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Abstract: Alternative therapies and vaccination are essential to combat the emergence of multidrug-
resistant Helicobacter pylori and to prevent the development of gastroduodenal diseases. This review
aimed to systematically review recent studies on alternative therapies, i.e., probiotics, nanoparticles,
and natural products from plants, as well as recent progress in H. pylori vaccines at the preclinical
stage. Articles published from January 2018 to August 2022 were systematically searched using
PubMed, Scopus, Web of Science, and Medline. After the screening process, 45 articles were eligible
for inclusion in this review. Probiotics (n = 9 studies) and natural products from plants (n = 28 studies)
were observed to inhibit the growth of H. pylori, improve immune response, reduce inflammation, and
reduce the pathogenic effects of H. pylori virulence factors. Natural products from plants also showed
anti-biofilm activity against H. pylori. However, clinical trials of natural products from plants and
probiotics are still lacking. A paucity of data assessing the nanoparticle activity of N-acylhomoserine
lactonase-stabilized silver against H. pylori was observed. Nonetheless, one nanoparticle study
showed anti-biofilm activity against H. pylori. Promising results of H. pylori vaccine candidates (n = 7)
were observed at preclinical stage, including elicitation of a humoral and mucosal immune response.
Furthermore, the application of new vaccine technology including multi-epitope and vector-based
vaccines using bacteria was investigated at the preclinical stage. Taken together, probiotics, natural
products from plants, and nanoparticles exhibited antibacterial activity against H. pylori. New vaccine
technology shows promising results against H. pylori.

Keywords: Helicobacter pylori; alternative therapy; plant; probiotic; nanoparticle; vaccine

1. Introduction

Helicobacter pylori infects more than 50% of the world’s population and causes gastro-
duodenal diseases including gastritis, peptic ulcer, gastric adenocarcinoma, and gastric
lymphoma; it has been classified as a type I carcinogen that causes gastric cancer [1].
Gastric cancer is still one of the leading causes of cancer-related death worldwide al-
though the prevalence and incidence of this cancer have been decreasing since the last
decade [2]. Eradication of H. pylori is recommended to prevent gastric cancer, especially
in developing countries where gastric cancer contributes to high economic morbidity and
mortality [3]. Treatment of H. pylori includes administration of multiple antibiotics, namely,
clarithromycin, amoxicillin, metronidazole, and tetracycline [4]. However, the emergence
of H. pylori strains that are resistant to multiple antibiotics has complicated the treatment
strategy to eradicate this bacterium [5]. In 2018, the World Health Organization listed H.
pylori as one of the high-priority pathogens for research and discovery of novel drugs [6].
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Multiple alternative therapies, including natural products, probiotics, and nanopar-
ticles, can be assessed for antibacterial activity against H. pylori. A previous systematic
review explored the efficacy of antimicrobial peptides natural sources as a promising al-
ternative therapy for H. pylori [7]. Numerous natural products from plants have also been
demonstrated to possess antibacterial activity against H. pylori, and they have been used as
traditional medicine in some cultures such as East Asian and Southeast Asian cultures to
treat multiple infections [8]. Probiotics are generally regarded as safe microbes that have
been shown to give benefits to humans and are usually isolated from the fermentation
process, including traditional foods [9]. In addition to probiotics and natural products
from plants, applications of nanoparticles in drug delivery for antibiotics, implantable
medical devices, and bone cement have also been explored for antibacterial effects against
multiple bacteria [10]. Despite evidence demonstrating the efficacy of natural products
from plants and probiotics against H. pylori, they are still not widely approved for therapy
of H. pylori. Prevention of H. pylori infection through vaccination is also pertinent to prevent
gastroduodenal diseases. To date, no vaccine for H. pylori has been approved. The objective
of this review was to systematically review recent studies on alternative therapies (natural
products from plants, probiotics, and nanoparticles) against H. pylori and progress of H.
pylori vaccines.

2. Results
2.1. Literature Assessment

Figure 1 illustrates the screening process adopted for inclusion and exclusion of the
articles in this systematic review. A total of 7796 articles were obtained from the following
literature databases: PubMed (n = 852), Scopus (n = 743), Web of Science (n = 332), and
EBSCO Medline (n = 5869). After we removed the duplicates (n = 1482) and reviews
(n = 3319) using Microsoft Excel 2016 and Mendeley reference manager, 2995 articles were
eligible for title and abstract screening. An additional 2745 articles were excluded because
they were not relevant to the research question. Hence, 250 articles were eligible for full-text
evaluation, of which 205 articles were excluded because the studies (n = 53) used natural
products, probiotics, or nanoparticles in combination with commercial antibiotics, and
the studies were published prior to 2018 (n = 152). Finally, 45 articles were eligible to be
included in this systematic review. Overall, seven studies (15.5%) were published in 2018,
along with 10 (22.2%) in 2019, 10 (22.2%) in 2020, 10 (22.2%) in 2021, and eight (17.8%) in
2022. Most of the studies published were preclinical studies (n = 44; 97.8%), while only
one study (2.2%) was a clinical trial. Nine studies evaluated potential probiotics against H.
pylori, 28 studies evaluated plant natural products against H. pylori, one study evaluated
nanoparticles only, and seven studies evaluated vaccine candidates.
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Figure 1. Flow diagram outlining article screening for inclusion in this systematic review using
PRISMA guidelines. After screening evaluation, 45 articles were eligible for inclusion in this system-
atic review.

