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Abstract: The development of 18F-fluorotetrazines, suitable for the radiolabeling of biologics such
as proteins and antibodies by IEDDA ligation, represents a major challenge, especially for pre-
targeting applications. The hydrophilicity of the tetrazine has clearly become a crucial parameter
for the performance of in vivo chemistry. In this study, we present the design, the synthesis, the
radiosynthesis, the physicochemical characterization, the in vitro and in vivo stability, as well as
the pharmacokinetics and the biodistribution determined by PET imaging in healthy animals of an
original hydrophilic 18F-fluorosulfotetrazine. This tetrazine was prepared and radiolabelled with
fluorine-18 according to a three-step procedure, starting from propargylic butanesultone as the pre-
cursor. The propargylic sultone was converted into the corresponding propargylic fluorosulfonate by
a ring-opening reaction with 18/19F-fluoride. Propargylic 18/19F-fluorosulfonate was then subject to a
CuACC reaction with an azidotetrazine, followed by oxidation. The overall automated radiosynthesis
afforded the 18F-fluorosulfotetrazine in 29–35% DCY, within 90–95 min. The experimental LogP
and LogD7.4 values of −1.27 ± 0.02 and −1.70 ± 0.02, respectively, confirmed the hydrophilicity
of the 18F-fluorosulfotetrazine. In vitro and in vivo studies displayed a total stability of the 18F-
fluorosulfotetrazine without any traces of metabolization, the absence of non-specific retention in all
organs, and the appropriate pharmacokinetics for pre-targeting applications.

Keywords: tetrazine; fluorine-18; PET imaging; hydrophilicity; bioconjugation; pre-targeting; sultone;
sulfonic acid salt

1. Introduction

1,2,4,5-Tetrazines have found applications in many fields, especially in the biocon-
jugation and radiolabeling of bio-active vectors for imaging and therapy [1–7]. They are
essential reagents for bioorthogonal approaches via the inverse electron demand Diels–
Alder (IEDDA) reaction with a dienophile, such as trans-cyclooctene (TCO). The IEDDA
reaction, which leads to inert dinitrogen as the sole by-product, has the advantage of having
fast kinetics (102–106 M-1s-1) and biocompatibility, making this reaction suitable for the
functionalization of biologics. It has become the method of choice for the development of
imaging and theranostic agents that are based on proteins and antibodies. The IEDDA reac-
tion also represents one of the most popular reactions for pre-targeting strategies, allowing
for the use of short-half-life radioisotopes such as fluorine-18 (t1/2 = 109.8 min) for the
in vivo radiolabelling of antibodies with long pharmacokinetics [6]. Fluorine-18 is very at-
tractive due to its ideal physical properties for imaging (Eγ

+ = 0.63 MeV, γ+ range in a tissue
< 2.4 mm). Thus, numerous 18F-tetrazines, obtained by aliphatic or (hetero)aromatic ra-
diofluorination, or by fluorine-heteroatome (Al, B, S, Si) bond formation, have been reported
in recent years [8–22]. However, the success of pre-targeting strategies is still limited. One of
the main reasons for this is the in vivo behavior of the 18F-terazines, including non-specific
retention and radiometabolization. Lastly, Herth and co-workers clearly demonstrated that
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hydrophilicity was a crucial parameter for the performance of the 18F-tetrazines in in vivo
chemistry [11]. For two tetrazines that displayed the same rate constant in the reaction with
TCO, the best results in pre-targeting were obtained with the most hydrophilic tetrazine.
Currently, the hydrophilicity of 18F-tetrazines, evaluated using in silico calculation of the
partition coefficient at physiological pH (clogD7.4), was brought by PEG chains [11,17],
sugars moieties [9,10], or iminodiacetic acid groups [13,14,16]. Another well-established
strategy to enhance the hydrophilic character of organic molecules is to introduce a sul-
fonic acid function [23]. We previously reported that 18F-fluorosulfonic acid salts were
easily obtained by the direct radiofluorination of sultone precursors (Figure 1A) [24]. This
ring-opening reaction approach has the advantage of smooth reaction conditions and ease
of separation of the polar hydrophilic 18F-sulfonic product from the apolar hydrophobic
sultone precursor. Consequently, based on this sultone radiofluorination methodology, we
designed the [18F]fluorosulfotetrazines I as a new class of IEDDA partners (Figure 1B). This
class of tetrazines also contains a triazole ring that is known to be stable in vivo, and facili-
tates aqueous solubility [25]. In this study, we report the synthesis and radiosynthesis of
the lead fluorosulfotetrazine 1 for proof-of-concept, as well as its characterization including
hydrophilicity, in vitro and in vivo stability, and pharmacokinetics via PET imaging.
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azidotetrazine 7 as key intermediates (Scheme 1). Propargylic butanesultone 3 was 
obtained with a 40% yield by the alkylation of commercially available butanesultone 2 
with propargyl bromide, after deprotonation with nBuLi in THF at −78 °C. Fluorination 
of propargyl butanesultone 3 was carried out with cesium fluoride in acetonitrile at 120 
°C for 30 min in the presence of Kryptofix-222® (K222). The resulting fluorosulfonate 4 was 
obtained in a quantitative yield. In parallel, 4-(bromomethyl)benzonitrile 5 was treated 
with sodium azide and potassium iodide in acetone at room temperature for 24 h to afford 
4-(azidomethyl)benzonitrile 6, at a 97% yield. The azidobenzonitrile 6 underwent a 
modified Pinner reaction with acetonitrile and hydrazine hydrate in the presence of 3-
mercaptopropionic acid in ethanol at 40 °C for 24 h [26]. After oxidation with sodium 
nitrite and formic acid in a water/ethanol mixture, the azidotetrazine 7 was isolated with 
a 48% yield. Azidotetrazine 7 and propargylic butanesultone 3 were subject to a CuAAC 
reaction in the presence of Cu(OAc)2 and sodium ascorbate (Na L-Asc) in acetone at 60 °C 
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Figure 1. Objective of the study, with (A) the radiofluorination strategy by sultone ring opening, and
(B) the general chemical structure of the hydrophilic target [18F]fluorosulfotetrazines I, and the lead
compound 1.

