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Abstract: Magnetic resonance imaging (MRI) is increasingly used to diagnose focal and diffuse liver
disorders. Despite their enhanced efficacy, liver-targeted gadolinium-based contrast agents (GBCAs)
raise safety concerns owing to the release of toxic Gd3+ ions. A π-conjugated macrocyclic chelate,
Mn-NOTA-NP, was designed and synthesized as a non-gadolinium alternative for liver-specific
MRI. Mn-NOTA-NP exhibits an r1 relaxivity of 3.57 mM−1 s−1 in water and 9.01 mM−1 s−1 in saline
containing human serum albumin at 3 T, which is significantly greater than the clinically utilized
Mn2+-based hepatobiliary drug, Mn-DPDP (1.50 mM−1 s−1), and comparable with that of GBCAs.
Furthermore, the in vivo biodistribution and MRI enhancement patterns of Mn-NOTA-NP were
similar to those of the Gd3+-based hepatobiliary agent, Gd-DTPA-EOB. Additionally, a 0.05 mmol/kg
dose of Mn-NOTA-NP facilitated high-sensitivity tumor detection with tumor signal enhancement
in a liver tumor model. Ligand-docking simulations further indicated that Mn-NOTA-NP differed
from other hepatobiliary agents in their interactions with several transporter systems. Collectively,
we demonstrated that Mn-NOTA-NP could be a new liver-specific MRI contrast agent.

Keywords: magnetic resonance imaging; manganese; contrast agent; naphthalene; liver imaging

1. Introduction

Magnetic resonance imaging (MRI) is a non-invasive technique that generates high-
resolution images of the soft tissues of living organisms and has become an increasingly
popular diagnostic tool in the last few decades [1–3]. Notably, high-resolution imaging
techniques have considerably facilitated the detection and treatment of small liver lesions
and other hepatic disorders [4,5]. Only two gadolinium-based contrast agents (GBCAs) are
currently available for clinical liver MRI: gadoxetic acid (Gd-DTPA-EOB) and gadobenic
acid (Gd-BOPTA). These agents use hydrophobic ligands to accumulate in hepatocytes
via organic anion-transporting polypeptides (OATPs) [6]. Despite their high T1-weighted
contrast, long-term gadolinium (Gd3+) retention in the brain and bones, as well as the
development of nephrogenic systemic fibrosis (NSF) in patients with impaired kidney func-
tion, has raised serious safety concerns regarding GBCAs [7,8]. Owing to these issues and
the lack of non-gadolinium contrast agents (CAs) in clinical settings, feasible alternatives
are required.
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Multiple approaches have been employed to address the concerns regarding GBCAs,
such as using Mn-based CAs, superparamagnetic iron oxide nanoparticles, chemical ex-
change saturation transfer imaging, X-nuclei MRI, and hyperpolarized imaging [9]. Among
them, Mn-based CAs have kinetics and a biodistribution comparable with that of GBCAs in
living organisms. They do not require unique pulse sequences, additional post-processing,
or special equipment. Biologically active manganese (II) (Mn2+) chelates have become the
focus of MRI CA studies [10–12]. Notably, complexes of biocompatible paramagnetic Mn2+

ions with five unpaired electrons [3d5] have attracted attention owing to their physical
features, including delayed longitudinal electronic relaxation, shorter metal–water proton
effect distances, and labile water exchange kinetics [13,14]. Additionally, homeostasis and
transport in biological systems ensure effective Mn elimination [15]. Mn was the first
element employed as an MRI CA in vivo, and mangafodipir trisodium (Mn-DPDP) is the
only FDA-approved Mn-based chelate for liver imaging [16,17]. However, the clinical use
of Mn-DPDP has been discontinued owing to its low stability. Despite the report of several
stable linear Mn2+-based chelates for use as hepatobiliary MRI CAs [18–22], the lack of lig-
and field stabilization energy in the high-spin (d5) electronic state has reduced the stability
of the Mn2+ chelates [11]. Nevertheless, the increased stability of macrocyclic compounds,
on the other hand, is determined by the macrocyclic effect. Therefore, macrocyclic chelates
remain the most appealing option for developing highly inert Mn-based chelates.

In this study, we describe the synthesis, characterization, and in vivo biological eval-
uation of an amphiphilic macrocyclic Mn2+ chelate (Mn-NOTA-NP) as a biocompatible
liver-specific MRI CA. The stability of Mn-NOTA-NP was compared with that of a linear
Mn2+ chelate (Mn-EDTA). In addition, the lipophilic naphthalene (NP) moiety attached to
the NOTA backbone by π-conjugation promotes hepatocyte targeting of the Mn-NOTA-NP
chelate [23]. Hence, we demonstrated that this novel macrocyclic Mn2+ chelate (Mn-NOTA-
NP) could be a feasible alternative to GBCAs for liver imaging.

2. Results and Discussion
2.1. Synthesis and Characterization

The NOTA-NP ligand was synthesized by multiple-step reactions, starting with
acenaphthylene-1,2-dione, and the synthetic pathway for Mn-NOTA-NP is depicted in
Scheme 1. First, compound 2 was synthesized according to a published procedure with
slight modifications [24], and alkylation with three equivalents of tert-butyl-bromoacetate
provided protected ligand 3. Subsequently, the tert-butyl group was removed using trifluo-
roacetic acid (TFA), and a pure chelating ligand (NOTA-NP) was isolated by precipitation
with ether. The Mn2+ complex was then synthesized by reacting the ligand with an
equivalent of MnCl2.4H2O at pH 7.0, followed by the removal of inorganic impurities by
reverse-phase chromatography. Finally, the pure chelate was collected as an off-white solid
via lyophilization. The results of microanalysis and spectroscopic techniques, such as 1H
NMR, 13C NMR, HR-FAB-MS, HR-ESI-MS, and elemental analysis, confirmed ligand and
complex formation (Figures S1–S9). The purity of Mn-NOTA-NP was 96.05% (Figure S10).

