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Abstract: In recent years, agrochemical industries have been focused on the development of essential
oil (EO)-based biopesticides, which can be considered valuable alternatives to traditional chemical
products. The genus Mentha (Lamiaceae) comprises 30 species characterized by a wide range of
biological activities, and some of their EOs showed good potential as pesticidal agents. In this
regard, the aim of this study was to evaluate the insecticidal activity of the EO obtained from
a rare linalool/linalool acetate chemotype of Mentha aquatica L. The EO was found to be highly
effective against Culex quinquefasciatus (Say) 2nd instar larvae, Metopolophium dirhodum (Walker) adults,
Spodoptera littoralis (Boisduval) 2nd instar larvae, and Tetranychus urticae (Koch) adults, showing
lethal concentrations (LC50) or doses (LD50) of 31.5 ± 2.2 µL L−1, 4.9 ± 0.8 mL L−1, 18.5 ± 2.1 µg
larvae−1, and 3.3 ± 0.5 mL L−1, respectively. On the contrary, Musca domestica L. adults and 3rd
instar larvae of C. quinquefasciatus and S. littoralis were moderately affected by the treatment (LC50

or LD50: 71.4 ± 7.2 µg adult−1, 79.4 ± 5.2 µL L−1, 44.2 ± 5.8 µg larvae−1, respectively). The results
obtained in this work demonstrated that various insects and pests could be differently sensible to
the same EO and may lead to the exploitation of this plant or its major volatile compounds as novel
ingredients of botanical insecticides and pesticides.

Keywords: bio-insecticide; bio-pesticide; Culex quinquefasciatus; Metopolophium dirhodum; Spodoptera
littoralis; Tetranychus urticae; Musca domestica

1. Introduction

The genus Mentha belongs to the Lamiaceae family and comprises approximately
30 species distributed all over the world [1]. Plants of this genus have been widely used
for several purposes by the pharmaceutical, nutraceutical, food, beverage, and tobacco
industries [2]. They represent the most exploited sources for the extraction of essential oils
(EOs), which are produced at a rate of 23,000 metric tons every year for a value of $400
million [3].

In addition, several species of this genus have been proven as good sources for
botanical insecticide ingredients due to their capacity to produce EOs equipped with
contact toxicity, fumigant, and repellent effects against a wide spectrum of target insects,
such as storage pests, vectors, and larvae [4]. The most investigated species of this genus
are Mentha x piperita L., Mentha spicata L., and Mentha pulegium L.

Mentha aquatica L., also known as ‘water mint’, is a member of this genus growing
in wet environments of Europe, North Africa, and West Asia. Moreover, it has been
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recently introduced into America and Australia [5,6]. The ethnobotanical uses reported
for this plant have been mainly associated with its medicinal value, as M. aquatica is
currently employed as a remedy for colds, respiratory, and gastrointestinal problems.
Particularly, the gastrointestinal effect depends on the modulation of non-protein sulfhydryl
substances, nitric oxide, and gastric secretion [7]. In addition, the leaves of the plant
are smoked in South Africa to treat mental diseases [8], and the central nervous system
activity has been associated with a strong affinity to the GABA-benzodiazepine receptor [6].
Mentha aquatica also showed butyrylcholinesterase inhibitory activity and antioxidant,
antimicrobial, catalytic, and cytoprotective actions [2,9,10]. However, most of the available
studies on M. aquatica mainly focus on the chemical variability of its EO, which is in
turn related to its geographic origins and to the agronomic treatments applied when it is
cultivated as a crop. Currently, the reported chemotypes of M. aquatica are dominated by
menthofuran, pulegone, menthol, piperitone oxide, or linalool [3,11–15]. To the best of our
knowledge, the M. aquatica EO has been poorly explored for potential insecticidal effects
when compared with other representatives of the genus Mentha.

In recent decades, the exploitation of botanical products capable of replacing tradi-
tional chemical pesticides has exponentially increased [16–19]. Indeed, problems related to
food safety and environmental pollution have led to greater attention to sustainability, also
in the agrochemical sector [20,21]. Although pesticides are essential for crop protection
and, consequently, for food production, chemical residues can be toxic to other non-target
organisms and have a negative impact on various environmental media such as air, soil,
and water [22]. Therefore, replacing chemical substances with botanical products results in
a good compromise to guarantee the protection of crops without causing damage to the
environment, humans, or non-target species [23,24]. Among botanical products, EOs could
be potential candidates for the development of novel biopesticides and insecticides. In
previous studies, we showed that numerous EOs could display their insecticidal and pesti-
cidal potential towards different insect species depending on the synergistic or antagonistic
effect of their components that revealed suitable LC50 and LC90 values [25–27].