2. Results and Discussion
2.1. Synthesis of the Fluorosulfotetrazine 1

The synthesis of the fluorosulfotetrazine 1 was designed in a convergent manner
to link the sultone ring (labeling precursor) or the fluorosulfochain (final pattern) to the
tetrazine moiety, while creating the triazole ring via a CuAAC reaction [11]. According
to this strategy, the retrosynthetic approach rapidly led to propargylic butanesultone 3
and azidotetrazine 7 as key intermediates (Scheme 1). Propargylic butanesultone 3 was
obtained with a 40% yield by the alkylation of commercially available butanesultone 2
with propargyl bromide, after deprotonation with nBuLi in THF at −78 ◦C. Fluorination of
propargyl butanesultone 3 was carried out with cesium fluoride in acetonitrile at 120 ◦C
for 30 min in the presence of Kryptofix-222® (K222). The resulting fluorosulfonate 4 was
obtained in a quantitative yield. In parallel, 4-(bromomethyl)benzonitrile 5 was treated
with sodium azide and potassium iodide in acetone at room temperature for 24 h to
afford 4-(azidomethyl)benzonitrile 6, at a 97% yield. The azidobenzonitrile 6 underwent
a modified Pinner reaction with acetonitrile and hydrazine hydrate in the presence of
3-mercaptopropionic acid in ethanol at 40 ◦C for 24 h [26]. After oxidation with sodium
nitrite and formic acid in a water/ethanol mixture, the azidotetrazine 7 was isolated with
a 48% yield. Azidotetrazine 7 and propargylic butanesultone 3 were subject to a CuAAC
reaction in the presence of Cu(OAc)2 and sodium ascorbate (Na L-Asc) in acetone at 60 ◦C
for 2 h, resulting in tetrazinesultone 8 at a 49% yield. All of the attempts to convert 8
to fluorosulfotetrazine 1 by direct fluorination failed. Fluorosulfotetrazine 1 was finally
obtained with a 92% yield according to a two-step sequence by the CuAAC reaction
between azidotetrazine 7 and propargylic fluorosulfonate 4 at 60 ◦C for 30 min, followed
by oxidation with sodium nitrite and acetic acid at 20 ◦C for 5 min.
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Scheme 1. Synthesis of tetrazinesultone 8 and fluorosulfotetrazine 1.

2.2. IEDDA Reaction of the Fluorosulfotetrazine 1 with TCO Reagent 9

The reactivity of the fluorosulfotetrazine 1 was checked in a model bioorthogonal
IEDDA reaction with TCO reagent 9 (Scheme 2). The reaction was carried out in PBS
containing 5% DMSO, and was found to be instantaneous at room temperature, as demon-
strated by the discoloration of the reaction mixture when both reagents were added. LC–MS
analysis confirmed that the tetrazine 1 was immediately consumed in presence of TCO
reagent 9, resulting in a reaction conversion of over 95%, and the identification of pyridazine
adduct 10 (see Supplementary Materials for LC–MS spectrum). Although the rate constants
for the IEDDA reactions with methyltetrazines such as 1 were not the highest compared to
those for reactions with the pyridino or hydrogeno analogues [11], the reactivity of tetrazine
1 toward TCO remained highly notable.
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2.3. Development of the Radiosynthesis of [18F]Fluorosulfotetrazine [18F]1