2.2. Relaxivities and Human Serum Albumin (HSA)-Binding of Mn-NOTA-NP

The efficiency of the MRI CAs was measured in terms of their r1 and r2 relaxivities
(in mM−1 s−1), which are defined as variations in the relaxation rate of the water protons.
At 3 T, we determined the relaxivities of Mn-NOTA-NP and compared them with those of
Mn-EDTA, Mn-DPDP, Gd-DTPA, Gd-DTPA-EOB, and Gd-BOPTA. Mn-NOTA-NP has an
r1 value of 3.57 mM−1 s−1, which is 2.0-, 2.3-, and 2.4-fold higher than those of Mn-NOTA,
Mn-EDTA, and Mn-DPDP, respectively (Table 1) [25,26]. NOTA, a hexadentate ligand, has
three oxygen and three nitrogen donor atoms [27]. Mn-NOTA chelate is not saturated
because Mn2+ can form seven coordinated complexes. To complete seven coordinations, a
water molecule can bind in the inner sphere of the Mn chelate. In the presence of 0.67 mM
HSA, the r1 relaxivity was increased to 9.01 mM−1 s−1, which is higher than that of Mn-
EDTA and Gd-BOPTA, but relatively lower than Gd-DTPA-EOB. This suggests that it could
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be used in T1-weighted acquisitions with non-GBCAs (Table 1). The π-conjugated lipophilic
naphthalene group facilitates albumin binding to Mn-NOTA-NP and slows the tumbling
rate following macromolecular complex formation. Although Mn2+ (S = 5/2) has fewer
unpaired electrons than Gd3+ (S = 7/2), the closer proximity of Mn2+ to the water molecules
may compensate for this reduced number [28]. The r2/r1 ratio is vital for determining the
type of MRI CAs. A CA with a low r2/r1 ratio (<5) has a T1-dominated contrast, whereas a
CA with a high r2/r1 ratio (>8) has a T2-dominated contrast [29,30].
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Scheme 1. Synthesis of the Mn-NOTA-NP complex a. a Reagents and conditions: (a) Diethylenetri-
amine, citric acid, EtOH, 3 h, room temperature (rt); (b) NaBH4, MeOH, 0 ◦C, overnight; (c) tert-butyl
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We also measured the binding constant (Ka), which reflects the interaction of Mn-
NOTA-NP with HSA (Figure S11). The binding constant Ka (36.6 M−1) for Mn-NOTA-NP
was comparable to the clinically used liver imaging agent Gd-DTPA-EOB (27 M−1) [31].
Poor albumin binding increased relaxivity; however, it did not affect plasma enhancement.

Table 1. Relaxivities and lipophilicity of Mn-NOTA-NP, Mn-EDTA, Mn-DPDP, Gd-DTPA, Gd-DTPA-
EOB, and Gd-BOPTA in water and human serum albumin (HSA) at 3 T (297 K).

Compound
Water HSA (0.67 mM) HSA Binding

Constant (Ka) logP oct/wat
r1 (mM−1 s−1) r2 (mM−1 s−1) r2/r1 r1 (mM−1 s−1) r2 (mM−1 s−1) r2/r1

Mn-NOTA-NP 3.57 ± 0.20 18.08 ± 0.50 5.0 9.01 ± 0.50 42.83 ± 2.70 4.8 36.6 M−1 −0.93

Mn-EDTA 1.79 ± 0.05 3.85 ± 0.05 2.2 2.93 ± 0.30 5.54 ± 0.10 1.9 - −2.72

Mn-DPDP b 1.50 ± 0.40 2.30 ± 0.60 1.5 - - - - −3.07

Gd-DTPA 4.12 ± 0.10 5.20 ± 0.20 1.3 - - - - −3.16

Gd-DTPA-EOB b 4.30 ± 0.60 5.50 ± 0.60 1.3 9.97 ± 1.00 10.76 ± 0.10 1.1 27 M−1 −2.11

Gd-BOPTA b 4.00 ± 0.60 4.70 ± 0.60 1.2 8.27 ± 0.10 10.84 ± 0.10 1.3 - −2.23

b Data were obtained from the cited reference [32].

2.3. Lipophilicity of Mn-NOTA-NP

Most Gd3+ complexes are confined to extracellular spaces and cannot enter cells owing
to their high hydrophilicity. Typically, the biological activity of compounds increases as
their lipophilicity increases owing to their attraction to biological membranes and increased
permeability, allowing for greater access to the desired location inside the body [33]. We
hypothesized that conjugating a lipophilic moiety to a cell-impermeable metal complex
would yield an amphiphilic combination that could pass through cell membranes. The
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clinically applied liver imaging agent, Gd-DTPA-EOB, also comprises a hydrophilic Gd-
DTPA derivative coupled with a lipophilic ethoxybenzyl (EOB) moiety. Gale et al. reported
that the log P values of a series of small-molecule Mn (II) complexes are closely correlated
with the blood clearance rate and liver accumulation [22]. The lipophilicity of Mn-NOTA-
NP was estimated using octanol-water partitioning coefficient (log P) measurements. Mn-
NOTA-NP has log p values of −0.93, which are 61 and 138 times greater than those of
Mn-EDTA (−2.72) and Mn-DPDP (−3.17), respectively (Table 1). Furthermore, the log P
value of Mn-NOTA-NP was 15–20 times higher than the log P values of the clinically used
Gd-based agents, Gd-DTPA-EOB (−2.11) and Gd-BOPTA (−2.23) (Table 1).