In this context, given the interest in Mentha species as sources of natural insecticides
and pesticides against different vectors and stored grain pests [4,28,29], we evaluated for the
first time the insecticidal and acaricidal potential of a linalool /linalool acetate-rich EO of
M. aquatica. In order to provide evidence of the wide spectrum of insecticidal efficacy of this
EO, we selected insect vectors transmitting diseases to humans and arthropods spreading
on several crops, causing significant economic losses globally. In detail, the M. aquatica
EO was tested on two species of public health relevance, i.e., Culex quinquefasciatus (Say)
(Diptera: Culicidae) and Musca domestica (L.) (Diptera: Muscidae), and three representatives
of important agricultural pests— Metopolophium dirhodum (Walker) (Hemiptera: Aphididae),
Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae), and Tetranychus urticae (Koch)
(Acari: Tetranychidae).

2. Results
2.1. EO Chemical Composition

Table 1 shows the results derived from gas chromatography-mass spectrometry (GC-
MS) analysis of M. aquatica EO, which was dominated by the presence of oxygenated
monoterpenes (86.9%), accompanied by minor percentages of monoterpene hydrocarbons
(6.2%), sesquiterpene hydrocarbons (3.2%), esters (1.0%), and oxygenated sesquiterpenes
(0.7%), which together accounted for 98.1% of the total composition. The main representa-
tives of the oxygenated monoterpenes, as well as main EO constituents, were linalool acetate
(34.9%) and linalool (26.8%), while minor components were α-terpinyl acetate (12.3%), 1,8-
cineole (6.7%), and α-terpineol (5.1%). Among monoterpene hydrocarbons, myrcene (2.0%),
limonene (0.9%), and (E)-β-ocimene (0.9%) were the most abundant, while germacrene
D (1.8%) and (E)-caryophyllene (1.3%) were the most representative compounds of the
sesquiterpene hydrocarbons.
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Table 1. Chemical composition of Mentha aquatica essential oil.

No Component a RI b RI Lit c Area % d

1 α-thujene 921 924 Tr
2 α-pinene 925 932 0.2 ± 0.0
3 sabinene 966 969 0.5 ± 0.1
4 β-pinene 968 974 0.6 ± 0.1
5 myrcene 989 988 2.0 ± 0.3
6 α-terpinene 1013 1014 0.1 ± 0.0
7 ρ-cymene 1022 1020 Tr e

8 limonene 1024 1024 0.9 ± 0.2
9 1,8-cineole 1025 1026 6.7 ± 1.0

10 (Z)-β-ocimene 1036 1032 0.7 ± 0.1
11 (E)-β-ocimene 1046 1044 0.9 ± 0.2
12 γ-terpinene 1054 1054 0.2 ± 0.0
13 cis-sabinene hydrate 1063 1065 Tr
14 terpinolene 1084 1086 0.2 ± 0.0
15 linalool 1100 1095 26.8 ± 2.5
16 isopentyl 2-methyl butanoate 1104 1100 0.4 ± 0.1
17 2-methyl butyl isovalerate 1109 1103 0.1 ± 0.0
18 1-octen-3-yl acetate 1114 1110 0.1 ± 0.0
19 3-octanol acetate 1126 1120 0.3 ± 0.1
20 δ-terpineol 1163 1162 Tr
21 terpinen-4-ol 1172 1174 0.2 ± 0.0
22 α-terpineol 1185 1186 5.1 ± 0.9
23 nerol 1227 1227 0.2 ± 0.0
24 linalool acetate 1256 1254 34.9 ± 3.1
25 α-terpinyl acetate 1345 1346 12.3 ± 1.9
26 neryl acetate 1365 1359 0.7 ± 0.1
27 β-bourbonene 1374 1387 Tr
28 (E)-caryophyllene 1412 1417 1.3 ± 0.3
29 α-humulene 1446 1452 Tr
30 (E)-β-farnesene 1455 1454 Tr
31 germacrene D 1470 1484 1.8 ± 0.3
32 hedycaryol 1542 1546 0.7 ± 0.1

Total identified (%) 98.1 ± 0.5
Grouped compounds (%)

Monoterpene hydrocarbons 6.2 ± 0.3
Oxygenated monoterpenes 86.9 ± 0.7

Sesquiterpene hydrocarbons 3.2 ± 0.2
Oxygenated sesquiterpenes 0.7 ± 0.1

Esters 1.0 ± 0.1
a Components were eluted from a HP-5MS column (30 m l. × 0.25 mm i.d., 0.1 µm f.t.). b Linear retention index
experimentally determined with respect to a mixture of C7-C30 n-alkanes (Sigma-Aldrich) according to Van den
Dool and Kratz formula (1963) [30]. c Retention index value taken from ADAMS or FFNSC3 libraries. d Peak area
relative percentages are the means of two independent injections ± SD. e Traces, % < 0.1.