The radiosynthesis of [18F]1 was first performed manually, using a low amount of
starting radioactivity (<185 MBq, 5 mCi). The most attractive strategy to obtain [18F]1 was
the one-step approach via radiofluorination of the tetrazinesultone 8 (Scheme 3A). We
initially attempted to convert the tetrazinesultone 8 into [18F]fluorosulfotetrazine [18F]1
under standard conditions using the K18F/K222/K2CO3 complex in ACN, DMF, or DMSO.
However, despite our efforts to adapt the amount of K2CO3 (0.5–10 mg), K222 (10–25 mg),
temperature (50–130 ◦C), and reaction time (10–30 min), the radiochemical yields remained
below 5%. The replacement of K18F by Cs18F or TBA18F did not improve the conversions.
The optimum radiochemical yields reached only 7%, using the “non-basic” [18F]fluoride
purification method with potassium triflate (10 mg) and K2CO3 (0.5 mg) [12]. These results
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were in accordance with the well-admitted difficulty of aliphatic radiofluorination from
tetrazine substates [13]. Therefore, we decided to adopt a multistep strategy, starting
with the radiofluorination of propargylic sultone 3 (Scheme 3B). The radiofluorination of
propargylsultone 3 was carried out with K18F/K222/K2CO3 in acetonitrile at 110 ◦C for
15 min, in 90–96% conversion (n = 8, see Supplementary Materials for TLC and HPLC
characterizations). The resulting propargylic [18F]fluorosulfonate [18F]4 was isolated by
SPE using a Sep-Pak® Light QMA, and recovered in acetone at >95%. After elimination of
the solvent by distillation under a nitrogen flow, the [18F]4 was treated with azidotetrazine
7, Cu(OAc)2 and Na L-Asc in a 7:3 acetone/water mixture at 60 ◦C for 30 min, then with
NaNO2 and formic acid at 20 ◦C for 5 min. [18F]Fluorosulfotetrazine [18F]1 was obtained
from the propargylic [18F]fluorosulfonate [18F]4 at a 87–95% conversion rate (n = 8).
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2.4. Automated Radiosynthesis of [18F]Fluorosulfotetrazine [18F]1

The overall multistep radiosynthesis of [18F]1 was transposed on the GE TRACERlab
FX NPro module. The reaction conditions (masses of precursors and reagents, solvents,
reaction times, and temperatures) used in the manual process were globally retained,
but adaptations for intermediate purification were required (Figure 2). [18F]Fluoride was
recovered from the cyclotron, trapped on an anion exchange resin QMA cartridge ( 1 ) and
eluted to reactor 1 using a solution of K2CO3 and K222 in acetonitrile and water ( 2 ). The K
[18F]F/K222/K2CO3 complex formed was dried by azeotropic distillation before addition of
the sultone precursor 3 in acetonitrile ( 3 ). Radiofluorination was carried out at 105 ◦C for
15 min, and then acetonitrile was removed under reduced pressure and replaced by acetone
( 4 and 6 ). The resulting propargylic [18F]fluorosulfonate [18F]4 in acetone was passed
onto a Sep-Pak® Light QMA ( 5 ). The eluate containing [18F]4 was recovered in reactor 2
and concentrated under reduced pressure, in order to recover about 350 µL of solution. In
parallel, Na L-Asc solution ( 7 ) was added to the aqueous copper acetate solution ( 8 ). The
resulting mixture was stirred with a helium flow for 20 s, then introduced into the reactor 2.
The azidotetrazine 7 in acetone ( 9 ) was then transferred into reactor 2, and the CuAAC
reaction was performed at 60 ◦C for 25 min. The CuAAC reaction was followed by the
oxidation step at 25–30 ◦C for 5 min, after subsequent addition of sodium nitrite in water
( 10 ) and formic acid ( 11 ). The resulting final mixture was transferred into the large volume
vial ( 13 ) for dilution through the addition of water ( 12 ). The dilute crude mixture was
passed through a pre-conditioned Sep-Pak® tC18 Plus Long Environmental ( 14 ). After
washing with water ( 15 ), the product was eluted with EtOH ( 16 ), and the ethanolic fraction
was diluted in phosphate buffer ( 17 ) before injection into a semi-preparative reverse phase
HPLC for purification. Both UV and γ detection were monitored, and a 72/28 mixture of
phosphate buffer (pH 2.1)/ethanol was used as the eluent. [18F]1 was collected into the
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HPLC flask containing physiological serum and sodium bicarbonate ( 18 ), in order to obtain
a pH range of 6.8–7.1 and a maximum 9–9.5% ethanol concentration. Finally, [18F]1 was
directly obtained in the formulation solution ready for injection. The overall process led to
[18F]fluorosulfotetrazine [18F]1 at a 29–35% (n = 8) decay-corrected yield within 90–95 min.
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2.5. Quality Control

A quality control was carried out using analytical HPLC, with both UV and γ detection,
to confirm the identity of the radiotracer, to determine chemical and radiochemical purities,
and to calculate the molar activity (Figure 3A). The identity of the radiotracer [18F]1 was
unambiguously confirmed, due to the same retention times of the radioactive peak of
[18F]1 and the UV peak of the non-radioactive tetrazine 1. [18F]1 was obtained with
chemical and radiochemical purities of >91% and >99%, respectively, and a molar activity of
165 ± 25 MBq/µmol (4.4 ± 0.6 mCi/µmol). The radioTLC analysis of [18F]1 also revealed
a single peak, confirming the high radiochemical purity of [18F]1 (Figure 3B).
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The hydrophilicity of [18F]1 was evaluated through LogP and LogD7.4 measurements,
using a standard shake flask protocol. The LogP and LogD7.4 values for [18F]1 were
−1.27 ± 0.02 and −1.70 ± 0.02 (n = 6), respectively, demonstrating a high hydrophilicity as
expected.