2.4. Kinetic Inertness and pH Stability of Mn-NOTA-NP

The kinetic inertness of metal complexes is more crucial than their thermodynamic
stability for in vivo applications [14,34]. Thus, the transmetalation process between Mn-
NOTA-NP and Zn2+ ions was examined using a previously published method [35]. As zinc
(Zn2+) is the second most abundant trace metal in the human body, it can disrupt more Mn2+

ions than trace metals, such as Cu2+ and Ca2+. Furthermore, as the transmetalation process
occurs more frequently, the chelation between the ligand and metal becomes increasingly
unstable. In the current study, the kinetic inertness of Mn-NOTA-NP was represented
by the transverse relaxivity change [∆r2 (t) = r2 (t) − r2 (0)] as a function of time. For
comparison, Mn-EDTA, Gd-DTPA, and Gd-DTPA-EOB were also assessed (Figure 1). To
demonstrate this, the complexes were subjected to a tenfold excess of Zn2+, and the ∆r2 (t)
values of the Mn2+ and Gd3+ complexes were compared. As shown in Figure 1, the ∆r2 (t)
values of Mn-EDTA and Gd-DTPA rapidly increased and saturated at high ∆r2 values. In
contrast, Mn-NOTA-NP began with a quickly increasing ∆r2 (t) value, but shortly reached
saturation at significantly lower ∆r2 values and maintained its relaxation rate, implying
that transmetalation occurred much less frequently after that point. These data indicate that
Mn-NOTA-NP is more resistant to Zn2+ transmetalation than Mn-EDTA and Gd-DTPA,
as evidenced by its rapid dissociation. An earlier manganese-based liver imaging agent,
mangafodipir (Mn-DPDP), was licensed for liver imaging, but this form of chelated Mn
acted as a prodrug and released free Mn2+ upon administration [36]. Moreover, the ∆r2
(t) pattern of Gd-DTPA-EOB increased over time and reached saturation at relatively low
r2 values, although after 4 h, the ∆r2 (t) pattern of Mn-NOTA-NP was comparable to that
of Gd-DTPA-EOB. This result suggests that Mn-NOTA-NP is more susceptible to Zn2+

transmetalation than Gd-DTPA-EOB.
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Furthermore, the stability of Mn-NOTA-NP was assessed over time by measuring the
r2 relaxivity in phosphate-buffered solutions (PBS) with pH values ranging from 1.0 to 10.0
(Figure S12). The r2 values remained steady over a wide pH range (up to 10.0); however,
at pH 7, the r2 relaxivity decreased significantly compared to its initial values. These
observations are to be anticipated when evoking the potential displacement of the inner-
sphere water molecule by the phosphate anion of PBS [37]. Altering the complex pH from
basic to acidic, i.e., from pH 4 to lower, increased the r2 values. Complex dissociation may be
attributed to the increased relaxivity at a low pH, which is in line with an earlier study [25].
Thus, we believe that Mn-NOTA-NP is suitable for in vivo investigations and may be an
appropriate substitute for GBCAs, particularly in populations with a compromised renal
function where gadolinium exposure is a concern.

2.5. Protein–Ligand Docking Simulations of Mn-NOTA-NP

The molecular docking approach replicates the atomic interaction between a small
molecule and a protein, allowing us to quantitatively investigate small-molecule behavior at
target protein binding sites and elucidate critical biological processes [38]. Gd-DTPA-EOB
is taken up by hepatocytes through OATPs (mostly OATP1B1 and OATP1B3) and dis-
charged into bile canaliculi through multidrug resistance-associated protein 2 (MRP2) [39].
The activity of these transporters influences the metabolic and biliary clearance of drugs.
Consequently, they can affect pharmacological efficacy or toxicity by affecting plasma
concentration [40]. We postulated that OATPs could mediate the hepatic uptake of Mn-
NOTA-NP because of their similar biodistribution pattern to Gd-DTPA-EOB [41]. The
expression and localization of OATP1B1 and/or -1B3 and MRP2 in tumors may influence
the degree of hepatocyte-selective enhancement. Therefore, AutoDock Vina was used to
predict the protein–ligand docking simulations.

The interactions between various transporter systems and Mn-NOTA-NP are dis-
played in Figure 2. Mn-NOTA-NP establishes a network of hydrogen bonds with the
residues surrounding the OATP1B1 transporter, including N446, K49, and T338 (yellow
dotted line) (Figure 2a). In addition, Mn-NOTA-NP interacts with OATP1B3 via hydrogen
bonds at N446 and K49 (Figure 2b). For comparison, computational docking investigations
of the commercially available hepatobiliary drug Gd-DTPA-EOB, as well as the previously
reported Mn-EDTA-BTA and Mn-EDTA-EOB, are shown in Figures S13 and S14 [19]. Mn-
EDTA-BTA forms hydrogen bonds with N446 and K49 to bind to the OATP1B1 transporter,
and with N446, K49, N335, R290, S450, and K497 to bind to OATP1B3. Mn-EDTA-EOB
forms multiple hydrogen bonds with the OATP1B3 transporter, and K49 forms a salt bridge
with the metal complex. Gd-DTPA-EOB comprises several hydrogen bonds and salt bridges
that bind to OATP1B1 and OATP1B3. Mn-NOTA-NP binds to a U-shaped motif composed
of amino acids 1435–1442 in the MRP2 transporter (Figure 2c). Mn-EDTA-BTA, Mn-EDTA-
EOB, and Gd-DTPA-EOB use the U-shaped motif of amino acids 1435–1442 as the binding
site and form a hydrogen bond between R1442 and the metal complex (yellow dotted line)
(Figures S13 and S14).

The AutoDock Vina scoring function was used to calculate the binding free ener-
gies of these compounds (Table 2). The docking scores of Mn-NOTA-NP with OATP1B1
and OATP1B3 were 9.281 and 5.532 kcal/mol, respectively. Furthermore, the docking
score between Mn-NOTA-NP and the MRP2 transporter was 4.579 kcal/mol, which was
higher than that of Gd-DTPA-EOB (3.976 kcal/mol), but lower than that of Mn-EDTA-BTA
(5.731 kcal/mol) and Mn-EDTA-EOB (5.149 kcal/mol). Therefore, based on the docking
analysis, the best transporter system for Mn-EDTA-BTA and Mn-EDTA-EOB was OATP1B3,
whereas those of Gd-DTPA-EOB were OATP1B1 and OATP1B3. The docking simulation
results revealed that Mn-NOTA-NP differed from the other investigated compounds in its
interaction with the transporters. According to this finding, OATP1B1 is a crucial trans-
porter for Mn-NOTA-NP absorption. Although OATP1B1 and OATP1B3 are expressed in
normal liver tissues, their expression is reduced in primary and metastatic liver cancers [42].
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Figure 2. Schematic representations of variable interactions between Mn-NOTA-NP and
(a) OATP1B1, (b) OATP1B3, and (c) MRP2. The yellow line represents hydrogen bonds.