2.2. Insecticidal and Acaricidal Efficacy

Regarding the insecticidal and acaricidal efficacy of M. aquatica EO, it was found to
cause relatively good acute toxicity to all the target species. The estimated lethal doses
(LD50) or concentrations (LC50) are shown in Table 2. The EO was more effective on younger
larval instars. For instance, the LC50 for C. quinquefasciatus was estimated at 31.5 µL L−1

for the 2nd instar and at 79.4 µL L−1 for the 3rd larval instar. The same trend was found
for 2nd and 3rd instar larvae of S. littoralis (LD50 = 18.5 and 44.2 µg larva−1, respectively).
Very good effectiveness of the EO was found for small pests, such as the adults of M.
dirhodum and T. urticae tested by us, for which the LC50 was estimated at 4.9 and 3.3 mL L−1,
respectively. Conversely, low efficacy was found for M. domestica adults (LD50 = 71.4 and
50.5 µg adult−1; LD90 = 329.8 and 462.6 µg adult−1, for females and males, respectively).
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Table 2. Insecticidal and acaricidal activity of Mentha aquatica essential oil against target arthropod
pests and vectors.

Target Insect Species Unit LD50/LC50 CI95
a LD90/LC90 CI95

a Chi p-Level Df

Musca domestica—adults
female µg adult−1 71.4 ± 7.2 58.2–85.9 329.8 ± 15.5 298.5–522.7 3.678 0.321 4

Musca domestica—adults
male µg adult−1 50.5 ± 5.9 48.2–62.8 462.6 ± 25.7 398.8–552.1 3.781 0.203 5

Culex quinquefasciatus 2nd
instar larvae µl L−1 31.5 ± 2.2 22.8–36.7 80.9 ± 6.7 72.8–91.5 1.512 0.896 4

Culex quinquefasciatus 3rd
instar larvae µl L−1 79.4 ± 5.2 62.5–98.7 307.2 ± 26.4 285.7–332.5 3.219 0.124 4

Spodoptera littoralis 2nd
instar larvae µg larva−1 18.5 ± 2.1 15.2–22.9 41.9 ± 2.9 33.8–47.7 0.845 0.985 4

Spodoptera littoralis 3rd
instar larvae µg larva−1 44.2 ± 5.8 36.9–53.2 117.8 ± 5.1 98.7–123.8 1.169 0.760 3

Metopolophium dirhodum
adult mL L−1 4.9 ± 0.8 4.5–5.2 7.1 ± 0.3 6.5–8.9 0.891 0.598 3

Tetranychus urticae adults mL L−1 3.3 ± 0.5 2.9–3.9 6.2 ± 0.8 5.7–7.3 1.258 0.722 3
a 95% confidence interval relative to LD50(90) LC50/90 values.

3. Discussion

It is well known that the chemical composition of EOs is linked to several endogenous
and exogenous factors, such as chemotypes, geographical distribution, growing conditions
and climate, time of collection, and extracting techniques [31]. This chemical variability
has also been reported for M. aquatica EO, for which the main varieties described in the
literature are reported in Table 3. The composition found in our study is similar to that of
other cultivated populations of M. aquatica, being linalool and linalool acetate the main
compounds, even if at different ratios. For instance, for plants cultivated in Iran, the EO was
mainly characterized by the presence of linalool (37.8%) and linalool acetate (30.6%) [32],
as well as for species collected in India, for which the amount of these two compounds
varied according to the season of collection. In fact, linalool was the dominant compound
for plants collected from April to September (25.2–48.4%), while linalool acetate was the
dominant compound for those collected from October to December (42.1–48.0%). A similar
chemical constitution was also found for M. aquatica var. citrata, for which linalool and
linalool acetate were the most representative compounds [14].

Table 3. Main Mentha aquatica essential oil chemotypes.