2.7. In Vitro Stability Studies

The stability of [18F]1 was determined via analytical radioHPLC for up to 9 h. [18F]1
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2.8. In Vivo Biodistribution Using PET/MR in Mice

The formulated [18F]1 was administered intravenously to male SWISS mice, and
dynamic PET acquisition was performed over 60 min. Figure 5 shows fast perfusion in
blood circulation over 2 min, and fast elimination of [18F]1 with only 32% of radioactivity
(decay corrected) remaining at 60 min. Five minutes post-injection, a high kidney uptake
was observed, which reached a plateau after 10–20 min, and drastically decreased from
30 to 60 min. To a lesser extent, an elevated liver uptake was also visible at 5 min, which
decreased steadily throughout the 60 min dynamic image acquisition. The time-activity
curves indicated that [18F]1 was eliminated quickly, mainly through both urinary and biliary
routes (29% and 39%, respectively, at 60 min). The elimination route of [18F]1 via the renal
pathway confirmed its hydrophilic character. However, accumulation in the liver suggests
that structural modifications to increase its hydrophilicity may be necessary, in order to
obtain better contrast in the abdominal region. Figure 5 does not display any non-specific
retention of the radiotracer in the main organs and tissues (i.e., lung, heart, spleen, muscle,
skin, and fat), with SUV values below 0.2 from 10 to 60 min. No brain penetration of [18F]1
was detected in accordance with the hydrophilic properties of [18F]1. No accumulation of
radioactivity was observed in bones, precluding the radiodefluorination of [18F]1.
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2.9. Radiometabolite Analysis of Mouse Plasma Samples

The in vivo stability of [18F]1 was further examined using radioTLC and radioHPLC
analyses of mouse plasma samples collected at 30 min post-injection. As shown in Figure 6,
the parent radioactive tetrazine [18F]1 was the only radioactive compound detected with a
retention time on the HPLC (tR~10.4 min) and a retention factor on the TLC (Rf = 0.36–0.43)
that were similar to those obtained for the quality control. No obvious radiometabolite peak
emerged, suggesting that [18F]1 has excellent in vivo stability within 30 min post-injection.
This finding corroborates the absence of in vivo radiodefluorination checked with PET
imaging, and it points out that no radiometabolite interfered with [18F]1 in the pre-targeting
experiments.
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3. Materials and Methods
3.1. Chemical Syntheses
3.1.1. General

All of the commercial reagents were used without further purification. The solvents
were dried with appropriate desiccants and distilled prior to use, or were obtained in
anhydrous form from commercial suppliers. Silica gel (60, 230–400 mesh or 70–230 mesh
from Merck) was used for column chromatography. Celite® 545 was purchased from
Sigma-Aldrich. The reactions were monitored using thin layer chromatography on silica
gel pre-coated aluminum plates. UV light at 254 nm or KMnO4 stains were used to
visualize the TLC plates. 1H, 13C, and 19F NMR spectra were recorded using a Bruker
Avance spectrometer instrument operating at 500, 126, and 471 MHz, respectively. The
abbreviations used for peak multiplicities are as follows: s: singlet, d: doublet, t: triplet, q:
quadruplet, dd = doublet of doublet, br = broad, and m: multiplet. The coupling constants
J are in Hz, and chemical shifts are given in ppm and calibrated with CDCl3 or CD3OD
(residual solvent signals). 19F NMR chemical shifts (δ) were determined relative to CFCl3
as an internal standard (19F, δ = 0.0 ppm). The LC–MS analyses were performed on a
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Waters Acquity UPLC H-ClassXevo G2-XS Q-TOF. High resolution mass spectra (HRMS)
were recorded using a Waters Q-TOF microspectrometer using electrospray ionization
(ESI). Pre-conditioned ABX Sep-Pak® Light QMA cartridges were used as received. Waters
Sep-Pak® tC18 Plus Long Environmental cartridges were used after pre-conditioning with
EtOH (10 mL) and water (20 mL).

3.1.2. 3-(Prop-2-yn-1-yl)-1,2-oxathiane 2,2-dioxide 3

1,4-Butanesultone 2 (2 mL, 21.2 mmol) was placed in anhydrous and degassed THF
(8 mL) in a three-neck round-bottom flask and under inert atmosphere. The resulting
solution was cooled to −78 ◦C. Then, n-Butyllithium (11 M in hexane, 3 mL, 33.0 mmol)
was added dropwise at −78 ◦C for 30 min. In parallel, 3-bromopropyne (2 mL, 80% in
toluene, 21.5 mmol) was added dropwise for 30 min, and then the mixture was stirred for
20 min at −78 ◦C. The reaction was quenched by the addition of a mixture of H2O/AcOEt
(60 mL, v:v 1/1) at −78 ◦C. After extraction with AcOEt (3 × 10 mL), the organic phase
was washed with water (2 × 10 mL), dried over MgSO4, filtered, and concentrated under
reduced pressure. The residue was purified through silica flash chromatography, using
n-pentane/Et2O (70/30) as an eluent to obtain product 3 as a white powder (1.48 g, 40%). Rf:
0.38 (n-pentane/AcOEt 3/2); Mp: 58–60 ◦C (after sublimation); 1H NMR (500 MHz, CDCl3):
δ 4.59–4.45 (m, 2H), 3.28–3.19 (m, 1H), 3.03–2.93 (m, 1H), 2.59–2.53 (m, 1H), 2.53–2.46 (m,
1H), 2.13–2.10 (m, 1H), 2.10–2.01 (m, 1H), 1.95–1.87 (m, 2H); 13C NMR (126 MHz, CDCl3): δ
78.1, 74.2, 74.2, 72.0, 57.6, 27.6, 23.6, 18.5; HRMS (ESI−): calculated for C7H9O3S: 173.0272
[M − H]−, found: 173.0253.