Table 2. Docking scores for Mn-NOTA-NP, Mn-EDTA-BTA, Mn-EDTA-EOB, and Gd-DTPA-EOB
with organic anion-transporting polypeptides (OATPs) and multidrug resistance-associated protein 2
(MRP2). Data expressed as kcal/mol.

Compounds OATP1B1 OATP1B3 MRP2

Mn-NOTA-NP −9.281 −5.532 −4.579

Gd-DTPA-EOB c −13.25 −11.54 −3.976

Mn-EDTA-BTA −7.392 −10.172 −5.731

Mn-EDTA-EOB c −9.36 −11.58 −5.149
c Data collected from the cited reference [19].

2.6. Cytotoxicity of Mn-NOTA-NP

CCK-8 assays were used to assess the cytotoxic effects of Mn-NOTA-NP on the RAW
264.7 cell line. Cells were cultured for 24 h at 37 ◦C, with various doses of Mn-NOTA-NP
and Gd-DTPA as controls (Figure 3). CCK-8 assays revealed that the cells were viable at
increasing Mn-NOTA-NP concentrations up to 50 µM and 200 µM, which remained above
86% and 82%, respectively. Although Mn-NOTA-NP showed a decrease in cell viability at
high concentrations, these findings indicate that Mn-NOTA-NP has negligible cytotoxicity
at the amounts required for an optimal MRI signal.
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2.7. In Vivo MR Images of Normal Mice Using Mn-NOTA-NP

To test the hepatobiliary imaging capability of Mn-NOTA-NP, we performed in vivo
MRI experiments in Balb/c mice after intravenous injection of Mn-NOTA-NP at 3.0 T and
Gd-DTPA-EOB as a reference agent. T1-weighted coronal images of the liver (Figure 4A)
and kidneys (Figure 4B) were taken before injection and at 5, 10, 20, and 30 min and
1 and 2 h after injection. Additionally, the signal strengths in the liver and kidneys were
monitored, and the signal-to-noise ratio (SNR) was measured as a function of time to
analyze the contrast enhancement patterns in vivo (Figure 4C,D). The most characteristic
MR feature demonstrates significant and prolonged contrast enhancement in the liver
after injection of (a) Mn-NOTA-NP or (b) Gd-DTPA-EOB at 0.05 and 0.025 mmol/kg,
respectively. In vivo, MRI revealed that Mn-NOTA-NP has a dual pathway for excretion,
which is highly similar to the clinically used Gd-DTPA-EOB. Moreover, the SNRs of Mn-
NOTA-NP and Gd-DTPA-EOB in the liver were comparable up to 2 h after injection
(Figure 4C). Notably, the injection dose of Gd-DTPA-EOB was lower than that of Mn-
NOTA-NP in the current study because the injection dose of Gd-DTPA-EOB could not be
increased owing to the risk of NSF [7,43].

Additionally, Mn-NOTA-NP and Gd-DTPA-EOB exhibited similar kidney signals for
up to 30 min, indicating their renal excretion (Figure 4B). As demonstrated by an increase
in the kidney signal after 30 min, the renal excretion of Mn-NOTA-NP was slightly higher
than that of Gd-DTPA-EOB (Figure 4D). Overall, Mn-NOTA-NP with an amphiphilic
negatively charged structure displayed optimal liver-specific contrast enhancement and a
combination of hepatobiliary and renal clearance in this in vivo imaging study.

2.8. In Vivo Biodistribution of Mn-NOTA-NP

An in vivo biodistribution study was conducted to measure the concentration of Mn2+

ions in the brain, heart, gallbladder, liver, kidneys, spleen, and intestine using Inductively
Coupled Plasma Emission Spectrometry (ICP-OES) (Figure 5). The Mn2+ levels were highest
in the liver (approximately 54%) and intestine at 15 min, indicating that Mn-NOTA-NP
was removed via the hepatobiliary pathway. Mn-NOTA-NP demonstrated a similar liver
accumulation at 30 min compared to the clinically used liver-targeting agent Gd-DTPA-
EOB [44,45]. Subsequently, it was rapidly removed from the liver. In addition to the liver,
the kidneys also showed a high Mn accumulation owing to glomerular excretion via the
renal pathway. Consequently, the in vivo biodistribution findings strongly imply that Mn-
NOTA-NP is excreted via the hepatobiliary and renal pathways, similar to the liver-specific
agent Gd-DTPA-EOB. Notably, the Mn levels were almost restored to the control levels 24 h
after the Mn-NOTA-NP injection.
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expressed as the percentage of Mn concentrations in each tissue (n = 4). Mice were sacrificed at
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2.9. In Vivo MR Images of the Liver Tumor Model Using Mn-NOTA-NP

To assess the possible clinical application of the Mn-NOTA-NP chelate as a liver-
specific CA, we performed in vivo MRI following tail vein injection using a HepG2 or-
thotopic mouse model of human hepatocellular carcinoma (HCC). Before administering
Mn-NOTA-NP, T1-weighted MR images of the liver parenchyma and HCC tissues dis-
played indistinguishable and nonspecific iso-signal intensities. MR images captured 5 min
after Mn-NOTA-NP injection revealed that tumor tissues could be distinguished from nor-
mal liver parenchyma because tumor tissues have a higher signal strength than normal liver
parenchyma (Figure 6a). Furthermore, the HCC tissue appeared significantly hyperintense
in the liver parenchyma tissue on the T1-weighted images, with high tumor signal intensity
2 h after injection of the Mn-NOTA-NP chelate. As a result, Mn-NOTA-NP-enhanced MRI
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would result in an elevated tumor-to-normal liver contrast ratio with high tumor detection
sensitivity, allowing for the early diagnosis of HCC (Figure 6b).
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Figure 6. Axial T2- and T1-weighted MR images of HepG2 orthotopic mice (a) before injection and
5 min, 1 h, and 2 h post injection of Mn-NOTA-NP (0.05 mmol/kg); yellow arrows show the liver
tumor lesions. (b) Difference of contrast-to-noise ratio (CNR) between liver tumor tissue (black
squares) and normal liver parenchyma (red circles) as a function of time.

