yield over two steps.
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The reaction of indole-3-glyoxyl chlorides 10–12 and 14 directly with Boc-protected
polyamines 9a–e, or glyoxylic acids 13, 15 and 16 with 9a–e utilizing the coupling reagent
PyBOP (benzotriazol-1-yloxytripyrrolidinophosphonium hexafluorophosphate) afforded
a set of intermediate products that were then deprotected with 2,2,2-trifluoroacetic acid
(TFA) to afford the desired compounds as their di-TFA salts (Scheme 2, Figures S2–S30).
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Scheme 2. Synthetic route to target indolglyoxylpolyamine conjugates 17–23. Reagents and conditions:
(a) for glyoxylchlorides 10–12, 14: DMF, DIPEA, polyamine 9a–e, r.t., 48 h (16–56%); (b) for glyoxylic
acids 13, 15, 16: DMF, PyBOP, DIPEA, polyamine 9a–e, r.t., N2, 24 h (13–97%); and (c) TFA (0.2 mL) in
CH2Cl2 (2 mL), N2, 2 h (19–100%).

2.2. Biological Evaluation

The antimicrobial activity of the series was evaluated against a range of bacterial
strains (S. aureus, MRSA, P. aeruginosa and Escherichia coli) and the fungus Candida albicans
(Table 1). Cytotoxicity towards HEK293 (human kidney epithelial cell line, IC50) and
hemolytic activity against human red blood cells (HC10) were also determined.
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Table 1. Antimicrobial (MIC), cytotoxicity (IC50) and hemolytic (HC10) activities (µM) of analogues
2–8, 17–23.

Compound S. a a MRSA b P. a c E. c d C. a e Cyto. f Hem. g

2 >100 h 41.4 >100 h >100 h >41.4 h >41 h >41

3 3.125 h 4.32 50 h 25 h >34.4 h 14 h >34

4 100 h 38.4 >200 h >200 h >38.4 h >38 h >38

5 25 h 20.0 100 h 200 h >40.0 h >40 h >40

6 25 h 19.8 200 h 200 h >39.6 h 19 h >40

7 15 h 38.4 >200 h >200 h 38.4 h 27 h >38

8 25 h 20.0 >200 h >200 h >40.0 h >40 h >40

17a 12.5 >40 >200 50 >40 n.d i n.d

17b 25 39 >200 25 >39 31 >39

17c 25 39 100 12.5 >39 10 >39

17d 14.6 18.7 117 117 37 4.9 >37

17e 25 9.04 >200 >200 36 5.6 >36

18a 1.56 4.17 50 6.25 16.7 8.9 >33

18b 6.4 4.1 51 51 16 13 >33

18c 25 8.1 >200 >200 32 18 >32

18d 6.16 7.88 200 98 32 16 >32

18e 5.99 3.84 96 24 31 8.6 20

19a 29 >37 >200 >200 >37 >37 >37

19b 57 37 >200 >200 37 >37 >37

19c >100 >36 >100 >100 36 18 26

19d 12.5 17.4 >200 50 35 6.8 >35

19e 12.5 34 >200 100 34 8.6 >34

20a 12.5 ≤0.30 200 50 >39 >39 n.d.

20b 6.25 ≤0.30 200 50 >38 n.d. >38

20c 3.125 4.7 800 12.5 >37 >37 n.d.

20d 3.125 ≤0.28 800 12.5 9.0 >36 n.d.

20e 3.125 n.d. 800 12.5 2.2 n.d. 2.0

21a 7.5 19.1 240 240 >38 12 >38 e

21b 7.3 18.8 >200 >200 38 11 >38

21c 29 18.5 >200 >200 >37 9.2 >37

21d 3.125 4.48 >200 6.25 36 4.7 >36

21e 27.2 4.34 >220 >220 35 6.4 >35

22a 50 >37 800 400 >37 >37 >37

22b 25 >37 800 200 >37 8.9 >37

22c 25 4.5 800 200 >36 n.d. >36

22d 25 ≤0.27 800 50 17 >35 8.4

22e 3.125 ≤0.26 800 12.5 ≤0.26 n.d. 0.93

23a 30.2 ≤0.30 >240 60 >39 >39 >39

23b 14.8 ≤0.30 >240 120 >38 >38 >38

23c 7.3 ≤0.29 >230 29 >37 >37 >37

23d 7.1 ≤0.28 >230 14.1 18 >36 n.d.

23e 6.85 ≤0.27 >220 13.7 ≤0.27 >35 8.4
a S. aureus ATCC 25923 with streptomycin (MIC 21.5 µM) and chloramphenicol (MIC 1.5–3 µM) used as positive
controls and values presented as the mean (n = 3); b MRSA ATCC 43300 with vancomycin (MIC 0.7 µM) used
as a positive control and values presented as the mean (n = 2); c P. aeruginosa ATCC 27853 with streptomycin
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(MIC 21.5 µM) and colistin (MIC 1 µM) used as positive controls and values presented as the mean (n = 3); d E. coli

ATCC 25922 with streptomycin (MIC 21.5 µM) and colistin (MIC 2 µM) used as positive controls and values

presented as the mean (n = 3); e C. albicans ATCC 90028 with fluconazole (MIC 0.4 µM) as a positive control

and values presented as the mean (n = 2); f Concentration of compound at 50% cytotoxicity on HEK293 (human

embryonic kidney cells) with tamoxifen as the positive control (IC50 24 µM) and values presented as the mean

(n = 2); g Concentration of compound at 10% hemolytic activity on human red blood cells with melittin as the

positive control (HC10 0.95 µM) and values presented as the mean (n = 2); h Data taken from Cadelis et al. [16];
i n.d., not determined.

In general, the compound set exhibited more pronounced activity towards the Gram-
positive bacteria S. aureus ATCC 25923 and MRSA, with only poor or no activity towards
Gram-negative bacteria P. aeruginosa and E. coli and the fungus C. albicans. Amongst
the more active examples identified were the 5-bromo substituted analogues 18a–e with
S. aureus and MRSA MIC 1.6–7.8 µM, 5-methyl analogues 20a–d (MIC ≤ 0.28–6.25 µM),
7-methoxy analogue 22e (MIC ≤ 0.26–3.125 µM), and 7-methyl substituted variants 23c–e
(MIC ≤ 0.27–7.3 µM). In many cases, those analogues that exhibited good levels of antimi-
crobial activity also unfortunately demonstrated cytotoxicity and/or hemolytic activity.
There were some examples identified, however, that were devoid of these detrimental
properties including the 7-methyl substituted analogues 23b (MIC MRSA ≤ 0.30 µM,
cytotoxicity IC50 > 38 µM, hemolysis HC10 > 38 µM) and 23c (MIC MRSA ≤ 0.29 µM, cyto-
toxicity IC50 > 37 µM, hemolysis HC10 > 37 µM). Overall, the discovery of Gram-positive
antibacterial activity for 23b and 23c with low to no cytotoxicity and hemolytic activity
suggests a narrow structure–activity requirement of 7-methyl substitution and polyamine
mid-chain length of 7 (PA3-7-3) or 8 (PA3-8-3) carbons for optimal activity.

The set of compounds were next evaluated for the ability to potentiate the activity of
the antibiotic doxycycline towards the Gram-negative bacteria P. aeruginosa ATCC 27853
(Table 2). In these assays, doxycycline is present at a concentration of 2 µg/mL (4.5 µM), well
below the observed MIC of 20 µg/mL (50 µM) towards this drug-resistant human pathogen.

Table 2. Doxycycline potentiation activity (MIC, µM) of analogues 2–8, 17–23.

Compound Conc (µM) for Potentiation a Compound Conc (µM) for Potentiation a

2 >50 b 20a 12.5

3 3.125 b 20b 12.5

4 12.5 b 20c 400

5 6.25 b 20d 400

6 3.125 b 20e 400

7 3.75 b 21a 3.7

8 6.25 b 21b 7.3

17a 12.5 21c 58

17b 100 21d 100

17c 50 21e >200

17d 58 22a 100

17e 6.25 22b 100

18a 6.5 22c 200

18b 12.9 22d 400

18c >200 22e 400

18d 25 23a 60

18e 24 23b 240

19a 7.3 23c 230

19b 114 23d 230
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Table 2. Cont.

Compound Conc (µM) for Potentiation a Compound Conc (µM) for Potentiation a

19c 25 23e 220

19d >200

19e >200
a Concentration (µM) required to restore doxycycline activity at 2 µg/mL (4.5 µM) against P. aeruginosa ATCC
27853; b Data taken from Cadelis et al. [16].

Strong antibiotic enhancing activities were observed for the PA3-6-3 analogues 18a
(5-bromo, MIC 6.5 µM), 19a (5-methoxy, MIC 7.3 µM) and 21a (7-fluoro, MIC 3.7 µM), the
7-fluoro substituted PA3-7-3 analogue 21b (MIC 7.3 µM), and the unsubstituted indolglyoxyl-
PA3-12-3 analogue 17e (MIC 6.25 µM).

A closer investigation of the ability of the 5-methoxy-indolglyoxyl-PA3-6-3 analogue
19a to enhance the action of other antibiotics towards P. aeruginosa identified it to be
capable of reactivating another tetracycline antibiotic minocycline (MIC 14.5 µM), was only
a weak activator of chloramphenicol (MIC 58 µM) and could not restore the activity of
erythromycin or nalidixic acid (Table 3).

Table 3. Antibiotic potentiating activity of 19a.

Antibiotic Concentration (µM) for Potentiation against
P. aeruginosa a

No antibiotic >200
Minocycline 14.5

Erythromycin >200
Chloramphenicol 58

Nalidixic acid >200
All values presented as the mean (n = 3). a Concentration (µM) of compound 19a required to restore antibiotic
activity at 2 µg/mL concentration of antibiotic. P. aeruginosa ATCC 27853 against minocycline (MIC 70 µM),
erythromycin (MIC >200 µM), chloramphenicol (MIC >200 µM) and nalidixic acid (MIC >200 µM).

The spectrum of antibiotic potentiating activity of the 7-fluoro analogue 21a was also
investigated, evaluating its ability to enhance other antibiotics against other Gram-negative
bacteria (Table 4). The polyamine-conjugate was able to restore the action of doxycycline
against E. coli (MIC 1.56 µM) and to a lesser degree against Acinetobacter baumannii (MIC
12.5 µM). Of the other combinations examined, 21a was also found to weakly enhance
the action of chloramphenicol and nalidixic acid towards P. aeruginosa. We have observed
similar levels of drug-organism antibiotic enhancement for other examples of indolglyoxyl-
polyamines [16].

Table 4. Antibiotic potentiating activity of 21a.