No Origin Major Compound Reference

1 South of Tunisia, Region of Sfax Pulegone [11]

2

Vojvodina, Serbia

Menthofuran

[33]
Submediterranean region of south Croatia [34]
Ethiopia [3]
Pisa, Italy [35]
South-east Romania [5]

3 North of Iran, Mazandaran province Piperitenone oxide [13]
4 West of Iran, Kermanshah province Menthol [14]

5
Israel

Linalool
[14]

Western Iran, Lorestan region [32]

On the other hand, the chemical composition herein described contrasts with those
reported from other studies. In fact, menthofuran has sometimes been reported as the most
abundant compound. This is the case for the EO obtained from wild-growing plants in
Vojvodina (16.9%), as well as the ones obtained from wild populations in Ethiopia (70.5%)
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and Romania (51.3–58.6%) [3,5,36]. The predominance of menthofuran in the EO seems
to be also linked to other growing conditions, as in the case of M. aquatica plants growing
in presence of Chrysolina herbacea (Duftschmid 1825) (Coleoptera: Chrysomelidae). In
these conditions, the plant activates some genes involved in the biosynthesis of terpenoids
and redirects them to the production of menthofuran, which was demonstrated to repel
C. herbacea [37]. The preponderance of menthofuran was also correlated with genetic
factors [38,39].

The genus Mentha has been extensively studied for its insecticidal and acaricidal
activity against agricultural pests and insect vectors, and some species have shown great
efficacy [28,29]. For example, Mentha longifolia (L.) and Mentha suaveolens (Ehrh.) have
demonstrated high larvicidal activity against third instar larvae of C. quinquefasciatus after
24 h of exposure with LC50 values of 17 mg L−1 for both EOs, which were characterized by
the main compound piperitone oxide [40]. In a study, among 34 EOs from different Mentha
species, M. pulegium was found to be the most effective against M. domestica adults under
laboratory conditions in fumigant and topical bioassays, with LD50 values of 13 µg fly−1

and 4.7 µg cm−1, respectively [41]. Its EO was dominated by pulegone, the main responsible
for the biological activity. Moreover, M. piperita caused >90% mortality, while M. spicata
caused 81–82% mortality at 14 × 10−3 µL mL−1, demonstrating a significant acaricidal
effect against T. urticae; in this case, menthol and carvone usually represent the main
compounds of the EOs for the two species, respectively [42].

Despite the large body of relevant literature regarding the potential of the Mentha
species to be used for the control of several vectors and pests, studies concerning the
linalool/linalool acetate chemotype’s insecticidal activity have not yet been reported. This
is the first study recording useful information for the potential development of biopesticides
exploiting the rare chemotype of this species from Lebanon. However, both linalool and
linalool acetate have been revealed to be effective pesticides in several studies [4,43–46].
Linalool has been demonstrated to be a competitive acetylcholinesterase inhibitor [46,47],
and both linalool and linalool acetate seem to interfere with the insect central nervous
system, in particular interacting with glutamatergic transmission and the GABAA recep-
tor [48–50]. Indeed, EOs containing linalool and/or linalool acetate have been reported as
effective insecticidal agents. For instance, basil EO showed a promising insecticidal poten-
tial on targets such as Rhyzopertha dominica L. (75.0% mortality at 4% of EO) [51], Sitophilus
oryzae L. (LC50 of 4.9 µL mL−1) [52], Ceratitis capitata Wiedemann (LT90 of 17.0 min), Bactro-
cera dorsalis (Hendel) (LT90 of 26.0 min), and B. cucurbitae Coquillett (LT90 of 32.0 min) [53].
This effect has been mainly linked to the high levels of linalool in the EO. In the same way,
the EO from Cinnamomum camphora Ness and Eberm var. linaloolifera Fujita, which is charac-
terized by linalool as the main compound, has been reported for its insecticidal properties
against Anticarsia gemmatalis Hübner (LC50 of 0.908% v/v) [54] and Trialeurodes vaporariorum
Westwood (nymph mortality of 88.5% at 2.0% v/v) [55]. Similarly, Coriandrum sativum L.
seeds’ EO displayed an insecticidal potential on adults of Tribolium confusum Duval (LC50
of 1.34 µL L−1 air) and Callosobruchus maculatus Fabricius (LC50 of 318.02 µL L−1 air), and
this action was correlated to the predominant presence of linalool [56]. On the other hand,
the EO from Myrtus communis L., mainly characterized by linalool and linalool acetate,
displayed insecticidal action on three stored-product insects, namely Ephestia kuehniella
Zeller (LC50 of 12.7 µL L−1 air), Plodia interpunctella Hübner (LC50 of 22.6 µL L−1 air), and
Acanthoscelides obtectus Say (LC50 of 49.6 µL L−1 air) [57]. In addition, Cananga odorata
(Lam.) Hook. f. and Thomson EO showed marked contact toxicity against Sitophilus
zeamais Motschulsky with an LD50 value of 33.1 µg adult−1 and fumigant toxicity with an
LC50 value of 14.8 mg L−1 [58]. In our work, we did not have a positive control available;
however, we can compare the effectiveness of EO with the positive control of previously
published works in which the same insect species were used in the same developmental
stages and the application was carried out in a similar way with the same genetic ma-
terial of the target organisms and under similar post-application conditions. Regarding
the herein presented study, M. aquatica EO was found to be more effective than Rock
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Effect (a commercial biopesticide based on Pongamia pinnata L. oil), which was used as a
positive control by Pavela et al. [59] and tested against the same targets. Specifically, the
LD50 or LC50 values were higher for the positive control (>500 µg adult−1, 275.4 µg mL−1,
12.5 mL L−1, 5.8 mL L−1, 3.3 ± 0.5 mL L−1, respectively) than for the M. aquatica EO
(71.4 ± 7.2 µg adult−1, 79.4 ± 5.2 µg mL−1, 4.9 ± 0.8 mL L−1, respectively) when both
were tested against M. domestica female adults, C. quinquefasciatus 3rd instar larvae, and M.
dirhodum adults. On the other hand, their activity is quite comparable in the test against
S. littoralis (LD50 of 18.2 and 18.5 µg larva−1 for the positive control and M. aquatica EO,
respectively). The effectiveness of M. aquatica EO was of varying degrees of intensity, as the
different species of insects tested were differently sensitive to the same EO.