Based on the molecular docking results, one possible explanation for the high tumor-
to-normal liver contrast ratio after using Mn-NOTA-NP is the different roles of OATPs and
MRP2 expression in HCC. First, Mn-NOTA-NP-enhanced MR images exhibited signal en-
hancements in both normal liver and HCC cells, suggesting that OATP1B1/B3 mediates the
uptake of Mn-NOTA-NP from the sinusoid into the normal liver (hepatocytes) and HCC
cells [6,46]. Second, HCC signal enhancement was MRP2-dependent when OATP1B1/B3
expression was maintained. As MRP2 mediates the secretion of Mn-NOTA-NP from tumor
cells to the lumen, the decreased MRP2 expression in tumor cells results in the accumulation
of Mn-NOTA-NP in the cytoplasm of tumor cells; thus, HCCs are hyperintense compared
with the normal liver [47]. According to Ni et al., this persistent tumor enhancement could
be valuable in distinguishing HCC from other liver disorders and determining HCC cellular
differentiation [46,48]. However, further investigation is required to clarify the detailed
mechanism of tumor enhancement by Mn-NOTA-NP.

3. Materials and Methods
3.1. Reagents and Materials

The solvents were purified and dried using standard procedures. Acenaphthoquinone,
diethylenetriamine, and MnCl2.4H2O were purchased from Sigma-Aldrich (St Louis, MO,
USA) and used without further purification. Unless otherwise specified, all other com-
mercial reagents were purchased from Sigma-Aldrich or Tokyo Chemical Industry Co.,
Ltd. (Tokyo, Japan) and used in the original forms. Deionized water was used in all
experiments. The reactions were followed by thin-layer chromatography (TLC) using silica
gel plates 60 F254 (Merck, Darmstadt, Germany) and UV light for visualization. 1H NMR
(500 Hz) and 13C NMR (126 Hz) experiments were performed using a Bruker Advance
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500 spectrometer at the Center for Instrumental Analysis, Kyungpook National University
(KNU), Daegu, Korea. As an internal standard, the chemical shifts were presented as δ

values of tetramethylsilane. The coupling constants are expressed in hertz. Elemental
analysis was conducted at the Center for Instrumental Analysis at KNU. High-resolution
fast-atom bombardment mass spectrometry (HR-FAB-MS; JMS-700, JEOL, Tokyo, Japan)
and electrospray ionization time-of-flight MS (ESI-TOF-MS; SYNAPT G2, Waters, USA)
were performed at the Korea Basic Science Institute. A high-pressure liquid chromatogra-
phy (HPLC; LC/Forte/R, YMC, Iwata, Japan) system equipped with a Luna C18 column
(250 mm × 21.2 mm, Phenomenex Inc., Torrance, CA, USA) was used for further purifica-
tion. The conditions used to validate purity were as follows: eluent A, 10 mM ammonium
acetate in water; eluent B, 10 mM ammonium acetate in acetonitrile; gradient, 5–40% B in
3 min, 40–80% B in 25 min, and 80–100% B in 3 min; flow rate, 12 mL/min. HPLC was
performed using UV–Vis detection at 254 nm. The purity of the products was determined to
be over 95% using elemental analysis and HPLC spectra. No unanticipated or exceptionally
substantial safety risks were identified during the experimental procedures.

3.2. Synthesis and Characterization
3.2.1. Synthesis of Compound 2

The title compound was prepared using a previously reported method with slight
modifications [24]. Briefly, acenaphthylene-1,2-dione (1.0 g, 5.48 mmol) was combined
with diethylenetriamine (0.57 g, 5.48 mmol) in a mixture of ethanol and deionized (DI)
water in a 3:1 ratio. The mixture was then agitated for 3 h with a 5-mole percent citric acid
solution before being filtered. The solvent was removed, and the product was washed with
acetonitrile before reusing it. Subsequently, compound 1 was dissolved in methanol, and
NaBH4 was added in portions at 0 ◦C. The solvent was removed, and CH2Cl2 was used
for extraction. The organic layer was dried over NaSO4 and then vacuumed. Using DCM:
MeOH as the eluent, flash chromatography was performed to obtain a pale-yellow solid
product with a yield of 78%. 1H NMR (500 MHz, DMSO-d6): δ (ppm) = 8.43–8.41 (d, 2H,
CH, naphthalene), 8.29–8.28 (d, 2H, CH, naphthalene), 7.80–7.77 (t, 2H, CH, naphthalene),
4.35 (s, 2H, CH-NH), 4.12 (t, 2H, -CH2), 3.44 (t, 4H, -CH2), 2.89 (t, 2H, -CH2). 13C NMR
(126 MHz, CDCl3): δ = 127.94, 125.53, 122.24, 119.40, 67.99, 30.33, 25.62. HR-FAB-MS
calculated for C16H19N3: 254.1657 [M + H]+; observed: 254.1657 [M + H]+.