Antibiotic
Concentration (µM) for Potentiation a

P. aeruginosa b E. coli c K. pneumoniae d A. baumannii e

No antibiotic 200 >200 >200 100

Doxycycline 3.125 1.56 200 12.5

Erythromycin 100 200 >200 100

Chloramphenicol 25 >200 >200 200

Nalidixic acid 25 200 >200 200
All values presented as the mean (n = 3). a Concentration (µM) of compound 21a required to restore antibiotic
activity at 2 µg/mL concentration of antibiotic; b P. aeruginosa ATCC 27853 against doxycycline (MIC 50 µM),
erythromycin (MIC > 200 µM), chloramphenicol (MIC > 200 µM) and nalidixic acid (MIC > 200 µM); c E. coli
ATCC 25922 against doxycycline (MIC 25 µM), erythromycin (MIC >200 µM), chloramphenicol (MIC > 200 µM)
and nalidixic acid (MIC > 200 µM); d Klebsiella pneumoniae ST258 against doxycycline (MIC 25 µM), erythromycin
(MIC > 200 µM), chloramphenicol (MIC 50 µM) and nalidixic acid (MIC 100 µM); e A. baumannii AYE against
doxycycline (MIC 12.5 µM), erythromycin (MIC 200 µM), chloramphenicol (MIC > 200 µM) and nalidixic acid
(MIC > 200 µM).
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3. Materials and Methods
3.1. Chemistry: General Remarks

Infrared spectra were recorded on a Perkin-Elmer spectrometer 100 Fourier-transform
infrared spectrometer (Perkin-Elmer, MA, USA) equipped with a universal ATR accessory.
Mass spectra were acquired on a Bruker micrOTOF Q II spectrometer. 1H and 13C NMR
spectra were recorded at 298 K on a Bruker (Karlsruhe, Germany) AVANCE 400 spectrome-
ter using standard pulse sequences. Proto-deutero solvent signals were used as internal
references (DMSO-d6: δH 2.50, δC 39.52). For 1H NMR, the data are quoted as position (δ),
relative integral, multiplicity (s = singlet, d = doublet, t = triplet, dt = doublet of triplet,
tt = triplet of triplet, m = multiplet), coupling constant (J, Hz), and assignment to the atom.
The 13C NMR data are quoted as position (δ), and assignment to the atom. Flash column
chromatography was carried out using Davisil silica gel (40–60 µm) or Merck LiChroprep
RP-8 (40–63 µm) (Merck Millipore, Darmstadt, Germany). Thin-layer chromatography was
conducted on Merck DC Kieselgel 60 RP-18 F254S plates. All solvents used were of analyti-
cal grade or better and/or purified according to standard procedures. Chemical reagents
used were purchased from standard chemical suppliers and used as purchased. Protected
polyamines di-tert-butyl hexane-1,6-diylbis((3-aminopropyl)carbamate) (9a), di-tert-butyl
heptane-1,7-diylbis((3-aminopropyl)carbamate) (9b), di-tert-butyl octane-1,8-diylbis((3-
aminopropyl)carbamate) (9c), di-tert-butyl decane-1,10-diylbis((3-aminopropyl)carbamate)
(9d), and di-tert-butyl dodecane-1,12-diylbis((3-aminopropyl)carbamate) (9e) [18–21], 2-
(1H-indol-3-yl)-2-oxoacetyl chloride (10) [22], 2-(5-bromo-1H-indol-3-yl)-2-oxoacetyl chlo-
ride (11) [16], 2-(5-methoxy-1H-indol-3-yl)-2-oxoacetyl chloride (12) [23], 2-(5-methyl-
1H-indol-3-yl)-2-oxoacetic acid (13) [24], 2-(7-fluoro-1H-indol-3-yl)-2-oxoacetyl chloride
(14) [5], 2-(7-methoxy-1H-indol-3-yl)-2-oxoacetic acid (15) [25], and polyamine conjugates
(17c/17e/19c/19e/22c/22e) [25] were synthesized using procedures from the literature.

3.1.1. General Procedure A—Coupling of 3-Indolglyoxylyl Chlorides with
Boc-Protected Polyamine

To a solution of 3-indolglyoxylyl chloride (2 equiv.) in DMF (1 mL) was added DIPEA
(6 equiv.) and Boc-protected polyamine 9a–e (1 equiv.) in DMF (1 mL). The reaction mixture
was stirred for 48 h before solvent removal under reduced pressure. The crude product
was purified using silica gel flash column chromatography (3% MeOH:CH2Cl2).

3.1.2. General Procedure B—Boc Deprotection

A solution of tert-butyl-carbamate derivative in CH2Cl2 (2 mL) and TFA (0.2 mL)
was stirred at room temperature under N2 for 2 h followed by solvent removal under
reduced pressure. The crude product was purified using C8 reversed-phase flash col-
umn chromatography (0%–50% MeOH/H2O (+0.05% TFA)) to afford the product as a
di-TFA salt.

3.1.3. General procedure C—Coupling of Indole-Oxoacetic Acids with
Boc-Protected Polyamine

To a solution of indole-oxoacetic acid (2 equiv.) and PyBOP (2 equiv.) in DMF (1 mL)
was added DIPEA (3.5 equiv.) and Boc-protected polyamine 9a–e (1 equiv.) in DMF (1 mL).
The reaction mixture was stirred for 24 h under N2 at room temperature before the solvent
was removed under reduced pressure. The crude product was purified using silica gel
flash column chromatography (1–4% MeOH:CH2Cl2).

3.2. Synthesis of Compounds
3.2.1. 2-(7-Methyl-1H-indol-3-yl)-2-oxoacetic Acid (16)

Oxalyl chloride (0.69 mL, 8.0 mmol) was added dropwise at 0 ◦C to 7-methyl-1H-
indole (0.35 g, 2.7 mmol) in anhydrous diethyl ether (10 mL) and the solution stirred for
1.5 h. Saturated aq. NaHCO3 (10 mL) was then added, and the solution heated at reflux
for 2 h. After cooling to room temperature, 10% aq. HCl was added to adjust the pH to 1.
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The resulting yellow precipitate was filtered, washed with cold diethyl ether (10 mL) and
dried under vacuum, affording 2-(7-methyl-1H-indol-3-yl)-2-oxoacetic acid (16) as a yellow
solid (0.52 g, 95%). The product was used in the next step without further purification. Rf
(MeOH:10% HCl, 3:1) 0.57; m.p. 206 ◦C (decomp); IR νmax (ATR) 3320, 2944, 2832, 1625,
1448, 1112, 1028 cm−1; 1H NMR, (DMSO-d6, 400 MHz) δ 12.37 (1H, br s, NH-1), 8.37 (1H,
d, J = 3.4 Hz, H-2), 8.01 (1H, d, J = 7.9 Hz, H-4), 7.16 (1H, t, J = 7.6 Hz, H-5), 7.08 (1H,
d, J = 7.3 Hz, H-6), 2.51 (3H, s, Me), OH not observed; 13C NMR (DMSO-d6, 100 MHz)
δ 180.9 (C-8), 165.3 (C-9), 137.5 (C-2), 136.1 (C-7a), 125.4 (C-3a), 124.3 (C-6), 122.9 (C-5),
122.1 (C-7), 118.7 (C-4), 112.7 (C-3), 16.7 (Me); (−)-HRESIMS [M-H]– m/z 202.0514 (calcd for
C11H8NO3, 202.0510).

3.2.2. N1,N6-Bis(3-(2-(1H-indol-3-yl)-2-oxoacetamido)propyl)hexane-1,6-diaminium
2,2,2-trifluoroacetate (17a)

Using general procedure A, 2-(1H-indol-3-yl)-2-indoloxoacetyl chloride (10) (0.048 g,
0.24 mmol) was reacted with di-tert-butyl hexane-1,6-diylbis((3-aminopropyl)carbamate)
(9a) (0.050 g, 0.12 mmol) and DIPEA (0.13 mL, 0.74 mmol) to afford di-tert-butyl hexane-1,6-
diylbis((3-(2-(1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as a yellow gum (0.045 g,
48%). Using general procedure B, a sub-sample of this product (0.040 g, 0.05 mmol)
was reacted with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 17a as a pale-
yellow oil (0.018 g, 45%). Rf (MeOH/10% HCl, 7:3) 0.63; IR (ATR) νmax 3389, 2949, 2838,
1713, 1663, 1342, 1333, 1204, 1031 cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 12.26 (2H, br
s, NH-1), 8.89 (2H, t, J = 6.0 Hz, NH-10), 8.76 (2H, d, J = 3.3 Hz, H-2), 8.32 (4H, br s,
NH2-14), 8.24–8.22 (2H, m, H-4), 7.55–7.53 (2H, m, H-7), 7.28–7.25 (4H, m, H-5, H-6),
3.35–3.26 (4H, obscured, H2-11), 2.96–2.86 (8H, m, H2-13, H2-15), 1.88–1.81 (4H, m, H2-
12), 1.58–1.53 (4H, m, H2-16), 1.33–1.30 (4H, m, H2-17); 13C NMR (DMSO-d6, 100 MHz)
δ 181.7 (C-8), 163.8 (C-9), 138.5 (C-2), 136.3 (C-7a), 126.2 (C-3a), 123.6 (C-6), 123.7 (C-5),
121.2 (C-4), 112.6 (C-7), 112.1 (C-3), 46.7 (C-15), 44.8 (C-13), 35.8 (C-11), 25.7, 25.5, 25.4 (C-12,
C-16, C-17); (+)-HRESIMS [M+H]+ m/z 573.3190 (calcd for C32H41N6O4, 573.3184).

3.2.3. N1,N7-Bis(3-(2-(1H-indol-3-yl)-2-oxoacetamido)propyl)heptane-1,7-diaminium
2,2,2-trifluoroacetate (17b)

Using general procedure A, 2-(1H-indol-3-yl)-2-oxoacetyl chloride (10) (0.072 g, 0.35 mmol)
was reacted with di-tert-butyl heptane-1,7-diylbis((3-aminopropyl)carbamate) (9b) (0.078 g,
0.17 mmol) and DIPEA (0.18 mL, 1.03 mmol) to afford di-tert-butyl heptane-1,7-diylbis((3-
(2-(1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as a yellow oil (0.046 g, 33%). Using
general procedure B, a sub-sample of this product (0.010 g, 0.013 mmol) was reacted
with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 17b as an orange oil (0.011
g, 100%). Rf (MeOH/10% HCl, 7:3) 0.64; IR (ATR) νmax 3269, 2865, 1677, 1627, 1495,
1438 cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 12.36 (2H, s, NH-1), 8.87 (2H, t, J = 6.1 Hz,
NH-10), 8.76 (2H, s, H-2), 8.65 (4H, br s, NH2-14), 8.24–8.22 (2H, m, H-4), 7.57–7.53 (2H,
m, H-7), 7.29–7.23 (2H, m, H-5, H-6), 3.31 (4H, m, H2-11), 2.92–2.88 (8H, m, H2-13, H2-
15), 1.88–1.85 (4H, m, H2-12), 1.57 (4H, br s, H2-16), 1.28–1.23 (6H, m, H2-17, H2-18); 13C
NMR (DMSO-d6, 100 MHz) δ 181.8 (C-8), 163.8 (C-9), 138.5 (C-2), 136.3 (C-7a), 126.2 (C-3a),
123.5 (C-6), 122.6 (C-5), 121.3 (C-4), 112.6 (C-7), 112.1 (C-3), 46.7 (C-15), 44.7 (C-13), 35.8 (C-
11), 28.0 (C-18), 25.8, 25.7, 25.4 (C-12, C-16, C-17); (+)-HRESIMS [M+H]+ m/z 587.3344 (calcd
for C33H43N6O4, 587.3340).