3.1.3. 7-(Fluoro)hept-1-yne-4-sulfonic Acid 4

A mixture of sultone 3 (5.0 mg, 28.5 µmol) and cesium fluoride (4.4 mg, 29.0 µmol) in
acetonitrile (1 mL) was refluxed for 6 h, then cooled to 20 ◦C. After concentration under
reduced pressure at 40 ◦C, the residue was solubilized in water (1 mL), and the resulting
solution was passed onto a Sep-Pak® Light QMA. After QMA elution with acetonitrile
(3 × 0.5 mL), the combined eluates were concentrated under reduced pressure at 40 ◦C to
afford title product 4 as a white powder (9.2 mg, 99%), which was used directly without
further purification. Rf: 0.95 (CH3CN/TFA 98/02); Mp: > 190 ◦C (decomposition); 1H
NMR (500 MHz, CD3OD): δ 4.50–4.28 (m, 2H), 2.88–2.70 (m, 2H), 2.45–2.34 (m, 1H), 2.32 (t,
J = 2.8 Hz, 1H), 2.00–1.87 (m, 4H); 13C NMR (126 MHz, CD3OD): δ 86.1, 83.5, 81.5, 71.0, 58.0,
25.9, 20.6; 19F NMR (471 MHz, CDCl3): δ–215.3; HRMS (ESI-): calculated for C7H10FO3S:
193.0335 [M − H]−, found: 193.0342.

3.1.4. 4-(Azidomethyl)benzonitrile 6

In a 50 mL round-bottom flask, 4-(bromomethyl)benzonitrile 5 (5.1 g, 26.2 mmol),
sodium azide (8.5 g, 130.6 mmol), and potassium iodide (2.1 g, 12.7 mmol) were stirred
in acetone (15 mL) at 27 ◦C for 15 h. After filtration, purification on silica using DCM as
the eluent afforded product 6 (4.0 g, 97%) as a light-yellow oil. Rf: 0.34 (n-pentane/DCM
80/20); 1H NMR (500 MHz, CDCl3): δ 7.65–7.52 (m, 2H), 7.38 (d, J = 8.1 Hz, 2H), 4.39 (s,
2H); 13C NMR (126 MHz, CDCl3): δ 140.6, 132.3, 128.3, 118.2, 111.6, 53.6; HRMS (ESI+):
calculated for C8H7N4: 159.0671 [M + H]+, found: 158.9929.

3.1.5. 3-(4-(Azidomethyl)phenyl)-6-methyl-1,2,4,5-tetrazine 7

In a 250 mL round-bottom flask, nitrile 6 (2.0 g, 12.7 mmol), 3-mercaptopropionic
acid (1 mL, 12.6 mmol), acetonitrile (9 mL, 179.6 mmol), hydrazine monohydrate (50%,
12 mL, 202.3 mmol), and ethanol (10 mL) were stirred at 45 ◦C for 24 h. After concentration
under reduced pressure at 40 ◦C, sodium nitrite (6.9 g, 98.7 mmol) in water (20 mL) was
added to the residue. Then, a solution of formic acid (10 mL, 265.0 mmol) in water (10 mL)
was carefully added dropwise over 10 min at −5 ◦C (leading to a pH of 4–5). The final
mixture was stirred at −5 ◦C for 5 min. After extraction with diethyl ether (3 × 10 mL), the
combined organic phases were washed with sodium thiosulfate (5%, 2 × 5 mL), dried over
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MgSO4, filtered off, and concentrated under reduced pressure at 40 ◦C. The residue was
purified with flash chromatography, using n-pentane/DCM (from 100/0 to 0/100) as the
eluent to yield tetrazine 7 as a red powder (1.1 g, 48%). Rf: 0.32 (n-pentane/DCM 30/70);
Mp: 108–110 ◦C; 1H NMR (500 MHz, CDCl3): δ 8.67–8.53 (m, 2H), 7.57–7.50 (m, 2H), 4.48
(s, 2H), 3.11 (s, 3H); 13C NMR (126 MHz, CDCl3): δ 167.5, 163.9, 140.2, 131.9, 129.0, 128.5,
54.5, 21.3; HRMS (ESI+): calculated for C10H10N7: 228.0998 [M + H]+, found: 228.0995.