3.2.2. Synthesis of Compound 3

Compound 2 (1.0 g, 3.94 mmol) was dissolved in acetonitrile, and K2CO3 (3.26 g,
23.62 mmol) was added to the solution. Subsequently, tert-butyl bromoacetate (2.30 g,
11.81 mmol) was added dropwise for 30 min, and the mixture was stirred overnight at
room temperature. The resulting mixture was filtered, and the solvent was removed to
obtain a crude product. Compound 3 was purified by column chromatography (silica gel,
hexane/EtOAc, 9:1) and collected as an oily solid; the yield was 1.41 g (61%). 1H NMR
(500 MHz, MeOH-d4): δ (ppm) = 8.46–7.40 (m, 6H, naphthalene), 5.39 (s, 2H, CH), 5.21–4.84
(m, 1H, CH), 4.65–3.39 (m, 5H, CH), 3.35–3.25(m, 3H, CH2), 3.13–1.86 (m, 5H, CH2), 1.43–1.18
(m, 27H, CH3). CHN Anal. Calcd. for C34H49N3O6·K2CO3: C, 57.27; H, 6.73; N, 5.73;
observed: C, 57.57; H, 6.82; N, 6.15. HR-FAB-MS calculated for C34H49N3O6: 596.3700
[M + H]+; observed: 596.3696 [M + H]+.

3.2.3. Synthesis of NOTA-NP

Deprotection of tert-butyl was performed as follows: compound 3 (1.0 g, 1.68 mmol)
was dissolved in a mixture of trifluoroacetic acid and CH2Cl2 at 0 ◦C and stirred for 18 h.
The solution was evaporated under reduced pressure, and ether was added to obtain the
precipitate. The product was then filtered, washed with ether several times, and vacuum-
dried, and the pure product was collected as an off-white solid. The yield was 0.63 g (88%).
1H NMR (500 MHz, MeOH-d4): δ (ppm) = 7.86–7.84 (d, 1H, CH, naphthalene), 7.78–7.76 (d,
2H, CH, naphthalene), 7.58–7.53 (m, 3H, CH, naphthalene), 5.35–5.33 (d, 1H, CH), 5.21–5.19
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(d, 1H, CH), 4.01–3.51(m, 6H, CH2), 3.40–3.25 (m, 4H, CH), 3.16–3.13 (m, 2H, CH), 2.87–2.84
(m, 2H, CH). 13C NMR (126 MHz, MeOH-d4): δ = 174.08, 172.60, 138.15, 131.51, 128.28,
127.70, 126.82, 125.00, 123.15, 122.03, 64.68, 64.20, 54.84, 54.73, 49.12, 44.61, 42.29. CHN Anal.
Calcd. for C22H25N3O6·1.5 CF3COOH: C, 50.44; H, 4.50; N, 7.09; observed: C, 50.09; H, 4.43;
N, 7.32. HR-FAB-MS calculated for C22H25N3O6: 428.1822 [M + H]+; observed: 428.1824
[M + H]+.

3.2.4. Synthesis of Mn-NOTA-NP

Ligand NOTA-NP (0.32 g, 0.75 mmol) was dissolved in DI water, and the pH of
the solution was adjusted to 7.0 by dropwise addition of 1 M NaOH. The solution of
MnCl2.4H2O (0.15 g, 0.75 mmol) was added slowly, and the resulting suspension was
stirred for 24 h at room temperature. The pH of the resulting mixture was readjusted to
7.0 several times. The solid was filtered and vacuum dried to obtain a crude solid product,
which was further purified using preparative HPLC, and the purity was confirmed. The
yield was 0.16 g (45%). CHN Anal. Calcd. for C22H22MnN3O6·3H2O: C, 49.54; H, 5.29;
N, 7.88; observed: C, 49.37; H, 5.14; N, 8.57. HR-ESI-MS calculated for C22H22MnN3O6:
479.0889 [M]+; observed: 479.0889 [M]+.

3.3. Relaxivity

T1 measurements were obtained on a 3 T MRI scanner (Architect, GE Healthcare, US)
using an inversion recovery method with variable inversion times (TIs). The magnetic
resonance (MR) images were captured at 35 different times between 50 and 1750 ms. The
signal intensity at each TI value was fitted nonlinearly to obtain the corresponding T1
relaxation time. For the T2 measurements, the Carr–Purcell–Meiboon–Gill (CPMG) pulse
sequence was adapted for multiple spin-echo sizes. In total, 34 different echo time (TE)
values ranging from 10 to 1900 ms were used to capture the corresponding images. First,
the T2 relaxation times were derived from a nonlinear least-squares fit of the average pixel
values for multiple spin-echo measurements at each TE. Subsequently, the relaxation times
(T1 and T2) were image-processed to generate a relaxation time map. Finally, the relaxivities
(r1 and r2) were measured as the inverse of the relaxation time per mM.

3.4. Octanol−Water Partition Coefficients

We adopted a previously described method to measure the octanol−water partition
coefficients [19]. Briefly, 1 mg of Mn-NOTA-NP was dissolved in 2 mL of water and 1-
octanol (1:1 mixture). The vial containing the mixture was shaken for 30 s and placed on a
rotator for gentle mixing to equilibrate for 48 h. After mixing, the sample was allowed to
settle at room temperature for 24 h. Each layer of the Mn2+ concentration was determined
using inductively coupled plasma-mass spectrometry (ICP-MS). The partition coefficients
were calculated from the equation log P = log (Co/Cw), where log P is the logarithm of
the partition coefficient, and Co and Cw are the concentrations of Mn in the 1-octanol and
water layers, respectively.

3.5. Determination of Binding Constants

The binding affinity of the Mn-NOTA-NP chelate to human serum albumin (HSA)
was determined using a previously published protocol [20]. A nonlinear increase in the
proton paramagnetic relaxation rates for solutions containing 0.67 mM HSA at 64 MHz was
fitted using the following equation:

Rpobs

1 = 1000×
{(

r f
1 s0
)
+ 1

2 (r
c
1

−r f
1 )

((
Np0)+ s0 + K−1

a −
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a

)2
− 4N × s0 × p0,
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where N is the number of independent interaction sites (N = 1), Ka is the HSA binding
constant, p0 is the HSA concentration, s0 is the complex paramagnetic concentration, and
r1

c and r1
f are the relaxivities of the complex containing HSA and a free agent, respectively.