3.2.4. N1,N10-Bis(3-(2-(1H-indol-3-yl)-2-oxoacetamido)propyl)decane-1,10-diaminium
2,2,2-trifluoroacetate (17d)

Using general procedure A, 2-(1H-indol-3-yl)-2-oxoacetyl chloride (10) (0.073 g, 0.36 mmol)
was reacted with di-tert-butyl decane-1,10-diylbis((3-aminopropyl)carbamate) (9d) (0.084 g,
0.17 mmol) and DIPEA (0.19 mL, 1.1 mmol) to afford di-tert-butyl decane-1,10-diylbis((3-
(2-(1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as a dark yellow oil (0.056 g, 40%).
Using general procedure B, a sub-sample of this product (0.016 g, 0.019 mmol) was reacted
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with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 17d as a yellow oil (0.011 g,
66%). Rf (MeOH/10% HCl, 7:3) 0.60; IR (ATR) νmax 3410, 2844, 2677, 1630, 1494, 1441
cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 12.29 (2H, s, NH-1), 8.89 (2H, t, J = 6.0 Hz, NH-10),
8.76 (2H, d, J = 2.6 Hz, H-2), 8.41 (4H, br s, NH2-14), 8.24–8.22 (2H, m, H-4), 7.55–7.53 (2H, m,
H-7), 7.29–7.25 (4H, m, H-5, H-6), 3.30–3.27 (4H, obscured, H2-11), 2.98–2.84 (8H, m, H2-13,
H2-15), 1.88–1.81 (4H, m, H2-12), 1.57–1.53 (4H, m, H2-16), 1.24 (12H, br s, H2-17, H2-18,
H2-19); 13C NMR (DMSO-d6, 100 MHz) δ 181.7 (C-8), 163.7 (C-9), 138.5 (C-2), 136.2 (C-7a),
126.2 (C-3a), 123.5 (C-6), 122.6 (C-5), 121.2 (C-4), 112.6 (C-7), 112.1 (C-3), 46.8 (C-15), 44.7 (C-
13), 35.8 (C-11), 28.7, 28.5 (C-18, C-19), 25.9, 25.7, 25.5 (C-12, C-16, C-17); (+)-HRESIMS
[M+H]+ m/z 629.3804 (calcd for C36H49N6O4, 629.3810).

3.2.5. N1,N6-Bis(3-(2-(5-bromo-1H-indol-3-yl)-2-oxoacetamido)propyl)hexane-1,6-
diaminium 2,2,2-trifluoroacetate (18a)

Using general procedure A, 2-(5-bromo-1H-indol-3-yl)-2-indoloxoacetyl chloride (11)
(0.067 g, 0.24 mmol) was reacted with di-tert-butyl hexane-1,6-diylbis((3-aminopropyl)carbamate)
(9a) (0.050 g, 0.12 mmol) and DIPEA (0.13 mL, 0.74 mmol) to afford di-tert-butyl hexane-1,6-
diylbis((3-(2-(5-bromo-1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as a pale yellow
gum (0.030 g, 27%). Using general procedure B, this product (0.030 g, 0.03 mmol) was
reacted with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 18a as a pale-yellow
oil (0.006 g, 19%). Rf (MeOH/10% HCl, 7:3) 0.38; IR (ATR) νmax 3434, 1672, 1627, 1433, 1293,
1202, 1137, 1028, 721 cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 12.48 (2H, br s, NH-1), 8.91 (2H,
t, J = 6.0 Hz, NH-10), 8.80 (2H, s, H-2), 8.45 (4H, br s, NH2-14), 8.35 (2H, d, J = 2.0 Hz, H-4),
7.53 (2H, d, J = 8.5 Hz, H-7), 7.42 (2H, dd, J = 8.5, 2.0 Hz, H-6), 3.34–3.29 (4H, obscured,
H2-11), 2.97–2.86 (8H, m, H2-13, H2-15), 1.85 (4H, tt, J = 8.5, 8.5 Hz, H2-12), 1.56 (4H, br
s, H2-16), 1.31 (4H, br s, H2-17); 13C NMR (DMSO-d6, 100 MHz) δ 181.7 (C-8), 163.3 (C-
9), 139.5 (C-2), 135.1 (C-7a), 128.0 (C-3a), 126.1 (C-6), 123.3 (C-4), 115.4 (C-5), 114.7 (C-7),
111.6 (C-3), 46.7 (C-15), 44.7 (C-13), 35.8 (C-11), 25.7, 25.5, 25.4 (C-12, C-16, C-17); (+)-
HRESIMS [M+Na]+ m/z 751.1230 (calcd for C32H38

79Br2N6NaO4, 751.1213), 753.1199 (calcd
for C32H38

79Br81BrN6NaO4, 753.1196), 755.1197 (calcd for C32H38
81Br2N6NaO4, 755.1183).

3.2.6. N1,N7-Bis(3-(2-(5-bromo-1H-indol-3-yl)-2-oxoacetamido)propyl)heptane-1,7-
diaminium 2,2,2-trifluoroacetate (18b)

Using general procedure A, 2-(5-bromo-1H-indol-3-yl)-2-oxoacetyl chloride (11) (0.089 g,
0.31 mmol) was reacted with di-tert-butyl heptane-1,7-diylbis((3-aminopropyl)carbamate)
(9b) (0.069 g, 0.15 mmol) and DIPEA (0.16 mL, 0.92 mmol) to afford di-tert-butyl heptane-
1,7-diylbis((3-(2-(5-bromo-1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as an orange
oil (0.027 g, 17%). Using general procedure B, a sub-sample of this product (0.010 g,
0.010 mmol) was reacted with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 18b
as a yellow oil (0.009 g, 80%). Rf (MeOH/10% HCl, 7:3) 0.35; IR (ATR) νmax 3422, 2955, 2839,
1680, 1434 cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 12.48 (2H, d, J = 2.8 Hz, NH-1), 8.91 (2H, t,
J = 6.0 Hz, NH-10), 8.80 (2H, d, J = 2.8, H-2), 8.44 (4H, br s, NH2-14), 8.35 (2H, d, J = 2.0 Hz,
H-4), 7.53 (2H, d, J = 8.8 Hz, H-7), 7.42 (2H, dd, J = 8.8, 2.0 Hz, H-6), 3.30 (4H, dt, J = 6.4,
6.4 Hz, H2-11), 2.93–2.89 (8H, m, H2-13, H2-15), 1.88–1.81 (4H, m, H2-12), 1.56 (4H, br s, H2-
16), 1.29–1.23 (6H, m, H2-17, H2-18); 13C NMR (DMSO-d6, 100 MHz) δ 181.7 (C-8), 163.3 (C-
9), 139.5 (C-2), 135.1 (C-7a), 128.0 (C-3a), 126.1 (C-6), 123.3 (C-4), 115.4 (C-5), 114.7 (C-7),
111.6 (C-3), 46.7 (C-15), 44.7 (C-13), 35.8 (C-11), 28.0 (C-18), 25.8, 25.7, 25.4 (C-12, C-16, C-17);
(+)-HRESIMS [M+H]+ m/z 743.1570 (calcd for C33H41

79Br2N6O4, 743.1551), 745.1555 (calcd
for C33H41

79Br81BrN6O4, 745.1533), 747.1544 (calcd for C33H41
81Br2N6O4, 747.1521).

3.2.7. N1,N8-Bis(3-(2-(5-bromo-1H-indol-3-yl)-2-oxoacetamido)propyl)octane-1,8-
diaminium 2,2,2-trifluoroacetate (18c)

Using general procedure A, 2-(5-bromo-1H-indol-3-yl)-2-oxoacetyl chloride (11) (0.072 g,
0.25 mmol) was reacted with di-tert-butyl octane-1,8-diylbis((3-aminopropyl)carbamate)
(9c) (0.055 g, 0.12 mmol) and DIPEA (0.12 mL, 0.66 mmol) to afford di-tert-butyl octane-
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1,8-diylbis((3-(2-(5-bromo-1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as a brown
oil (0.035 g, 30%). Using general procedure B, a sub-sample of this product (0.020 g,
0.021 mmol) was reacted with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt
18c as a brown oil (0.0048 g, 23%). Rf (MeOH/10% HCl, 7:3) 0.32; IR (ATR) νmax 3056,
2163, 1978, 1711, 1677, 1433, 1360, 1265, 1203, 1141, 1058, 738, 704 cm−1; 1H NMR (DMSO-
d6, 400 MHz) δ 12.46 (2H, s, NH-1), 8.93 (2H, t, J = 6.1 Hz, NH-10), 8.82 (2H, br s, H-2),
8.37 (2H, d, J = 2.0 Hz, H-4), 8.36 (4H, br s, NH2-14), 7.55 (2H, d, J = 8.9 Hz, H-7), 7.44 (2H,
dd, J = 8.6, 1.8 Hz, H-6), 3.30 (4H, obscured, H2-11), 2.94–2.89 (8H, m, H2-13, H2-15),
1.86–1.83 (4H, m, H2-12), 1.55–1.53 (4H, br s, H2-16), 1.26–1.23 (8H, m, H2-17, H2-18); 13C
NMR (DMSO-d6, 100 MHz) δ 181.7 (C-8), 163.3 (C-9), 139.5 (C-2), 135.0 (C-7a), 128.0 (C-
3a), 126.1 (C-6), 123.3 (C-4), 115.4 (C-5), 114.8 (C-7), 111.6 (C-3), 46.7 (C-15), 44.7 (C-13),
35.8 (C-11), 28.3 (C-18), 25.8, 25.7, 25.5 (C-12, C-16, C-17); (+)-HRESIMS [M+Na]+ m/z
779.1548 (calcd C34H42

79Br2N6NaO4, 779.1526), 781.1513 (calcd C34H42
79Br81BrN6NaO4,

781.1509), 783.1497 (calcd C34H42
81Br2N6NaO4, 783.1497).

3.2.8. N1,N10-Bis(3-(2-(5-bromo-1H-indol-3-yl)-2-oxoacetamido)propyl)decane-1,10-
diaminium 2,2,2-trifluoroacetate (18d)

Using general procedure A, 2-(5-bromo-1H-indol-3-yl)-2-oxoacetyl chloride (11) (0.083 g,
0.29 mmol) was reacted with di-tert-butyl decane-1,10-diylbis((3-aminopropyl)carbamate)
(9d) (0.068 g, 0.14 mmol) and DIPEA (0.15 mL, 0.86 mmol) to afford di-tert-butyl decane-
1,10-diylbis((3-(2-(5-bromo-1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as an orange
oil (0.042 g, 30%). Using general procedure B, a sub-sample of this product (0.026 g,
0.026 mmol) was reacted with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA
salt 18d as a brown oil (0.007 g, 34%). Rf (MeOH/10% HCl, 7:3) 0.34; IR (ATR) νmax

3023, 1676, 1438, 1203, 1030, 721 cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 12.46 (2H, d,
J = 2.1 Hz, NH-1), 8.91 (2H, t, J = 5.9 Hz, NH-10), 8.80 (2H, s, H-2), 8.35 (4H, br s, NH2-14),
8.35 (2H, d, J = 2.0 Hz, H-4), 7.53 (2H, d, J = 8.6 Hz, H-7), 7.42 (2H, dd, J = 8.5, 2.1 Hz,
H-6), 3.30 (4H, dt, J = 6.5, 6.5 Hz, H2-11), 2.97–2.84 (8H, m, H2-13, H2-15), 1.84 (4H, tt,
J = 7.6, 7.6 Hz, H2-12), 1.55 (4H, br s, H2-16), 1.24 (12H, br s, H2-17, H2-18, H2-19); 13C
NMR (DMSO-d6, 100 MHz) δ 181.7 (C-8), 163.3 (C-9), 139.5 (C-2), 135.1 (C-7a), 128.0 (C-3a),
126.1 (C-6), 123.3 (C-4), 115.4 (C-5), 114.7 (C-7), 111.6 (C-3), 46.8 (C-15), 44.7 (C-13), 35.8 (C-
11), 28.7, 28.5 (C-18, C-19), 25.9, 25.6, 25.5 (C-12, C-16, C-17); (+)-HRESIMS [M+H]+ m/z
785.2001 (calcd for C36H47

79Br2N6O4, 785.2020), 787.1988 (calcd for C36H47
79Br81BrN6O4,

787.2003), 789.1973 (calcd for C36H47
81Br2N6O4, 789.1992).