3.1.6. 3-((1-(4-(6-Methyl-1,2,4,5-tetrazin-3-yl)benzyl)-1H-1,2,3-triazol-4-yl)methyl)-1,2-oxathiane
2,2-dioxide 8

In a 250 mL round-bottom flask under nitrogen, a mixture of tetrazine 7 (1.5 g,
6.5 mmol), sultone 3 (1.1 g, 6.5 mmol), copper (II) acetate (0.1 g, 0.6 mmol), and sodium
ascorbate (0.1 g, 0.7 mmol) in acetone (6 mL) was refluxed for 2 h; then, it was concentrated
under reduced pressure at 30 ◦C. The residue was diluted in AcOEt (10 mL), and the
resulting mixture was filtered through Celite® 545 (10 g). After washing the Celite with
AcOEt (5 × 20 mL), the combined eluates were concentrated under reduced pressure at
30 ◦C. The residue was purified with flash chromatography using n-pentane/AcOEt (from
50/01 to 0/100) as the eluent to yield tetrazine sultone 8 as a red powder (1.3 g, 49%). Rf:
0.33 (AcOEt); Mp: 130 ◦C; 1H NMR (500 MHz, CDCl3): δ 8.59–8.55 (m, 2H), 7.50 (s, 1H),
7.46–7.42 (m, 2H), 5.62 (s, 2H), 4.59–4.50 (m, 1H), 4.50–4.42 (m, 1H), 3.53–3.46 (m, 1H),
3.44–3.38 (m, 1H), 3.09 (s, 3H), 3.03 (dd, J = 15.2, 8.1 Hz, 1H), 2.32–2.25 (m, 1H), 2.07–1.95 (m,
1H), 1.95–1.81 (m, 2H); 13C NMR (126 MHz, CDCl3): δ 167.7, 163.7, 139.1, 132.4, 128.8, 128.8,
123.0, 122.8, 74.1, 59.2, 53.9, 28.7, 25.2, 24.0, 21.4; HRMS (ESI+): calculated for C17H20N7O3S:
402.1348 [M + H]+, found: 402.1345.

3.1.7. 5-(Fluoro)-1-(1-(4-(6-methyl-1,2,4,5-tetrazin-3-yl)benzyl)-1H-1,2,3-triazol-4-yl)pentane-
2-sulfonic Acid 1

In a 2 mL conical Reactivial® (from Thermo Fisher), a solution of sodium ascorbate
(30.5 mg, 0.1 mmol) in water (150 µL) was added to a solution of copper (II) acetate (8.5 mg,
46.5 µmol) in water (100 µL). The mixture was stirred under a continuous flow of nitrogen
for 1 min, and was then added to the vial containing sulfonate 4 (9.3 mg, 28.5 µmol). After
stirring for 1 min, a solution of tetrazine 8 (5.2 mg, 22.8 µmol) in acetone (0.7 mL) was
added under nitrogen flow. After refluxing for 30 min, a solution of sodium nitrite (30.0 mg,
0.4 mmol) in water (0.1 mL) was added dropwise over 5 min; then, formic acid (20 µL,
0.5 mmol) diluted in water (0.1 mL) was added dropwise over 5 min. The final mixture was
stirred at 0 ◦C for 5 min. Water (2 × 5 mL) was added, and the mixture was passed through
a pre-conditioned Sep-Pak® tC18 Plus Long Environmental. The Sep-Pak was washed
with water (10 mL) and dried. After elution with ethanol (5 mL) and then concentration
under reduced pressure at 40 ◦C of the ethanolic solution, the residue was purified by
semi-preparative HPLC [Phenomenex Gemini® C18, 5 µm, 250 × 10 mm, with phosphate
buffer solution at pH 2.1/EtOH 72/28, 4.0 mL/min, λ = 254 nm]. The fraction collected (tR =
28–29 min) was concentrated under reduced pressure at 20 ◦C, diluted in water, and passed
through a pre-conditioned Sep-Pak® tC18 Plus Long Environmental. After washing with
water (10 mL) and elution with ethanol (1 mL), the ethanolic solution was concentrated
under reduced pressure to yield fluorotetrazine 1 as a red powder (11.0 mg, 92%). Rf: 0.33
(CH3OH); Mp: > 190 ◦C (decomposition); 1H NMR (500 MHz, CDCl3): δ 8.60 (d, J = 8.0
Hz, 2H), 7.69 (s, 1H), 7.43 (d, J = 8.0 Hz, 2H), 5.60 (s, 2H), 4.44–4.24 (m, 2H), 3.44–3.36 (m,
1H), 3.13–3.01 (s, 3H), 3.01–2.92 (m, 2H), 2.49 (s, 1H), 2.05–1.82 (m, 2H), 1.76–1.64 (m, 2H);
13C NMR (126 MHz, CDCl3): δ 167.7, 163.7, 139.1, 132.4, 128.8, 128.8, 123.1, 122.8, 74.1, 59.2,
53.9, 28.7, 25.2, 24.0, 21.4; 19F NMR (471 MHz, CDCl3): −218.7; HRMS (ESI-): calculated for
C17H19FN7O3S: 420.1254 [M − H]−, found: 420.1256.

3.2. Automated Radiosynthesis of [18F]1
3.2.1. General

[18F]Fluoride was produced according to the 18O[p,n]18F nuclear reaction by irra-
diation of 18O-enriched water (97%, Eurisotop) with a IBA Cyclone® 18/9 cyclotron. A
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TRACERlab FX NPro synthesis module (GE Medical Systems) was used for the automated
radiosynthesis of [18F]1. The purification and isolation of [18F]1 were performed using
semi-preparative HPLC [Phenomenex Gemini® C18 column, 5 µm, 250 × 10 mm, with
phosphate buffer (pH 2.1)/EtOH (72/28) as the eluent, and a 3.3 mL/min flow rate, λ =
254 nm]. Analytical HPLC for quality control and stability studies was performed using a
Waters system [C18 Gemini column, 5 µm, 4.6 × 250 mm, 110 A; NH4OAc (10 mM)/ACN
(55/45) as the eluent; 1 mL/min flow-rate]. The radioTLC analyses were carried out using
Merck 60F254 silica gel deposited on a glass plate, with CH3CN/H2O containing 0.1% TFA
(98/02) as the eluent. RadioTLCs were measured on an Elysia Raytest Rita Star 2018203
plate reader. The identity of the radiolabeled compounds was determined via HPLC and
TLC analyses by comparison and co-elution with the non-radiolabeled analogue. Pre-
conditioned ABX Sep-Pak® Light QMA cartridges were used as received. Waters Sep-Pak®

tC18 Plus Long Environmental cartridges were used after pre-conditioning with EtOH
(10 mL) and water (20 mL).