4. Materials and Methods
4.1. Plant Material and EO Extraction

Leaves of cultivated M. aquatica were manually collected in Kafarkela (33◦17′ N
35◦33′ E, 400 m a.s.l.), Southern Lebanon, in August 2019. The botanical identification was
performed by Dr. Fabrizio Bartolucci, University of Camerino, Floristic Research Center of
the Apennines. A voucher specimen was stored in the herbarium of the Floristic Research
Centre of the Apennines under the voucher codex APP No. 66212. Mentha aquatica EO was
obtained by hydrodistillation of dried leaves using a Clevenger-type apparatus for 4 h. The
calculation of the oil yields was based on a dry weight (w/w) basis and resulted in 3.35%.

4.2. GC–MS Analysis of Essential Oils

The GC–MS analysis was carried out with an Agilent 6890N–5973N GC–MS system
(Santa Clara, CA, USA) on a sample of M. aquatica EO prepared by dilution to 1:100 with
n-hexane. The instrument was operating in the EI mode at 70 eV and using a HP-5MS
(5% phenylmethylpolysiloxane, 30 m, 0.25 mm i.d., film thickness 0.1 µm) (J&W Scientific,
Folsom, CA, USA) capillary column.

The chromatographic parameters and chromatogram analysis were the same as those
reported by Nkuimi Wandjou et al. [27]. Briefly, the analytical standards of α-pinene,
sabinene, β-pinene, myrcene, α-terpinene, p-cymene, limonene, 1,8-cineole, (Z)-β-ocimene,
(E)-β-ocimene, γ-terpinene, terpinolene, terpinene-4-ol, α-terpineol, (E)-caryophyllene, and
α-humulene were purchased from Merck (Milan, Italy) and used for peak assignments
based on retention time and mass spectrum (MS). Moreover, the combination of the cal-
culated linear retention index (RI) and MS was used to confirm the identity of the other
compounds. Semi-quantitative values (peak area percentages) were obtained by peak
normalization without using correction factors.

4.3. Target Insects and Mites

As target arthropod species, we tested C. quinquefasciatus, M. domestica, M. dirhodum, S.
littoralis, and T. urticae. These species have been reared under controlled laboratory condi-
tions at the Crop Research Institute (Prague, Czech Republic) for more than 20 generations.