3.2.9. N1,N12-Bis(3-(2-(5-bromo-1H-indol-3-yl)-2-oxoacetamido)propyl)dodecane-1,12-
diaminium 2,2,2-trifluoroacetate (18e)

Using general procedure A, 2-(5-bromo-1H-indol-3-yl)-2-oxoacetyl chloride (11) (0.081 g,
0.28 mmol) was reacted with di-tert-butyl dodecane-1,12-diylbis((3-aminopropyl)carbamate)
(9e) (0.073 g, 0.14 mmol) and DIPEA (0.15 mL, 0.86 mmol) to afford di-tert-butyl dodecane-
1,12-diylbis((3-(2-(5-bromo-1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as a dark
orange oil (0.047 g, 33%). Using general procedure B, a sub-sample of this product (0.014 g,
0.014 mmol) was reacted with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 18e
as a yellow oil (0.011 g, 76%). Rf (MeOH/10% HCl, 7:3) 0.35; IR (ATR) νmax 3402, 2981,
2036, 1681, 1654, 1385 cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 12.50 (2H, d, J = 2.3 Hz,
NH-1), 8.91 (2H, t, J = 6.0 Hz, NH-10), 8.80 (2H, d, J = 2.4, H-2), 8.44 (4H, br s, NH2-14),
8.35 (2H, d, J = 1.7 Hz, H-4), 7.53 (2H, d, J = 8.6 Hz, H-7), 7.41 (2H, dd, J = 8.6, 1.8 Hz, H-6),
3.30 (4H, dt, J = 6.3, 6.3 Hz, H2-11), 2.98–2.84 (8H, m, H2-13, H2-15), 1.86–1.82 (4H, m, H2-12),
1.55 (4H, br s, H2-16), 1.27–1.23 (16H, m, H2-17, H2-18, H2-19, H2-20); 13C NMR (DMSO-d6,
100 MHz) δ 181.7 (C-8), 163.4 (C-9), 139.5 (C-2), 135.1 (C-7a), 128.0 (C-3a), 126.1 (C-4),
123.3 (C-6), 115.4 (C-5), 114.7 (C-7), 111.6 (C-3), 46.8 (C-15), 44.7 (C-13), 35.8 (C-11), 28.9,
28.8, 28.5 (C-18, C-19, C-20), 25.9, 25.6, 25.5 (C-12, C-16, C-17); (+)-HRESIMS [M+H]+ m/z
813.2336 (calcd for C38H51

79Br2N6O4, 813.2333), 815.2315 (calcd for C38H51
79Br81BrN6O4,

815.2317), 817.2308 (calcd for C38H51
81Br2N6O4, 817.2306).
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3.2.10. N1,N6-Bis(3-(2-(5-methoxy-1H-indol-3-yl)-2-oxoacetamido)propyl)hexane-1,6-
diaminium 2,2,2-trifluoroacetate (19a)

Using general procedure A, 2-(5-methoxy-1H-indol-3-yl)-2-indoloxoacetyl chloride
(12) (0.057 g, 0.24 mmol) was reacted with di-tert-butyl hexane-1,6-diylbis((3-aminopropyl)
carbamate) (9a) (0.050 g, 0.12 mmol) and DIPEA (0.13 mL, 0.74 mmol) to afford di-tert-butyl
hexane-1,6-diylbis((3-(2-(5-methoxy-1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as
an orange oil (0.025 g, 24%). Using general procedure B, a sub-sample of this product
(0.018 g, 0.022 mmol) was reacted with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA
salt 19a as a pale orange oil (0.016 g, 86%). Rf (MeOH/10% HCl, 7:3) 0.74; IR (ATR) νmax

3422, 1691, 1628, 1485, 1274, 1201, 1052, 1026, 1006, 823, 760, 734 cm−1; 1H NMR (DMSO-d6,
500 MHz) δ 12.18 (2H, br s, NH-1), 8.86 (2H, t, J = 5.8 Hz, NH-10), 8.69 (2H, d, J = 3.5 Hz,
H-2), 8.44 (4H, br s, NH2-14), 7.74 (2H, d, J = 2.6 Hz, H-4), 7.44 (2H, d, J = 8.8 Hz, H-7),
6.91 (2H, dd, J = 8.8, 2.6 Hz, H-6), 3.79 (6H, s, OMe), 3.30 (4H, dt, J = 6.8, 6.8 Hz, H2-11),
2.97–2.86 (8H, br m, H2-13, H2-15), 1.84 (4H, br s, H2-12), 1.56 (4H, br s, H2-16), 1.31 (4H, br
s, H2-17); 13C NMR (DMSO-d6, 125 MHz) δ 181.5 (C-8), 163.8 (C-9), 156.0 (C-5), 138.4 (C-2),
131.0 (C-7a), 127.2 (C-3a), 113.3 (C-7), 112.8 (C-6), 112.0 (C-3), 103.5 (C-4), 55.3 (OMe),
46.7 (C-15), 44.7 (C-13), 35.8 (C-11), 25.7, 25.5, 25.4 (C-12, C-16, C-17); (+)-HRESIMS [M+H]+

m/z 633.3396 (calcd for C34H45N6O6, 633.3395).

3.2.11. N1,N7-Bis(3-(2-(5-methoxy-1H-indol-3-yl)-2-oxoacetamido)propyl)heptane-1,7-
diaminium 2,2,2-trifluoroacetate (19b)

Using general procedure A, 2-(5-methoxy-1H-indol-3-yl)-2-oxoacetyl chloride (12)
(0.079 g, 0.33 mmol) was reacted with di-tert-butyl heptane-1,7-diylbis((3-aminopropyl)
carbamate) (9b) (0.070 g, 0.15 mmol) and DIPEA (0.16 mL, 0.92 mmol) to afford di-tert-butyl
heptane-1,7-diylbis((3-(2-(5-methoxy-1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as
a yellow oil (0.004 g, 33%). Using general procedure B, a sub-sample of this product (0.017 g,
0.02 mmol) was reacted with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 19b
as a yellow oil (0.014 g, 80%). Rf (MeOH/10% HCl, 7:3) 0.72; IR (ATR) νmax 3318, 2981,
1678, 1621, 1486, 1438 cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 12.22 (2H, d, J = 2.2 Hz,
NH-1), 8.86 (2H, t, J = 6.0 Hz, NH-10), 8.69 (2H, d, J = 3.3 Hz, H-2), 8.51 (4H, br s, NH2-14),
7.75 (2H, d, J = 2.5 Hz, H-4), 7.44 (2H, d, J = 8.8 Hz, H-7), 6.90 (2H, dd, J = 8.8, 2.5 Hz,
H-6), 3.79 (6H, s, OMe), 3.30 (4H, dt, J = 6.4, 6.4 Hz, H2-11), 2.98–2.89 (8H, m, H2-13,
H2-15), 1.89–1.88 (4H, m, H2-12), 1.56 (4H, br s, H2-16), 1.29 (6H, br s, H2-17, H2-18); 13C
NMR (DMSO-d6, 100 MHz) δ 181.6 (C-8), 163.9 (C-9), 156.0 (C-5), 138.4 (C-2), 131.0 (C-
7a), 127.2 (C-3a), 113.3 (C-7), 112.8 (C-6), 112.0 (C-3), 103.5 (C-4), 55.3 (OMe), 46.7 (C-15),
44.7 (C-13), 35.8 (C-11), 28.0 (C-18), 25.8, 25.7, 25.4 (C-12, C-16, C-17); (+)-HRESIMS [M+H]+

m/z 647.3554 (calcd for C35H47N6O6, 647.3552).

3.2.12. N1,N10-Bis(3-(2-(5-methoxy-1H-indol-3-yl)-2-oxoacetamido)propyl)decane-1,10-
diaminium 2,2,2-trifluoroacetate (19d)

Using general procedure A, 2-(5-methoxy-1H-indol-3-yl)-2-oxoacetyl chloride (12)
(0.081 g, 0.34 mmol) was reacted with di-tert-butyl decane-1,10-diylbis((3-aminopropyl)
carbamate) (9d) (0.076 g, 0.16 mmol) and DIPEA (0.17 mL, 0.97 mmol) to afford di-tert-butyl
decane-1,10-diylbis((3-(2-(5-methoxy-1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as
a yellow oil (0.033 g, 23%). Using general procedure B, a sub-sample of this product (0.016 g,
0.018 mmol) was reacted with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt
19d as a dark orange oil (0.014 g, 85%). Rf (MeOH/10% HCl, 7:3) 0.76; IR (ATR) νmax 3364,
2946, 2833, 1579, 1419 cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 12.24 (2H, s, NH-1), 8.85 (2H,
t, J = 6.0 Hz, NH-10), 8.68 (2H, d, J = 3.0 Hz, H-2), 8.54 (4H, br s, NH2-14), 7.75 (2H, d,
J = 1.9 Hz, H-4), 7.44 (2H, d, J = 8.7 Hz, H-7), 6.90 (2H, dd, J = 8.8, 1.9 Hz, H-6), 3.79 (6H, s,
OMe), 3.29 (4H, dt, J = 6.2, 6.2 Hz, H2-11), 2.97–2.85 (8H, br m, H2-13, H2-15), 1.86–1.81 (4H,
m, H2-12), 1.55 (4H, br m, H2-16), 1.24 (12H, br s, H2-17, H2-18, H2-19); 13C NMR (DMSO-
d6, 100 MHz) δ 181.6 (C-8), 163.9 (C-9), 156.0 (C-5), 138.4 (C-2), 131.0 (C-7a), 127.2 (C-3a),
113.3 (C-7), 112.8 (C-6), 112.0 (C-3), 103.5 (C-4), 55.3 (OMe), 46.8 (C-15), 44.7 (C-13), 35.8 (C-
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11), 28.7, 28.5 (C-18, C-19), 25.9, 25.7, 25.5 (C-12, C-16, C-17); (+)-HRESIMS [M+H]+ m/z
689.4040 (calcd for C38H53N6O6, 689.4021).

3.2.13. N1,N6-Bis(3-(2-(5-methyl-1H-indol-3-yl)-2-oxoacetamido)propyl)hexane-1,6-
diaminium 2,2,2-trifluoroacetate (20a)

Using general procedure C, 2-(5-methyl -1H-indol-3-yl)-2-oxoacetic acid (13) (0.070 g,
0.34 mmol) was reacted with di-tert-butyl hexane-1,6-diylbis((3-aminopropyl) carbamate)
(9a) (0.072 g, 0.17 mmol), PyBOP (0.178 g, 0.34 mmol) and DIPEA (0.09 mL, 0.52 mmol).
Purification by column chromatography afforded di-tert-butyl hexane-1,6-diylbis((3-(2-(5-
methyl-1H-indol-3-yl)-2-oxoacetamido) propyl) carbamate) as a yellow oil (0.054 g, 39%).
Using general procedure B, a sub-sample of this product (0.025 g, 0.031 mmol) was reacted
with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 20a as a brown gum (0.021 g,
81%). Rf (MeOH/10% HCl, 3:1) 0.59; IR (ATR) νmax 3325, 2945, 1678, 1448, 1113, 1021 cm−1;
1H NMR, (DMSO-d6, 400 MHz) δ 12.20 (2H, d, J = 2.8 Hz, NH-1), 8.85 (2H, t, J = 6.1 Hz,
H-10), 8.69 (2H, d, J = 3.3 Hz, H-2), 8.49 (4H, br s, H-14), 8.03 (2H, s, H-4), 7.41 (2H, d,
J = 8.2 Hz, H-7), 7.09 (2H, dd, J = 8.4, 1.4 Hz, H-6), 3.30 (4H, dt, J = 6.6, 6.6 Hz, H2-11),
2.97–2.85 (8H, m, H2-13, H2-15), 2.42 (6H, s, Me), 1.88–1.81 (4H, m, H2-12), 1.56 (4H, br
s, H2-16), 1.30 (4H, br s, H2-17); 13C NMR (DMSO-d6, 100 MHz) δ 181.7 (C-8), 164.0 (C-
9), 138.5 (C-2), 134.6 (C-7a), 131.6 (C-5), 126.5 (C-3a), 125.0 (C-6), 121.1 (C-4), 112.3 (C-7),
111.8 (C-3), 46.7 (C-15), 44.8 (C-13), 35.8 (C-11), 25.8, 25.5, 25.4 (C-12, C-16, C-17), 21.4 (Me);
(+)-HRESIMS [M+H]+ m/z 601.3511 (calcd for C34H45N6O4, 601.3497).