3.2.2. 5-([18F]Fluoro)-1-(1-(4-(6-methyl-1,2,4,5-tetrazin-3-yl)benzyl)-1H-1,2,3-triazol-4-
yl)pentane-2-sulfonic Acid [18F]1

A cyclotron-produced solution of [18F]fluoride in 18O-enriched water was passed on a
pre-conditioned Sep-Pak® Light QMA. The [18F]fluoride was eluted with a solution of potas-
sium carbonate (0.5 mg) and Kryptofix K222 (10.5 mg) in water/acetonitrile (500 µL/1 mL).
The resulting [18F]KF/K2CO3/K222 solution was concentrated under reduced pressure
(0.04 kPa) at 65 ◦C for 6 min, then at 95 ◦C for 3 min. After cooling to 70 ◦C, a solution of
propargylic sultone 3 (5.0 mg) in CH3CN (1.6 mL) was added. The mixture was heated at
105 ◦C for 15 min, cooled to 50 ◦C, and concentrated under reduced pressure (0.04 kPa) for
4 min to yield crude propargylic [18F]fluorosulfonate [18F]4. Acetone (1.6 mL) was added
to the residue [18F]4, and the resulting mixture was passed onto a Sep-Pak® Light QMA.
The eluate containing [18F]4 was concentrated under reduced pressure (0.04 kPa) at 50 ◦C
for 4 min. A second addition of acetone (1.6 mL) into the radiofluorination reactor was
realized, and the resulting solution was passed onto a Sep-Pak® Light QMA. The eluate
was added to the previous pre-purified [18F]4 fraction and concentrated at 40 ◦C under
reduced pressure (0.04 kPa) for 30 s, in order to recover about 350 µL of solution. In parallel,
an aqueous sodium ascorbate solution (30.0 mg in 150 µL of H2O) was added to an aqueous
copper acetate solution (8.4 mg in 150 µL of H2O). The resulting mixture was bubbled with
helium flow for 20 s, then added to pre-purified [18F]4. After stirring for 20 s, sublimated
azidotetrazine 7 (5.2 mg) in acetone (350 µL) was added. The final mixture was heated at
60 ◦C for 25 min, and cooled to 30 ◦C. A solution of sodium nitrite (30.5 mg) in H2O (300 µL)
was introduced, and immediately after formic acid (100 µL). The mixture was stirred at
25–30 ◦C under helium for 5 min, then transferred into a large-volume vial for dilution.
Dilution was performed by the addition of water (2 × 5 mL). The resulting mixture was
passed onto a pre-conditioned Sep-Pak® tC18 Plus Long Environmental. After washing
with water (10 mL), the Sep-Pak® tC18 was eluted with EtOH (1.5 mL). The ethanolic solu-
tion was diluted in phosphate buffer (3.5 mL, pH 2.1), and injected into semi-preparative
reverse phase HPLC. The [18F]fluorosulfotetrazine [18F]1 was collected in a 72/28 mixture
of phosphate buffer pH 2.1/EtOH (5 mL) over 1.5 min, from about 18 to 19.5 min after
injection, then formulated by the addition of sodium bicarbonate in physiological serum
(Lavoisier NaHCO3, 1.4%, 0.8 mL,) and Baxter NaCl Viaflo (0.9%, 9.2 mL). Using the auto-
mated process, the [18F]fluorosulfotetrazine [18F]1 (86 mCi ≈ 3.2 GBq) was obtained in a
formulated solution ready for injection (15 mL total volume) at a 29–35% decay-corrected
yield after 90–95 min of total time synthesis, and a molar activity of about 165 MBq/µmol
(4.4 mCi/µmol), starting from about 18 GBq (485 mCi) of cyclotron-produced [18F]fluoride.
Analytical HPLC of aliquots of the formulated solution displayed >97% radiochemical
purity and >91% chemical purity.
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3.3. Radiochemical and Chemical Purities, and Molar Activity of [18F]1

Aliquots of the formulated solution of [18F]1 were used to establish the chemical
and radio-chemical purities, and molar activity. The determination was carried out using
analytical HPLC and radio-TLC.

3.4. LogP and LogD7.4 Calculations

Octanol (1 mL) and water or PBS buffer (1 mL) were placed in a hemolysis tube,
and mixed together for 20 min at room temperature before the addition of formulated
[18F]1 (4 µL, ≈0.185 MBq). Then, the tubes were vigorously shaken for 40 min. After
centrifugation (4024× g, 5 min), samples (3 × 100 µL) from each phase were collected, and
the radioactivity was measured in a γ-counter (Perkin wizard 2 gamma detector series
2470). The experiment was carried out twice in triplicate.