Arthropod mass rearing in brief: C. quinquefasciatus larvae were fed with dry dog
biscuits; adults were allowed to mate; females were fed with blood in order to complete
their egg development. Eggs were laid in unprepared containers of water. M. domestica
larvae were fed a diet developed at the Crop Research Institute (Prague, Czech Republic),
which was composed of sawdust, milk, and agar. Housefly adults were fed sugar solutions
and powdered milk. Eggs were laid on cotton wool dipped in sweet milk. Wheat plants in
pots with ordinary substrate were selected to rear M. dirhodum. S. littoralis larvae were fed
with agar, soybean meal, and vitamins; adults, fed with honey solution, mated and laid
eggs on filter paper previously prepared. Bean plants grown in a common garden substrate
were selected to rear T. urticae in a growth chamber. All arthropod target species were
maintained at 25 ± 1 ◦C, 70 ± 3% R.H., and 16:8 h (L:D). Experiments described thereafter
were carried out under the same conditions [59].
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4.4. Insecticidal and Acaricidal Activity

The M. aquatica EO was diluted in acetone (p.a., Sigma Aldrich, Prague, Czech Re-
public) to obtain various concentrations (applied at 1 µL): for S. littoralis larvae, 10, 20,
30, 40, 50, 60, 70, 80, 90, and 100 µg larva−1; and for M. domestica adults, 50, 80, 100, 150,
200, 250, and 300 µg adult−1. Before application, the arthropods were anesthetized with
CO2. Acetone was the negative control. After treatment, the tested organisms were placed
into the rearing containers (15 × 12 × 8 cm) equipped with a perforated lid and fed with
the aforementioned diet. The experiments were replicated four times; each replicate was
performed with 20 individuals. For C. quinquefasciatus larvae, EO was dissolved in DMSO
(dimethyl sulfoxide, Merck, Prague, Czech Republic) and tested according to the WHO
(1996) procedure [60] with minor modifications. Each time, 1 mL of DMSO, which con-
tained a defined amount of EO, was thoroughly mixed in 99 mL of chlorine-free standing
water. In this way, a concentration series containing 20, 40, 60, 80, and 100 mg mL−1 of
mint EO was obtained. DMSO was used as a negative control. For each replicate, 20 larvae
were used, and the experiment was repeated four times. For experiments with M. dirhodum
and T. urticae, first, the EO was emulsified using Tween 80 (Sigma-Aldrich, Prague, Czech
Republic) in a 1:1 (v:v) ratio. Afterwards, different concentrations were prepared (for M.
dirhodum adults, 2.0, 3.0, 4.0, 5.0, 6.0, and 7.0 mL L−1, and for T. urticae adults, 1.0, 2.0, 3.0,
4.0, 5.0, and 6.0 mL L−1) by thoroughly mixing the modified EO in water. Always, 20 adults
of M. dirhodum or T. urticae (for each replication) were transferred to wheat or bean leaves,
respectively, using a fine brush. The plants were located in a flowerpot with a diameter of
9 cm. An electric applicator was used to spray the plants (5 mL of solution per plant) in
five replicates.

All experiments were conducted in an air-conditioned room at a temperature of 25 ◦C,
a photoperiod of 16 h of light, and 70–80% relative humidity. Twenty-four hours after the
application, the number of dead individuals was determined. All individuals that did not
show any movement in response to a mechanical stimulus were considered dead.

For the calculation of lethal doses or concentrations, at least five concentrations or
doses for which mortality was found to be in the range of 20–90% were always selected.
After correction of mortality by Abbott [61], LD(LC)50(90) were estimated using Probit
analysis [62].

5. Conclusions

In this work, a linalool acetate/linalool chemotype of M. aquatica was tested on C.
quinquefasciatus, M. domestica, M. dirhodum, S. littoralis, and T. urticae, showing a relatively
good acute toxicity on most of the tested targets. In detail, for C. quinquefasciatus and S.
littoralis, a higher efficacy of the EO was found on the lower larval stages, while moderate
activity was detected on M. dirhodum and T. urticae. Conversely, the EO was less effective
on M. domestica adults. The different results obtained in the reported study suggest that
various mechanisms of action, likely ascribable to the EO main constituents linalool and
linalool acetate, could be involved in the different targets effects, and more studies should
be performed to deepen this aspect.

Even though the genus Mentha has been widely reported for its insecticidal and
acaricidal potential, this is the first study evaluating the above-mentioned properties of
M. aquatica EO, namely the linalool acetate/linalool chemotype from Lebanon. The results
herein presented could represent the starting point for a further exploration of this plant
EO and/or its two major constituents as a botanical insecticide and pesticide ingredient.
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