3.2.14. N1,N7-Bis(3-(2-(5-methyl-1H-indol-3-yl)-2-oxoacetamido)propyl)heptane-1,7-
diaminium 2,2,2-trifluoroacetate (20b)

Using general procedure C, 2-(5-methyl-1H-indol-3-yl)-2-oxoacetic acid (13) (0.080 g,
0.39 mmol) was reacted with di-tert-butyl heptane-1,7-diylbis((3-aminopropyl) carbamate)
(9b) (0.085 g, 0.19 mmol), PyBOP (0.204 g, 0.39 mmol) and DIPEA (0.1 mL, 0.57 mmol).
Purification by column chromatography afforded di-tert-butyl heptane-1,7-diylbis((3-(2-(5-
methyl-1H-indol-3-yl)-2-oxoacetamido) propyl) carbamate) as a yellow oil (0.079 g, 51%).
Using general procedure B, a sub-sample of this product (0.045 g, 0.055 mmol) was reacted
with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 20b as a brown gum (0.024 g,
52%). Rf (MeOH/10% HCl, 3:1) 0.53; IR (ATR) νmax 3306, 2943, 1653, 1448, 1118, 1022,
739 cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 12.24 (2H, d, J = 2.7 Hz, NH-1), 8.85 (2H, t,
J = 6.2 Hz, NH-10), 8.70 (2H, d, J = 3.5 Hz, H-2), 8.55 (4H, br s, NH-14), 8.04 (2H, br s,
H-4), 7.42 (2H, d, J = 8.1 Hz, H-7), 7.09 (2H, dd, J = 8.43 and 1.4, H-6), 3.29 (4H, dt, J = 6.5,
6.5 Hz, H2-11), 2.97–2.85 (8H, m, H2-13, H2-15), 2.42 (6H, s, Me), 1.89–1.82 (4H, m, H2-12),
1.60–1.52 (4H, br m, H2-16), 1.28 (6H, br s, H2-17, H2-18); 13C NMR (DMSO-d6, 100 MHz)
δ 181.7 (C-8), 163.9 (C-9), 138.5 (C-2), 134.6 (C-7a), 131.6 (C-5), 126.5 (C-3a), 124.9 (C-6),
121.1 (C-4), 112.3 (C-7), 111.8 (C-3), 46.7 (C-15), 44.7 (C-13), 35.8 (C-11), 28.0 (C-18), 25.8,
25.7, 25.4, (C-12, C-16, C-17), 21.4 (Me); (+)-HRESIMS [M+H]+ m/z 615.3664 (calcd for
C35H47N6O4, 615.3653).

3.2.15. N1,N8-Bis(3-(2-(5-methyl-1H-indol-3-yl)-2-oxoacetamido)propyl)octane-1,8-
diaminium 2,2,2-trifluoroacetate (20c)

Using general procedure C, 2-(5-methyl -1H-indol-3-yl)-2-oxoacetic acid (13) (0.080 g,
0.39 mmol) was reacted with di-tert-butyl octane-1,8-diylbis((3-aminopropyl)carbamate)
(9c) (0.088 g, 0.19 mmol), PyBOP (0.204 g, 0.39 mmol) and DIPEA (0.1 mL, 0.57 mmol).
Purification by column chromatography afforded di-tert-butyl octane-1,8-diylbis((3-(2-(5-
methyl-1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as a yellow oil (0.054 g, 34%).
Using general procedure B, a sub-sample of this product (0.030 g, 0.036 mmol) was reacted
with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 20c as a brown gum (0.030 g,
97%). Rf (MeOH/10% HCl, 3:1) 0.50; IR (ATR) νmax 3307, 2943, 1676, 1448, 1116, 1022,
713 cm−1; 1H NMR, (DMSO-d6, 400 MHz) δ 12.25 (2H, d, J = 3.0 Hz, NH-1), 8.85 (2H, t,
J = 6.1 Hz, NH-10), 8.70 (2H, d, J = 3.2 Hz, H-2), 8.55 (4H, br s, NH-14), 8.04 (2H, br s,
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H-4), 7.42 (2H, d, J = 8.1 Hz, H-7), 7.09 (2H, dd, J = 8.3, 1.5 Hz, H-6), 3.29 (4H, dt, J = 6.5,
6.5 Hz, H2-11), 2.94–2.85 (8H, br s, H2-13, H2-15), 2.42 (6H, s, Me), 1.89–1.82 (4H, br s,
H2-12), 1.56 (4H, br s, H2-16), 1.26 (6H, br s, H2-17, H2-18); 13C NMR (DMSO-d6, 100 MHz)
δ 181.7 (C-8), 163.9 (C-9), 138.4 (C-2), 134.6 (C-7a), 131.5 (C-5), 126.5 (C-3a), 124.9 (C-6),
121.1 (C-4), 112.3 (C-7), 111.8 (C-3), 46.8 (C-15), 44.7 (C-13), 35.8 (C-11), 28.3 (C-18), 25.8,
25.7, 25.5 (C-12, C-16, C-17), 21.4 (Me); (+)-HRESIMS [M+H]+ m/z 629.3818 (calcd for
C36H49N6O4, 629.3810).

3.2.16. N1,N10-Bis(3-(2-(5-methyl-1H-indol-3-yl)-2-oxoacetamido)propyl)decane-1,10-
diaminium 2,2,2-trifluoroacetate (20d)

Using general procedure C, 2-(5-methyl -1H-indol-3-yl)-2-oxoacetic acid (13) (0.070 g,
0.34 mmol) was reacted with di-tert-butyl decane-1,10-diylbis((3-aminopropyl) carbamate)
(9d) (0.081 g, 0.17 mmol), PyBOP (0.179 g, 0.34 mmol) and DIPEA (0.09 mL, 0.50 mmol).
Purification by column chromatography afforded di-tert-butyl decane-1,10-diylbis((3-(2-(5-
methyl-1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as a yellow oil (0.087 g, 60%).
Using general procedure B, a sub-sample of this product (0.043 g, 0.050 mmol) was reacted
with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 20d as a white gum (0.044 g,
99%). Rf (MeOH/10% HCl, 3:1) 0.44; IR (ATR) νmax 3307, 2944, 1678, 1449, 1115, 1021 cm−1;
1H NMR, (DMSO-d6, 400 MHz) δ 12.24 (2H, d, J = 3.0 Hz, NH-1), 8.85 (2H, t, J = 6.1 Hz,
NH-10), 8.70 (2H, d, J = 3.4 Hz, H-2), 8.52 (4H, br s, NH-14), 8.04 (2H, br s, H-4), 7.42 (2H,
d, J = 8.2 Hz, H-7), 7.09 (2H, dd, J = 8.3, 1.5 Hz, H-6), 3.30 (4H, dt, J = 6.5, 6.5 Hz, H2-11),
2.97–2.85 (8H, br m, H2-13, H2-15), 2.42 (6H, s, Me), 1.89–1.82 (4H, m, H2-12), 1.57–1.52 (4H,
m, H2-16), 1.24 (12H, br s, H2-17, H2-18, H2-19); 13C NMR (DMSO-d6, 100 MHz) δ 181.7 (C-
8), 163.9 (C-9), 138.5 (C-2), 134.6 (C-7a), 131.5 (C-5), 126.6 (C-3a), 124.9 (C-6), 121.1 (C-4),
112.3 (C-7), 111.8 (C-3), 46.8 (C-15), 44.7 (C-13), 35.8 (C-11), 28.7, 28.5 (C-18, C-19), 25.9,
25.7, 25.5 (C-12, C-16, C-17), 21.4 (Me), (+)-HRESIMS [M+H]+ m/z 657.4125 (calcd for
C38H53N6O4, 657.4123).

3.2.17. N1,N12-Bis(3-(2-(5-methyl-1H-indol-3-yl)-2-oxoacetamido)propyl)dodecane-1,12-
diaminium 2,2,2-trifluoroacetate (20e)

Using general procedure C, 2-(5-methyl-1H-indol-3-yl)-2-oxoacetic acid (13) (0.070 g,
0.34 mmol) was reacted with di-tert-butyl dodecane-1,12-diylbis((3-aminopropyl)carbamate)
(9e) (0.086 g, 0.17 mmol), PyBOP (0.179 g, 0.34 mmol) and DIPEA (0.09 mL, 0.50 mmol).
Purification by column chromatography afforded di-tert-butyl dodecane-1,12-diylbis((3-
(2-(5-methyl-1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as a yellow oil (0.092 g,
62%). Using general procedure B, a sub-sample of this product (0.045 g, 0.051 mmol) was
reacted with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 20e as a white gum
(0.039 g, 84%). Rf (MeOH/10% HCl, 3:1) 0.41; IR (ATR) νmax 3307, 2944, 1678, 1452, 1113,
740 cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 12.24 (2H, d, J = 2.9 Hz, NH-1), 8.85 (2H, t,
J = 6.3 Hz, NH-10), 8.70 (2H, d, J = 3.3 Hz, H-2), 8.51 (4H, br s, NH-14), 8.04 (2H, br s,
H-4), 7.42 (2H, d, J = 8.3 Hz, H-7), 7.09 (2H, dd, J = 8.4, 1.5 Hz, H-6), 3.29 (4H, dt, J = 6.4,
6.4 Hz, H2-11), 2.97–2.85 (8H, br m, H2-13, H2-15), 2.42 (6H, s, Me), 1.89–1.82 (4H, m,
H2-12), 1.57–1.52 (4H, m, H2-16), 1.31–1.22 (16H, br m, H2-17, H2-18, H2-19, H2-20); 13C
NMR (DMSO-d6, 100 MHz) δ 181.7 (C-8), 163.9 (C-9), 138.5 (C-2), 134.6 (C-7a), 131.5 (C-
5), 126.6 (C-3a), 124.9 (C-6), 121.1 (C-4), 112.3 (C-7), 111.8 (C-3), 46.8 (C-15), 44.7 (C-13),
35.8 (C-11), 29.0, 28.9, 28.6 (C-18, C-19, C-20), 25.9, 25.7, 25.5 (C-12, C-16, C-17), 21.4 (Me);
(+)-HRESIMS [M+H]+ m/z 685.4453 (calcd for C40H57N6O4, 685.4436).