3.6. Transmetalation Kinetics

This experiment was performed using a previously reported method with slight modi-
fications [35]. A total of 20 microliters of a 50 mM MES [2-(N-morpholino)ethanesulfonic
acid] buffered solution (pH 6.0) of ZnCl2 was added to 1 mL of a buffered solution of the
1 mM Mn complex. The mixture was shaken for a while and immediately used to measure
the solvent T2 as a function of time. Control studies were also conducted with Mn-EDTA,
Gd-DTPA (Magnevist®), and Gd-DTPA-EOB (Primovist®) for comparison. The measure-
ments were performed on a 3 T MRI scanner (Discovery MR750w 3.0 T, GE Healthcare,
Chicago, IL, USA) at room temperature.

3.7. pH Stability

The pH-dependent changes in the longitudinal relaxation rate of Mn-NOTA-NP were
evaluated on a scale ranging from pH 1 to 10. Samples of each pH buffer solution (pH 1, 4,
7, and 10) were brought from Daejung Chemicals (Siheung-si, Korea). The experiment was
performed at room temperature for 72 h on a 3T system (128 MHz, Magnetom Tim Trio,
Siemens, Korea Institute of Radiological and Medical Science). First, 950 µL of the buffer
solution and 50 µL of the compound were added to a final volume of 1 mL. The pH was then
adjusted using negligible volumes of diluted HCl/NaOH to decrease or increase the pH of
the acidic and basic ranges while maintaining a constant complex concentration throughout
the experiments. The imaging parameters for spin-echo images were as follows: TR = 2000;
TE = 15; voxel size = 0.75 × 0.75 × 5.0 mm; 5.0 slice thickness; FOV read = 250 mm; FOV
phase = 100.0%; scan time = 7 min 24 s.

3.8. Molecular Modeling Method

The atomic structure of MDR2 (also known as multidrug resistance-associated pro-
tein; MRP2) was accessed on September 1, 2022, and downloaded from the AlphaFold
protein structure database in the pdb file format (https://alphafold.ebi.ac.uk/entry/
Q92887). The atomic structures of OATP1B1 and OATP1B3 were predicted using the
SWISS-MODEL homology modeling server (https://swissmodel.expasy.org/). The dock-
ing software used in this research were AutoDock MGLTools 1.5.7 (https://ccsb.scripps.
edu/mgltools/, AutoDock Vina 1.1.2 (https://vina.scripps.edu/), RDKit (https://www.
rdkit.org/), and Open-source PyMOL (https://github.com/schrodinger/pymol-open-
source). Four ligands—Mn-NOTA-NP, Mn-EDTA-BTA, Mn-EDTA-EOB, and Gd-DTPA-
EOB—were prepared, minimized in three-dimensional structures, and saved in the pdbqt
file format by adding polar hydrogen and fixing charges. AutoDock Vina was primarily
used for docking ligands into target proteins. The application searches for space boxes in
the coordinate system of a specific area and predicts the binding ability of binding models.
AutoDock Vina employed a grid space of 1.000 Å for all runs. The population size was
set to 150 and the number of genetic algorithms to 27,000 in AutoDock Vina. The binding
modes of the four ligands were generated and analyzed using open-source PyMOL.

3.9. Cell Culture

RAW 264.7 (mouse monocyte/macrophage cells, Catalog No. ATCC®CRL-2278)
was obtained from ATCC (Manassas, VA, USA) and cultured in accordance with the
manufacturer’s instructions. In addition, RAW 264.7 cells were cultured in RPMI-1640
medium obtained from Welgene (Daegu, Republic of Korea; Cat. LM011-01) containing
10% fetal bovine serum (FBS; Hyclone, Waltham, MA, USA; Catalog No. SH30919.03), and
1% penicillin-streptomycin solution (Gibco, Carlsbad, CA, USA; Catalog No. 11548876).
Cells were cultured at 37 ◦C in a humidified incubator with a 5% CO2 atmosphere.

https://alphafold.ebi.ac.uk/entry/Q92887
https://alphafold.ebi.ac.uk/entry/Q92887
https://swissmodel.expasy.org/
https://ccsb.scripps.edu/mgltools/
https://ccsb.scripps.edu/mgltools/
https://vina.scripps.edu/
https://www.rdkit.org/
https://www.rdkit.org/
https://github.com/schrodinger/pymol-open-source
https://github.com/schrodinger/pymol-open-source
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3.10. Cell Viability Assay

The cytotoxicity of Mn-NOTA-NP and Gd-DTPA in mouse macrophage cells (RAW
264.7) was investigated. RAW 264.7 cells were plated in 96-well plates containing 100 µL
of complete media at 1 × 104 cells/well. After 24 h, the medium was replaced with
fresh medium containing varying concentrations of CAs (0, 0.5, 1, 5, 10, 25, 50, 100, and
200 µM), and the cells were incubated for another 22 h. The cells were then incubated for
2 h with CCK-8 solution (CCK-8, Dongin LS, Korea; Catalog No. CCK-3000). A microplate
reader (SpectraMax i3, Molecular Devices, San Jose, CA, USA) was used to measure the
absorbance at 450 nm.

3.11. Biodistribution

In total, 4 normal male Balb/c mice (7 weeks old, 20–25 g) were injected with
0.05 mmol/kg of Mn-NOTA-NP via the tail vein at various time points. The mice were
anesthetized and sacrificed 15 min, 30 min, 1 h, and 24 h after injection. Mn levels were
measured in the brain, heart, gallbladder, liver, kidneys, spleen, and intestine. Tissues were
digested with 70% HNO3 and 30% H2O2 at 180 ◦C for 2 h. The Mn content was measured
in the resulting clear diluted solution (3% nitric acid) using inductively coupled plasma
optical emission spectroscopy (ICP-OES) (Optima 7300DV, Perkin Elmer, Waltham, MA,
USA). The detection limit of this method was set to 0.010 ppm.