3.5. In Vitro Stability Studies

Aliquots of formulated [18F]1 (100 µL) were diluted, either in the formulation medium
or in PBS buffer, pH 7.4. The resulting mixtures were stirred at 37 ◦C. Analytical radioHPLC
analyses were performed every 3 h for 9 h.

3.6. Animal Studies
3.6.1. General Considerations

The animal investigations were performed under the current European directive
(2010/63/EU), as incorporated in national legislation and in authorized laboratories (GIP
Cyceron; E14118001). The experimental procedures were preliminarily approved from
the regional committee on animal ethics (approval #3247). Healthy male SWISS mice
were obtained from an in-house breeding stock at the “Centre Universitaire de Ressources
Biologiques” (CURB; A14118015). All of the animals were housed in groups of 2 or more,
with 12/12 h light-dark cycles, and with food and water ad libitum. The animals were main-
tained under isoflurane anesthesia throughout all procedures (induction 5%, maintenance
around 2.5%, with 70% N2O/30% O2), and their body temperatures were maintained close
to 37.5 ◦C using a feedback-controlled system (Minerve Veterinary Equipment, France)
during experimentation. A catheter was inserted into the tail vein without surgery (Insyte™
Autoguard™, BD Medical, USA) for intravenous administration. Euthanasia of the animals
was performed at the end of the protocol, using an isoflurane (5%) overdose.

3.6.2. PET Imaging Experiments

Imaging studies were performed on a Inveon µPET/CT scanner (Siemens Healthcare
Molecular Imaging). The respiratory rate was monitored during imaging sessions. List-
mode PET data were acquired for 60 min, and this was initiated as soon as the formulated
[18F]1 (~5.6 MBq/100 µL) was injected. The PET images were reconstructed using an
iterative OSEM3D/MAP algorithm. Dead-time, random, scatter, as well as attenuation
correction (based on CT) were applied. The image analysis was performed with P-Mod
3.7 software (P-MOD Technologies). Briefly, the PET and CT images were co-registered.
Volumes of interest (VOIs) were semi-automatically delimitated for the following organs:
bladder, bone, brain, heart, kidney, liver, lung, and muscle, if available. Time-activity curves
(TACs) were extracted from PET images, with the data expressed as standardized uptake
value (SUVMean). SUV refers to the ratio of tissue radioactivity concentration at time t and
administered dose at the time of [18F]1 injection, divided by body weight.

3.6.3. In Vivo Stability Studies

Blood (≈1 mL) was sampled using intra-cardiac puncture, 30 min post-injection
(29 MBq/100 µL); it was then heparinized and centrifuged (4024× g, 5 min, 4 ◦C). Plasma
was collected, mixed with one equivalent volume of acetonitrile, and centrifuged again
(4024× g, 10 min, 4 ◦C; >90% extraction yield). The supernatant was filtered through a
0.45 µm PVDF, and then injected into analytical HPLC.
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4. Conclusions

In this study, original fluorotetrazine 1, lead compound of a new class of tetrazines
bearing a sulfo group and a triazole ring, was designed, synthesized, and radiolabeled
with fluorine-18. Next, the in vivo behavior of the radioactive [18F]1 was examined. The
synthesis of 1 was accomplished efficiently using a CuAAC reaction between the novel
azidotetrazine 7 and fluoroheptynylsulfonic acid 4. The tetrazine 1 demonstrated high
reactivity towards the TCO reagent, rendering promising further extensions to the radio-
labelling of biologics. The optimized radiosynthesis of [18F]1 involved the ring opening
of propargylbutanesultone 2 with [18F]fluoride to afford [18F]fluoroheptynylsulfonic acid
[18F]4, which reacted with the azidotetrazine 7 via the CuAAC reaction to provide [18F]1
in acceptable radiochemical yields, with high chemical and radiochemical purities. As
expected, [18F]1 displayed hydrophilic properties, as shown by the LogP and LogD7.4
values, but also by the rapid and predominant renal and urinary excretion revealed by
in vivo PET imaging. We also observed a fast clearance of radioactivity from tissues, an
absence of non-specific uptake, and a high metabolic stability, making [18F]1 a suitable
bioorthogonal reagent. Its evaluation for peptides radiolabeling as well as for pre-targeting
applications is currently under investigation. This first fluorosulfotetrazine 1 also opens
the way to the development of original analogues, with both increased hydrophilicity and
reactivity in IEDDA reactions, in order to improve imaging. Chemical modifications of
1, such as the replacement of the methyl group by a pyridine substituent, are currently
underway.
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NMR spectrum of compound 7; Figure S13: MS and HRMS analysis of compound 7; Figure S14: 1H
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HRMS analysis of compound 8; Figure S17: 1H NMR spectrum of compound 1; Figure S18: 13C NMR
spectrum of compound 1; Figure S19: 19F NMR spectrum of compound 1; Figure S20: MS and HRMS
analysis of compound 1; Figure S21: MS analysis of compound 1; Figure S22: RadioTLC analysis of
crude compound [18F]4; Figure S23: HPLC analysis of crude compound [18F]4.
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