3.2.18. N1,N6-Bis(3-(2-(7-fluoro-1H-indol-3-yl)-2-oxoacetamido)propyl)hexane-1,6-
diaminium 2,2,2-trifluoroacetate (21a)

Using general procedure A, 2-(7-fluoro-1H-indol-3-yl)-2-indoloxoacetyl chloride (14)
(0.053 g, 0.24 mmol) was reacted with di-tert-butyl hexane-1,6-diylbis((3-aminopropyl)
carbamate) (9a) (0.050 g, 0.12 mmol) and DIPEA (0.13 mL, 0.74 mmol) to afford di-tert-butyl
hexane-1,6-diylbis((3-(2-(7-fluoro-1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as a
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yellow gum (0.016 g, 16%). Using general procedure B, this product (0.016 g, 0.02 mmol)
was reacted with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 21a as a pale
yellow oil (0.006 g, 35%). Rf (MeOH/10% HCl, 7:3) 0.76; IR (ATR) νmax 3434, 1672, 1627,
1433, 1293, 1202, 1137, 1028, 721 cm−1; 1H NMR (DMSO-d6, 500 MHz) δ 12.88 (2H, br s,
NH-1), 8.95 (2H, t, J = 5.6 Hz, NH-10), 8.77 (2H, s, H-2), 8.42 (4H, br s, NH2-14), 8.04 (2H, d,
J = 8.0 Hz, H-4), 7.25 (2H, ddd, J = 8.0, 8.0, 5.0 Hz, H-5), 7.14 (2H, dd, J = 11.2, 8.0 Hz, H-6),
3.38–3.29 (4H, m, H2-11), 2.97–2.91 (8H, m, H2-13, H2-15), 1.85 (4H, tt, J = 7.3, 7.3 Hz, H2-12),
1.55 (4H, br s, H2-16), 1.31 (4H, br s, H2-17); 13C NMR (DMSO-d6, 125 MHz) δ 181.9 (C-8),
163.4 (C-9), 149.2 (d, 1JCF = 245.4 Hz, C-7), 138.8 (C-2), 129.8 (d, 3JCF = 4.5 Hz, C-3a), 124.0 (d,
2JCF = 13.4 Hz, C-7a), 123.4 (d, 3JCF = 5.9 Hz, C-5), 117.4 (d, 4JCF = 2.7 Hz, C-4), 112.8 (C-3),
108.7 (d, 2JCF = 15.9 Hz, C-6), 46.7 (C-15), 44.7 (C-13), 35.9 (C-11), 25.7, 25.5, 25.4 (C-12, C-16,
C-17); (+)-HRESIMS [M+H]+ m/z 609.2987 (calcd for C32H39F2N6O4, 609.2995).

3.2.19. N1,N7-Bis(3-(2-(7-fluoro-1H-indol-3-yl)-2-oxoacetamido)propyl)heptane-1,7-
diaminium 2,2,2-trifluoroacetate (21b)

Using general procedure A, 2-(7-fluoro-1H-indol-3-yl)-2-oxoacetyl chloride (14) (0.080 g,
0.36 mmol) was reacted with di-tert-butyl heptane-1,7-diylbis((3-aminopropyl)carbamate)
(9b) (0.079 g, 0.18 mmol) and DIPEA (0.19 mL, 1.1 mmol) to afford di-tert-butyl heptane-1,7-
diylbis((3-(2-(7-fluoro-1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as a dark yellow
oil (0.058 g, 39%). Using general procedure B, a sub-sample of this product (0.013 g,
0.016 mmol) was reacted with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 21b
as an orange oil (0.013 g, 96%). Rf (MeOH/10% HCl, 7:3) 0.75; IR (ATR) νmax 3401, 2930,
1675, 1635, 1458 cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 12.91 (2H, br d, J = 2.1 Hz, NH-1),
8.94 (2H, t, J = 6.1 Hz, NH-10), 8.77 (2H, d, J = 3.0 Hz, H-2), 8.51 (4H, br s, NH2-14), 8.04 (2H,
d, J = 7.9 Hz, H-4), 7.25 (2H, ddd, J = 8.1, 8.1, 5.0 Hz, H-5), 7.31 (2H, dd, J = 11.3, 7.3 Hz,
H-6), 3.30 (4H, dt, J = 6.5, 6.5 Hz, H2-11), 2.98–2.86 (8H, br m, H2-13, H2-15), 1.89–1.82 (4H,
br m, H2-12), 1.56 (4H, br s, H2-16), 1.31–1.26 (6H, m, H2-17, H2-18); 13C NMR (DMSO-d6,
100 MHz) δ 181.9 (C-8), 163.4 (C-9), 149.2 (d, 1JCF = 245 Hz, C-7), 138.8 (C-2), 129.9 (d,
3JCF = 4.4 Hz, C-3a), 123.4 (d, 3JCF = 6.0 Hz, C-5), 124.0 (d, 2JCF = 13.2 Hz, C-7a), 117.4 (br
s, C-4), 112.8 (C-3), 108.6 (d, 2JCF = 15.5 Hz, C-6), 46.7 (C-15), 44.7 (C-13), 35.9 (C-11),
28.0 (C-18), 25.8, 25.7, 25.4 (C-12, C-16, C-17); (+)-HRESIMS [M+H]+ m/z 623.3161 (calcd for
C33H41F2N6O4, 623.3152).

3.2.20. N1,N8-Bis(3-(2-(7-fluoro-1H-indol-3-yl)-2-oxoacetamido)propyl)octane-1,8-
diaminium 2,2,2-trifluoroacetate (21c)

Using general procedure A, 2-(7-fluoro-1H-indol-3-yl)-2-oxoacetyl chloride (14) (0.063 g,
0.28 mmol) was reacted with di-tert-butyl octane-1,8-diylbis((3-aminopropyl)carbamate)
(9c) (0.056 g, 0.12 mmol) and DIPEA (0.13 mL, 0.75 mmol) to afford di-tert-butyl octane-
1,8-diylbis((3-(2-(7-fluoro-1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as a brown oil
(0.064 g, 56%). Using general procedure B, a sub-sample of this product (0.034 g, 0.041 mmol)
was reacted with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 21c as a brown
oil (0.030 g, 85%). Rf (MeOH/10% HCl, 7:3) 0.70; IR (ATR) νmax 3430, 1689, 1656, 1050, 1023,
1002, 930, 823, 760 cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 12.89 (2H, d, J = 2.8 Hz, NH-1),
8.94 (2H, t, J = 6.1 Hz, NH-10), 8.77 (2H, d, J = 3.2 Hz, H-2), 8.46 (4H, br s, NH2-14), 8.04 (2H,
d, J = 7.8 Hz, H-4), 7.25 (2H, ddd, J = 8.0, 8.0, 4.7 Hz, H-5), 7.14 (2H, ddd, J = 11.0, 7.9, 1.0 Hz,
H-6), 3.30 (4H, dt, J = 6.4, 6.4 Hz, H2-11), 2.98–2.84 (4H, br m, H2-13, H2-15), 1.85 (4H, tt,
J = 6.5, 6.5 Hz, H2-12), 1.55 (4H, tt, J = 6.8, 6.8 Hz, H2-16), 1.26 (8H, br s, H2-17, H2-18); 13C
NMR (DMSO-d6, 100 MHz) δ 181.9 (C-8), 163.4 (C-9), 149.2 (1JCF = 245 Hz, C-7), 138.8 (C-2),
129.8 (d, 3JCF = 4.6 Hz, C-3a), 124.0 (d, 2JCF = 13.3 Hz, C-7a), 123.4 (d, 3JCF = 5.3 Hz, C-5),
117.4 (d, 3JCF = 3.5 Hz, C-4), 112.8 (C-3), 108.7 (d, 2JCF = 16.0 Hz, C-6), 46.7 (C-15), 44.7 (C-
13), 35.8 (C-11), 28.3 (C-18), 25.8, 25.6, 25.5 (C-12, C-16, C-17); (+)-HRESIMS [M+H]+ m/z
637.3313 (calcd C34H43F2N6O4, 637.3308).
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3.2.21. N1,N10-Bis(3-(2-(7-fluoro-1H-indol-3-yl)-2-oxoacetamido)propyl)decane-1,10-
diaminium 2,2,2-trifluoroacetate (21d)

Using general procedure A, 2-(7-fluoro-1H-indol-3-yl)-2-oxoacetyl chloride (14) (0.080 g,
0.35 mmol) was reacted with di-tert-butyl decane-1,10-diylbis((3-aminopropyl)carbamate)
(9d) (0.084 g, 0.17 mmol) and DIPEA (0.19 mL, 1.1 mmol) to afford di-tert-butyl decane-
1,10-diylbis((3-(2-(7-fluoro-1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as a dark
yellow oil (0.072 g, 49%). Using general procedure B, a sub-sample of this product (0.023 g,
0.027 mmol) was reacted with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 21d
as an orange oil (0.018 g, 76%). Rf (MeOH/10% HCl, 7:3) 0.73; IR (ATR) νmax 3405, 2944,
2857, 1674, 1632, 1505, 1439 cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 12.92 (2H, s, NH-1),
8.93 (2H, t, J = 6.1 Hz, NH-10), 8.78 (2H, d, J = 3.4 Hz, H-2), 8.49 (4H, br s, NH2-14), 8.04 (2H,
d, J = 7.9 Hz, H-4), 7.24 (2H, dd, J = 8.0, 8.0, 5.0 Hz, H-5), 7.13 (2H, dd, J = 11.2, 8.0 Hz,
H-6), 3.30 (4H, dt, J = 6.5, 6.5 Hz, H2-11), 2.98–2.84 (8H, m, H2-13, H2-15), 1.89–1.82 (4H,
m, H2-12), 1.57–1.52 (4H, br m, H2-16), 1.23 (12H, br s, H2-17, H2-18, H2-19); 13C NMR
(DMSO-d6, 100 MHz) δ 181.9 (C-8), 163.4 (C-9), 149.3 (d, 1JCF = 245 Hz, C-7), 138.8 (C-2),
129.8 (d, 3JCF = 4.5 Hz, C-3a), 124.1 (d, 2JCF = 13.2 Hz, C-7a), 123.4 (d, 3JCF = 5.9 Hz, C-5),
117.4 (d, 3JCF = 3.1 Hz, C-4), 112.8 (C-3), 108.7 (d, 2JCF = 15.8 Hz, C-6), 46.8 (C-15), 44.7 (C-13),
35.9 (C-11), 28.7, 28.5 (C-18, C-19), 25.9, 25.6, 25.5 (C-12, C-16, C-17); (+)-HRESIMS [M+H]+

m/z 665.3639 (calcd for C36H47F2N6O4, 665.3621).

3.2.22. N1,N12-Bis(3-(2-(7-fluoro-1H-indol-3-yl)-2-oxoacetamido)propyl)dodecane-1,12-
diaminium 2,2,2-trifluoroacetate (21e)

Using general procedure A, 2-(7-fluoro-1H-indol-3-yl)-2-oxoacetyl chloride (14) (0.076 g,
0.034 mmol) was reacted with di-tert-butyl dodecane-1,12-diylbis((3-aminopropyl)carbamate)
(9e) (0.087 g, 0.17 mmol) and DIPEA (0.18 mL, 1.0 mmol) to afford di-tert-butyl dodecane-
1,12-diylbis((3-(2-(7-fluoro-1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as a dark
orange oil (0.047 g, 31%). Using general procedure B, a sub-sample of this product (0.045 g,
0.050 mmol) was reacted with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt
21e as an orange oil (0.026 g, 56%). Rf (MeOH/10% HCl, 7:3) 0.70; IR (ATR) νmax 3342,
2929, 1676, 1632, 1506, 1459 cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 12.94 (2H, d, J = 2.7 Hz,
NH-1), 8.93 (2H, t, J = 6.9 Hz, NH-10), 8.78 (2H, d, J = 3.4 Hz, H-2), 8.57 (4H, br s, NH2-
14), 8.04 (2H, d, J = 8.5 Hz, H-4), 7.24 (2H, ddd, J = 7.8, 7.8, 5.0 Hz, H-5), 7.13 (2H, dd,
J = 11.2, 8.0 Hz, H-6), 3.30 (4H, dt, J = 6.4, 6.4 Hz, H2-11), 2.94–2.84 (8H, m, H2-13, H2-15),
1.90–1.83 (4H, m, H2-12), 1.56 (4H, br s, H2-16), 1.27–1.22 (16H, m, H2-17, H2-18, H2-19,
H2-20); 13C NMR (DMSO-d6, 100 MHz) δ 181.9 (C-8), 163.4 (C-9), 149.1 (d, 1JCF = 241 Hz,
C-7), 138.9 (C-2), 129.9 (d, 3JCF = 4.2 Hz, C-3a), 124.1 (d, 2JCF = 14.0 Hz, C-7a), 123.4 (d,
3JCF = 6.1 Hz, C-5), 117.4 (d, 3JCF = 3.1 Hz, C-4), 112.8 (C-3), 108.6 (d, 2JCF = 16.1 Hz, C-6),
46.8 (C-15), 44.7 (C-13), 35.9 (C-11), 28.9, 28.8, 28.5 (C-18, C-19, C-20), 25.9, 25.6, 25.5 (C-12,
C-16, C-17); (+)-HRESIMS [M+Na]+ m/z 715.3747 (calcd for C38H50F2N6NaO4, 715.3754).