3.12. In Vivo MRI of Normal Mice

All animal experiments were approved and performed in accordance with the guide-
lines of the Kyungpook National University Animal Care Committee. The MRI study
used 6-week-old male Balb/c mice weighing 20–25 g. Mice were anesthetized with 1.5%
isoflurane in oxygen. Measurements were recorded before and after the injection of param-
agnetic complexes via the tail vein. After each measurement, the mouse was woken from
anesthesia and placed in a cage with unlimited food and water. During measurements,
the animals were maintained at room temperature. A 3 T MRI scanner (Architect, GE
Healthcare, USA) equipped with a homemade small-animal radio frequency (RF) coil was
used to capture the MR images. The imaging parameters for spin-echo were as follows: for
coronal images, TR/TE/flip angle = 450 ms/8.8 FKimms/111◦, echo train length (ETL) = 3,
matrix size = 256 × 192, FOV = 80 × 64 mm, thickness = 1.2 mm, number of acquisitions
(NEX) = 4; for axial images, TR/TE/flip angle = 450 ms/7.2 ms/111◦, ETL = 3, matrix
size = 192 × 128, FOV = 80 × 64 mm, thickness = 1.5 mm, NEX = 2.

3.13. Liver Tumor Model and In Vivo MRI

All animal experiments using the liver tumor model were performed with the ap-
proval of the Korea Institute of Radiological and Medical Sciences. To prepare an orthotopic
xenograft model, HepG2 cells were harvested and resuspended in serum-free medium
containing 50% Matrigel, and 6-week-old nude mice (Balb/c, male) from DooYeol Biotech
(Seoul, Republic of Korea) were anesthetized with 3% isoflurane. HepG2 cells and Matrigel
were inoculated into the left hepatic lobe of the mice. In vivo imaging was performed
on the mice two months after inoculation. Mn-NOTA-NP was prepared as 50 mM stock
solutions and used at a dose of 0.05 mmol [Mn/kg]. MR images were obtained at 3.0 T
(Magnetom Tim Trio, Siemens, Germany) using a homemade 6-channel rat body coil.
The imaging parameters were as follows: T1-weighted 2D turbo spin echo (TSE) for
coronal images, TR/TE/flip angle = 450 ms/10 ms/120◦, ETL = 3, matrix size = 134 × 192,
FOV = 60 mm, slice thickness = 1 mm, number of averages = 6; for axial images, TR/TE/flip
angle = 450 ms/9.3 ms/120◦, ETL = 3, matrix size = 134 × 192, FOV = 60 mm, slice thick-
ness = 1.3 mm, number of averages = 4; T2-weighted TSE, TR/TE/flip angle = 1620 ms/
37 ms/120◦, matrix size = 256 × 256, FOV = 60 mm, slice thickness = 1 mm, number of
averages = 4.
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3.14. Image Analysis

On post-contrast MR images, anatomical positions with enhanced contrast were iden-
tified in the heart, liver, gallbladder, kidneys, and bladder. Additionally, signal intensities
in specific regions of interest were measured quantitatively using Image J software (version
1.53e, National Institutes of Health, Bethesda, MD, USA). At each time point, the signal-
to-noise ratio [SNR = Psignal/Pnoise] and contrast-to-noise ratio [CNR = SNRpost − SNRpre]
were calculated for the relevant tissues of each mouse.

3.15. Statistical Analysis

One-way analysis of variance (ANOVA) with the nonparametric Mann–Whitney U test
was used to analyze the data. GraphPad PRISM (version 5.03, GraphPad PRISM software
Inc., San Diego, CA, USA) and SPSS (version 25, SPSS Inc., Chicago, IL, USA) were used for
the analyses. Additionally, a MATLAB curve-fitting tool was used to fit the curves. Data
are presented as mean ± standard deviation (SD) or standard error of the mean (SEM)
unless otherwise specified.

4. Conclusions

We developed a new macrocyclic Mn2+ complex comprising a π-conjugated naph-
thalene group and a NOTA-chelating ligand and evaluated its diagnostic potential as
hepatobiliary MRI CAs. The in vivo biodistribution study and in vivo MRI investigation in
mice suggested that Mn-NOTA-NP can promote excellent liver enhancement via a com-
bination of hepatobiliary and renal clearance pathways, similar to that of Gd-DTPA-EOB.
Moreover, in an HepG2 liver tumor model, Mn-NOTA-NP demonstrated enhanced tumor
detection with paradoxically high tumor signal intensity. Additionally, ligand-binding
simulations revealed that Mn-NOTA-NP binds to the transporters in a different manner
than the other hepatobiliary agents investigated in this study. Hence, we believe that
Mn-NOTA-NP can be an excellent alternative to Gd3+-based hepatobiliary agents because
it exhibits optimal properties as a liver-specific MRI agent.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph16040602/s1, Figure S1: 1H NMR spectrum of compound 2;
Figure S2: 13C NMR spectrum of compound 2; Figure S3: High-resolution mass spectrum of com-
pound 2; Figure S4: 1H NMR spectrum of compound 3; Figure S5: High-resolution mass spectrum
of compound 3; Figure S6: 1H NMR spectrum of compound NOTA-NP; Figure S7: 13C NMR spec-
trum of compound NOTA-NP; Figure S8: High-resolution mass spectrum of compound NOTA-NP;
Figure S9: HR-ESI-MS spectrum of compound Mn-NOTA-NP; Figure S10: HPLC spectrum of com-
pound Mn-NOTA-NP; Figure S11: HSA binding of Mn-NOTA-NP; Figure S12: pH stability of Mn-
NOTA-NP; Figure S13: Schematic representations of variable interactions between Mn-EDTA-BTA
and (a) OATP1B1, (b) OATP1B3, and (c) MRP2 transporters; Figure S14: Schematic representations of
variable interactions between (a) Mn-EDTA-EOB and (b) Gd-DTPA-EOB with MRP2 transporter.
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