3.2.23. N1,N6-Bis(3-(2-(7-methoxy-1H-indol-3-yl)-2-oxoacetamido)propyl)hexane-1,6-
diaminium 2,2,2-trifluoroacetate (22a)

Following general procedure C, 2-(7-methoxy-1H-indol-3-yl)-2-oxoacetic acid (15)
(0.050 g, 0.23 mmol) was reacted with di-tert-butyl hexane-1,6-diylbis((3-aminopropyl)
carbamate) (9a) (0.047 g, 0.11 mmol), PyBOP (0.119 g, 0.23 mmol) and DIPEA (0.06 mL,
0.34 mmol). Purification by column chromatography afforded di-tert-butyl hexane-1,6-
diylbis((3-(2-(7-methoxy-1H-indol-3-yl)-2-oxoacetamido) propyl) carbamate) as a yellow
oil (0.020 g, 22%). Using general procedure B, a sub-sample of this product (0.016 g,
0.019 mmol) was reacted with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt
22a as a black gum (0.013 g, 79%). Rf (MeOH/10% HCl, 3:1) 0.68; IR (ATR) νmax 3317,
2944, 1622, 1449, 1115, 1022, 721 cm−1; 1H NMR, (DMSO-d6, 400 MHz) δ 12.45 (2H, d,
J = 2.0 Hz, NH-1), 8.89 (2H, t, J = 5.5 Hz, NH-10), 8.62 (2H, d, J = 3.5 Hz, H-2), 8.38 (4H, br
s, NH-14), 7.80 (2H, d, J = 7.9 Hz, H-4), 7.19 (2H, t, J = 7.6 Hz, H-5), 6.86 (2H, d, J = 8.2 Hz,
H-6), 3.95 (6H, s, OMe), 3.29 (4H, dt, J = 6.5, 6.5 Hz, H2-11), 2.92–2.88 (8H, m, H2-13,
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H2-15), 1.87–1.82 (4H, m, H2-12), 1.55 (4H, br s, H2-16), 1.31 (4H, br s, H2-17); 13C NMR
(DMSO-d6, 100 MHz) δ 181.7 (C-8), 163.7 (C-9), 146.4 (C-7), 137.4 (C-2), 127.8 (C-3a), 126.1 (C-
7a), 123.5 (C-5), 113.7 (C-4), 112.6 (C-3), 104.4 (C-6), 55.4 (OMe), 46.6 (C-15), 44.7 (C-13),
35.8 (C-11), 25.7, 25.5, 25.4 (C-12, C-16, C-17); (+)-HRESIMS m/z [M+H]+ 633.3408 (calcd for
C34H45N6O6, 633.3395).

3.2.24. N1,N7-Bis(3-(2-(7-methoxy-1H-indol-3-yl)-2-oxoacetamido)propyl)heptane-1,7-
diaminium 2,2,2-trifluoroacetate (22b)

Using general procedure C, 2-(7-methoxy-1H-indol-3-yl)-2-oxoacetic acid (15) (0.086 g,
0.39 mmol) was reacted with di-tert-butyl heptane-1,7-diylbis((3-aminopropyl) carbamate)
(9b) (0.088 g, 0.19 mmol), PyBOP (0.213 g, 0.41 mmol) and DIPEA (0.09 mL, 0.52 mmol).
Purification by column chromatography afforded di-tert-butyl heptane-1,7-diylbis((3-(2-(7-
methoxy-1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as a yellow oil (0.066 g, 41%).
Using general procedure B, a sub-sample of this product (0.030 g, 0.035 mmol) was reacted
with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 22b as a black gum (0.028 g,
90%). Rf (MeOH/10% HCl, 3:1) 0.58; IR (ATR) νmax 3317, 2943, 1675, 1432, 1132, 1022,
721 cm−1; 1H NMR, (DMSO-d6, 400 MHz) δ 12.45 (2H, d, J = 3.4 Hz, NH-1), 8.89 (2H,
t, J = 6.2 Hz, NH-10), 8.62 (2H, d, J = 3.3 Hz, H-2), 8.35 (4H, br s, NH-14), 7.80 (2H, d,
J = 7.7 Hz, H-4), 7.19 (2H, t, J = 7.9 Hz, H-5), 6.86 (2H, d, J = 7.9 Hz, H-6), 3.95 (6H, s, H3-19),
3.29 (4H, dt, J = 6.5, 6.5 Hz, H2-11), 2.96–2.84 (8H, br m, H2-13, H2-15), 1.87–1.82 (4H, m,
H2-12), 1.55 (4H, br s, H2-16), 1.28 (6H, br s, H2-17, H2-18); 13C NMR (DMSO-d6, 100 MHz)
δ 181.8 (C-8), 163.7 (C-9), 146.4 (C-7), 137.4 (C-2), 127.8 (C-3a), 126.1 (C-7a), 123.6 (C-
5), 113.7 (C-4), 112.6 (C-3), 104.4 (C-6), 55.4 (C-19), 46.7 (C-15), 44.7 (C-13), 35.8 (C-11),
28.0 (C-18), 25.8, 25.7, 25.4 (C-12, C-16, C-17); (+)-HRESIMS [M+H]+ m/z 647.3550 (calcd for
C35H47N6O6, 647.3552).

3.2.25. N1,N10-Bis(3-(2-(7-methoxy-1H-indol-3-yl)-2-oxoacetamido)propyl)decane-1,10-
diaminium 2,2,2-trifluoroacetate (22d)

Using general procedure C, 2-(7-methoxy-1H-indol-3-yl)-2-oxoacetic acid (15) (0.070 g,
0.32 mmol) was reacted with di-tert-butyl decane-1,10-diylbis((3-aminopropyl) carbamate)
(9d) (0.078 g, 0.16 mmol), PyBOP (0.170 g, 0.32 mmol) and DIPEA (0.08 mL, 0.47 mmol).
Purification by column chromatography afforded di-tert-butyl decane-1,10-diylbis((3-(2-(7-
methoxy-1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as a yellow oil (0.091 g, 65%).
Using general procedure B, a sub-sample of this product (0.022 g, 0.025 mmol) was reacted
with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 22d as a black gum (0.022 g,
98%). Rf (MeOH/10% HCl, 3:1) 0.47; IR (ATR) νmax 3308, 2944, 1679, 1449, 1114, 1021 cm−1;
1H NMR, (DMSO-d6, 400 MHz) δ 12.45 (2H, d, J = 3.2 Hz, NH-1), 8.89 (2H, t, J = 6.1 Hz, NH-
10), 8.62 (2H, d, J = 3.4 Hz, H-2), 8.39 (4H, br s, NH-14), 7.80 (2H, d, J = 7.7 Hz, H-4), 7.19 (2H,
t, J = 7.9 Hz, H-5), 6.86 (2H, d, J = 7.7 Hz, H-6), 3.95 (6H, s, OMe), 3.29 (4H, dt, J = 6.7,
6.7 Hz, H2-11), 2.96–2.85 (8H, m, H2-13, H2-15), 1.87–1.80 (4H, m, H2-12), 1.56–1.53 (4H, m,
H2-16), 1.24 (12H, br s, H2-17, H2-18, H2-19); 13C NMR (DMSO-d6, 100 MHz) δ 181.7 (C-
8), 163.7 (C-9), 146.4 (C-7), 137.4 (C-2), 127.8 (C-3a), 126.1 (C-7a), 123.6 (C-5), 113.8 (C-4),
112.7 (C-3), 104.4 (C-6), 55.4 (OMe), 46.8 (C-15), 44.7 (C-13), 35.8 (C-11), 28.7, 28.5 (C-18,
C-19), 25.9, 25.7, 25.5 (C-12, C-16, C-17); (+)-HRESIMS [M+H]+ m/z 689.4010 (calcd for
C38H53N6O6, 689.4021).

3.2.26. N1,N6-Bis(3-(2-(7-methyl-1H-indol-3-yl)-2-oxoacetamido)propyl)hexane-1,6-
diaminium 2,2,2-trifluoroacetate (23a)

Using general procedure C, 2-(7-methyl-1H-indol-3-yl)-2-oxoacetic acid (16) (0.080 g,
0.39 mmol) was reacted with di-tert-butyl hexane-1,6-diylbis((3-aminopropyl) carbamate)
(9a) (0.083 g, 0.19 mmol), PyBOP (0.204 g, 0.39 mmol) and DIPEA (0.1 mL, 0.57 mmol).
Purification by column chromatography afforded di-tert-butyl hexane-1,6-diylbis((3-(2-(7-
methyl-1H-indol-3-yl)-2-oxoacetamido) propyl) carbamate) as a yellow oil (0.019 g, 13%).
Using general procedure B, a sub-sample of this product (0.010 g, 0.013 mmol) was reacted
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with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 23a as a brown gum (0.010 g,
97%). Rf (MeOH/10% HCl, 3:1) 0.34; IR (ATR) νmax 3316, 2944, 1668, 1449, 1115, 1022,
721 cm−1; 1H NMR (DMSO-d6, 400 MHz) δ 12.34 (2H, d, J = 2.9 Hz, NH-1), 8.89 (2H,
t, J = 6.1 Hz, NH-10), 8.73 (2H, d, J = 3.6 Hz, H-2), 8.45 (4H, br s, NH-14), 8.06 (2H, d,
J = 7.8 Hz, H-4), 7.16 (2H, t, J = 7.8 Hz, H-5), 7.07 (2H, d, J = 7.3 Hz, H-6), 3.30 (4H, dt, J = 6.5,
6.5 Hz, H2-11), 2.92–2.88 (8H, m, H2-13, H2-15), 2.51 (6H, s, Me), 1.88–1.80 (4H, m, H2-12),
1.56 (4H, m, H2-16), 1.31 (4H, br s, H2-17); 13C NMR (DMSO-d6, 100 MHz) δ 181.7 (C-
8), 163.8 (C-9), 138.0 (C-2), 135.7 (C-7a), 126.0 (C-3a), 124.1 (C-6), 122.8 (C-5), 121.9 (C-7),
118.8 (C-4), 112.5 (C-3), 46.7 (C-15), 44.7 (C-13), 35.8 (C-11), 25.7, 25.5, 25.4 (C-12, C-16, C-17),
16.6 (Me); (+)-HRESIMS [M+H]+ m/z 601.3486 (calcd for C34H45N6O4, 601.3497).

3.2.27. N1,N7-Bis(3-(2-(7-methyl-1H-indol-3-yl)-2-oxoacetamido)propyl)heptane-1,7-
diaminium 2,2,2-trifluoroacetate (23b)

Using general procedure C, 2-(7-methyl-1H-indol-3-yl)-2-oxoacetic acid (16) (0.070 g,
0.34 mmol) was reacted with di-tert-butyl heptane-1,7-diylbis((3-aminopropyl) carbamate)
(9b) (0.075 g, 0.17 mmol), PyBOP (0.178 g, 0.34 mmol) and DIPEA (0.09 mL, 0.52 mmol).
Purification by column afforded di-tert-butyl heptane-1,7-diylbis((3-(2-(7-methyl-1H-indol-
3-yl)-2-oxoacetamido) propyl) carbamate) as a yellow oil (0.066 g, 48%). Using general
procedure B, a sub-sample of this product (0.030 g, 0.036 mmol) was reacted with TFA
(0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 23b as a brown gum (0.022 g, 71%).
Rf (MeOH/10% HCl, 3:1) 0.34; IR (ATR) νmax 3326, 2944, 1678, 1449, 1114, 1022 cm−1;
1H NMR, (DMSO-d6, 400 MHz) δ 12.35 (2H, d, J = 2.8 Hz, NH-1), 8.89 (2H, t, J = 6.1 Hz,
NH-10), 8.73 (2H, d, J = 3.4 Hz, H-2), 8.46 (4H, br s, NH-14), 8.06 (2H, d, J = 7.9 Hz, H-4),
7.16 (2H, t, J = 7.5 Hz, H-5), 7.07 (2H, d, J = 7.1 Hz, H-6), 3.30 (4H, dt, J = 6.5, 6.5 Hz, H2-11),
2.97–2.85 (8H, br m, H2-13, H2-15), 2.51 (6H, s, Me), 1.88–1.81 (4H, m, H2-12), 1.56 (4H, br s,
H2-16), 1.28 (6H, br s, H2-17, H2-18); 13C NMR (DMSO-d6, 100 MHz) δ 181.7 (C-8), 163.8 (C-
9), 138.1 (C-2), 135.7 (C-7a), 126.0 (C-3a), 124.1 (C-6), 122.8 (C-5), 121.9 (C-7), 118.8 (C-4),
112.4 (C-3), 46.7 (C-15), 44.7 (C-13), 35.8 (C-11), 28.0 (C-18), 25.8, 25.7, 25.4 (C-12, C-16, C-17),
16.6 (Me); (+)-HRESIMS [M+H]+ m/z 615.3644 (calcd for C35H47N6O4, 615.3653).

3.2.28. N1,N8-Bis(3-(2-(7-methyl-1H-indol-3-yl)-2-oxoacetamido)propyl)octane-1,8-
diaminium 2,2,2-trifluoroacetate (23c)

Using general procedure C, 2-(7-methyl-1H-indol-3-yl)-2-oxoacetic acid (16) (0.070 g,
3.4 mmol) was reacted with di-tert-butyl octane-1,8-diylbis((3-aminopropyl)carbamate)
(9c) (0.077 g, 0.17 mmol), PyBOP (0.178 g, 0.34 mmol) and DIPEA (0.09 mL, 0.52 mmol).
Purification by column chromatography afforded di-tert-butyl octane-1,8-diylbis((3-(2-(7-
methyl-1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as a yellow oil (0.102 g, 73%).
Using general procedure B, a sub-sample of this product (0.080 g, 0.097 mmol) was reacted
with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 23c as a yellow oil (0.036 g,
44%). Rf (MeOH/10% HCl, 3:1) 0.34; IR (ATR) νmax 3325, 2944, 1678, 1448, 1116, 1021 cm−1;
1H NMR (DMSO-d6, 400 MHz) δ 12.35 (2H, d, J = 2.5 Hz, NH-1), 8.89 (2H, t, J = 6.0 Hz,
NH-10), 8.74 (2H, d, J = 3.3 Hz, H-2), 8.47 (4H, br s, NH-14), 8.06 (2H, d, J = 7.8 Hz, H-4),
7.16 (2H, t, J = 7.5 Hz, H-5), 7.07 (2H, d, J = 7.1 Hz, H-6), 3.30 (4H, dt, J = 6.5, 6.5 Hz, H2-11),
2.98–2.85 (8H, br m, H2-13, H2-15), 2.51 (6H, s, Me), 1.88–1.81 (4H, m, H2-12), 1.56 (4H, br s,
H2-16), 1.26 (8H, br s, H2-17, H2-18); 13C NMR (DMSO-d6, 100 MHz) δ 181.7 (C-8), 163.8 (C-
9), 138.1 (C-2), 135.7 (C-7a), 126.1 (C-3a), 124.1 (C-6), 122.8 (C-5), 121.9 (C-7), 118.8 (C-4),
112.5 (C-3), 46.8 (C-15), 44.7 (C-13), 35.8 (C-11), 28.3 (C-18), 25.8, 25.7, 25.5 (C-12, C-16, C-17),
16.6 (Me); (+)-HRESIMS [M+H]+ m/z 629.3812 (calcd for C36H49N6O4, 629.3810).

3.2.29. N1,N10-Bis(3-(2-(7-methyl-1H-indol-3-yl)-2-oxoacetamido)propyl)decane-1,10-
diaminium 2,2,2-trifluoroacetate (23d)

Using general procedure C, 2-(7-methyl-1H-indol-3-yl)-2-oxoacetic acid (16) (0.070 g,
3.4 mmol) was reacted with di-tert-butyl decane-1,10-diylbis((3-aminopropyl) carbamate)
(9d) (0.081 g, 0.17 mmol), PyBOP (0.179 g, 0.34 mmol) and DIPEA (0.09 mL, 0.52 mmol).
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Purification by column chromatography afforded di-tert-butyl decane-1,10-diylbis((3-(2-(7-
methyl-1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as a white solid (0.080 g, 55%).
Using general procedure B, a sub-sample of this product (0.030 g, 0.035 mmol) was reacted
with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 23d as a brown oil (0.029 g,
94%). Rf (MeOH/10% HCl, 3:1) 0.26; IR (ATR) νmax 3312, 2944, 1678, 1449, 1117, 1021 cm−1;
1H NMR (DMSO-d6, 400 MHz) δ 12.35 (2H, d, J = 3.0 Hz, NH-1), 8.90 (2H, t, J = 6.1 Hz,
NH-10), 8.73 (2H, d, J = 3.5 Hz, H-2), 8.44 (4H, br s, NH-14), 8.06 (2H, d, J = 7.8 Hz, H-4),
7.16 (2H, t, J = 7.5 Hz, H-5), 7.07 (2H, d, J = 7.2 Hz, H-6), 3.29 (4H, dt, J = 6.5, 6.5 Hz, H2-11),
2.97–2.85 (8H, m, H2-13, H2-15), 2.51 (6H, s, Me), 1.87–1.81 (4H, m, H2-12), 1.56–1.50 (4H, br
m, H2-16), 1.24 (12H, br s, H2-17, H2-18, H2-19); 13C NMR (DMSO-d6, 100 MHz) δ 181.7 (C-
8), 163.8 (C-9), 138.1 (C-2), 135.7 (C-7a), 126.1 (C-3a), 124.2 (C-6), 122.9 (C-5), 122.0 (C-7),
118.9 (C-4), 112.5 (C-3), 46.8 (C-15), 44.7 (C-13), 35.8 (C-11), 28.8, 28.5 (C-18, C-19), 26.0,
25.7, 25.5 (C-12, C-16, C-17), 16.6 (Me), (+)-HRESIMS [M+H]+ m/z 657.4130 (calcd for
C38H53N6O4, 657.4123).

3.2.30. N1,N12-Bis(3-(2-(7-methyl-1H-indol-3-yl)-2-oxoacetamido)propyl)dodecane-1,12-
diaminium 2,2,2-trifluoroacetate (23e)

Using general procedure C, 2-(7-methyl-1H-indol-3-yl)-2-oxoacetic acid (16) (0.070 g,
0.34 mmol) was reacted with di-tert-butyl octane-1,8-diylbis((3-aminopropyl)carbamate)
(9e) (0.086 g, 0.17 mmol), PyBOP (0.179 g, 0.34 mmol) and DIPEA (0.09 mL, 0.52 mmol).
Purification by column chromatography afforded di-tert-butyl dodecane-1,12-diylbis((3-(2-
(7-methyl-1H-indol-3-yl)-2-oxoacetamido)propyl)carbamate) as a yellow oil (0.145 g, 97%).
Using general procedure B, a sub-sample of this product (0.084 g, 0.095 mmol) was reacted
with TFA (0.2 mL) in CH2Cl2 (2 mL) to afford the di-TFA salt 23e as a brown oil (0.057 g,
66%). Rf (MeOH/10% HCl, 3:1) 0.23; IR (ATR) νmax 3325, 2944, 1676, 1448, 1114, 1020 cm−1;
1H NMR (DMSO-d6, 400 MHz) δ 12.39 (2H, d, J = 2.7 Hz, NH-1), 8.90 (2H, t, J = 6.0 Hz,
NH-10), 8.74 (2H, d, J = 3.2 Hz, H-2), 8.51 (4H, br s, NH-14), 8.07 (2H, d, J = 7.8 Hz, H-4),
7.16 (2H, t, J = 7.4 Hz, H-5), 7.07 (2H, d, J = 7.6 Hz, H-6), 3.30 (4H, dt, J = 6.5, 6.5 Hz,
H2-11), 2.98–2.85 (8H, m, H2-13, H2-15), 2.51 (6H, s, Me), 1.85 (4H, tt, J = 6.5, 6.5 Hz, H2-12),
1.55 (4H, br m, H2-16), 1.22 (16H, br s, H2-17, H2-18, H2-19, H2-20); 13C NMR (DMSO-d6,
100 MHz) δ 181.7 (C-8), 163.8 (C-9), 138.1 (C-2), 135.7 (C-7a), 126.1 (C-3a), 124.1 (C-6),
122.8 (C-5), 122.0 (C-7), 118.8 (C-4), 112.5 (C-3), 46.8 (C-15), 44.7 (C-13), 35.8 (C-11), 29.0,
28.9, 28.6 (C-18, C-19, C-20), 25.9, 25.7, 25.5 (C-12, C-16, C-17), 16.6 (Me); (+)-HRESIMS
[M+H]+ m/z 685.4421 (calcd for C40H57N6O4, 685.4436).

3.3. Antimicrobial Assays

The susceptibility of bacterial strains S. aureus (ATCC 25923), E. coli (ATCC 25922)
and P. aeruginosa (ATCC 27853) to antibiotics and compounds was determined according
to previously reported protocols [17]. Additional antimicrobial evaluation against MRSA
(ATCC 43300) and C. albicans (ATCC 90028) was undertaken at the Community for Open
Antimicrobial Drug Discovery at The University of Queensland (Australia) according to
their standard protocols as reported previously [17,26].

3.4. Determination of the MICs of Antibiotics in the Presence of Synergizing Compounds

Antibiotic enhancing activities were determined according to previously reported
protocols [14,17].

3.5. Cytotoxicity Assays

Cytotoxicity assays were conducted according to previously reported protocols [17,26].

3.6. Hemolytic Assay

Hemolysis assays were conducted according to previously reported protocols [17,26].
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4. Conclusions

Our original screening for antimicrobial and antibiotic enhancing compounds from a
library of marine natural products and their synthetic analogues identified a 6-bromoindolg-
lyoxylamido-spermine conjugate as an active lead compound. Due to associated cytotoxic-
ity and hemolytic properties, further efforts to explore the structure–activity relationship
have investigated variation of substitution on the indole ring, and changes in the chain
length of the polyamine fragment. While many analogues that were active as Gram-positive
antibacterials were also associated with variable levels of cytotoxicity and/or hemolytic
properties, the current study has identified two 7-methyl substituted analogues (23b and
23c) with excellent anti-MRSA activity that are non-cytotoxic and non-hemolytic. This
result defines a very narrow range of structural features required for optimal antibacterial
properties. From the same set of analogues, only one example (19a), a 5-methoxy-PA3-6-3
conjugate, was non-toxic while also exhibiting strong tetracycline antibiotic enhancing
activity towards P. aeruginosa. Further studies will be required to refine the mechanism of
antibiotic enhancement.
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