2.2. Summary of Studies on Alternative Therapies and Vaccines Conducted Prior to 2018

As the objective of our review was to systematically review recent studies published
on alternative therapies and vaccines against H. pylori from 2018 to 2022, we excluded
studies published prior to 2018. However, we briefly summarize breakthrough discoveries
on this topic before 2018. According to our search, numerous studies on alternative
therapies against H. pylori were published prior to 2018. Most of the studies examined
the antibacterial activity of products from plants against H. pylori with promising results,
including inhibition of growth in vitro, bacterial load reduction in animal models, and
suppression of H. pylori virulence factors. Additionally, most studies were conducted
at the preclinical level. Progress has been made in the discovery of vaccines against H.
pylori, including a clinical trial conducted in China (NCT02302170), where they found the
administration of oral recombinant H. pylori in children to be safe and effective in preventing
H. pylori infection [11]. In probiotics research, one clinical trial using a combination of
eight bacteria administered to 40 patients showed promising results, whereby H. pylori
was eradicated in 13 patients [12]. In summary, we found potential clinical application of
alternative therapies and vaccines against H. pylori before 2018.
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2.3. Antibacterial Activity of Probiotics against H. pylori

Nine studies assessed the antibacterial activity of potential probiotics against H. pylori,
of which eight were preclinical studies while one was a clinical trial (Table 1).

Table 1. List of potential probiotics and their antibacterial activity against H. pylori included in this
systematic review. UBT: urea breath test; LAB: lactic acid bacteria.

Authors Type of Study Name of Bacteria
(Probiotics) Results

Saracino et al. (2020) [13] Preclinical
L. casei, L. paracasei, L.

acidophilus, B. lactis, and
S. thermophilus

Growth inhibition of H. pylori.

Chen et al. (2019) [14] Preclinical L. rhamnosus and L. acidophilus

Inhibited growth, adhesion, and
invasion of H. pylori; reduced H.

pylori-induced inflammation (decreased
NF-κB activity and IL-8 secretion);

downregulated phosphorylation and
translocation of CagA; reshaped

gut microbiota.

Yuan et al. (2021) [15] Clinical

Probiotics therapy
(Bifidobacterium tetravaccine
tablets) included B. infantis >

0.5 × 106 CFU/tablet, L.
acidophilus > 0.5 × 106

CFU/tablet, E. faecalis > 0.5 ×
106 CFU/tablet,

B. cereus > 0.5 × 105 CFU/tablet)

Upregulated pathogenic bacteria in gut
microbiota after administration of

probiotics.

Taghizadeh et al. (2020) [16] Preclinical L. acidophilus ATCC4356 and L.
rhamnosus PTCC1607

Inhibited bacterial growth and
adhesion; stimulated IFN-G.

Yarmohammadi et al.
(2021) [17] Preclinical L. gasseri ATCC 33323 Downregulated the expression of IL-8

and Bcl2.

Lin et al. (2020) [18] Preclinical

L. fermentum P2 (P2), L. casei
L21 (L21), L. rhamnosus JB3

(JB3), or a mixture including
the aforementioned three

(multi-LAB) for 3 days

Modulated metabolites important in
immune response.

Maleki-Kakelar et al.
(2020) [19] Preclinical L. plantarum Increased cell apoptosis.

He et al. (2022) [20] Preclinical L. salivarius and L. rhamnosus

Anti-inflammation (downregulated
proinflammatory signaling pathways
that included NF-κB, TNF, and IL-17;
increased the abundance of beneficial

bacteria in gut microbiota.

Lai et al. (2022) [21] Preclinical Parabacteroides
goldsteinii MTS01

Downregulated inflammation through
downregulation of COX-2, IL-1β, and
TNF-α; decreased pathogenic effect of

H. pylori virulence factors.

Most studies assessed the antibacterial activity of Lactobacillus spp. (8/9; 88.9%) against
H. pylori, of which four studies determined the antibacterial properties of L. acidophilus,
two studies determined the properties of Bifidobacterium spp., and one study each deter-
mined the properties of Streptococcus thermophilus and Parabacteroides goldsteinii MTS01.
Of note, Lactobacillus spp. were demonstrated to show antibacterial activity against H.
pylori in vitro and in vivo studies. Four studies showed that Lactobacillus spp., namely, L.
casei, L. paracasei, L. acidophilus, L. rhamnosus, and L. fermentum, inhibited the growth of H.
pylori in vitro. Notably, one study showed that L. rhamnosus and L. acidophilus inhibited
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the growth of multidrug-resistant H. pylori in vitro [14] (Table 1). S. thermophilus and B.
lactis also inhibited the growth of H. pylori. Synthesis of data based on the antibacterial
mechanism of probiotics against H. pylori revealed that most studies (n = 4) found the
administration of probiotics in either animal models or humans altered the gut microbiota
of the host infected with H. pylori. In one study, mice infected with H. pylori, but treated
with probiotics, were shown to harbor enriched beneficial microbes that produced short
fatty acid chains such as Bacteroides, Alloprevotella, and Oscellibacter and anti-inflammatory
microbes (Faecalibaculum) [20]. However, in a clinical trial, probiotic monotherapy con-
sisting of B. infantis, L. acidophilus, E. faecalis (>0.5 × 106 CFU/tablet), and B. cereus for 14
days was not beneficial to H. pylori-infected subjects as the therapy was not successful in
reducing H. pylori burden in human’s stomach (ChiCTR1900024893) [15]. Three studies
found that administration of probiotics reduced inflammation in the host, in which the
expression of interleukin-8 (IL-8) and nuclear factor kappa B (NF-κB) decreased in H. pylori-
infected cell lines or animal models. In addition, molecules essential in proinflammatory
cellular signaling were reduced in the H. pylori-infected host model [20]. Administration
of probiotics also reduced H. pylori cell adhesion, as observed in two studies [14,16]. An
increase in cell apoptosis was observed in two studies [17,19]. Furthermore, probiotics
treatment was also demonstrated to reduce the effect of vacuolating cytotoxin A (VacA)
vacuolation in cells [18,21], as well as cytotoxin-associated gene A (CagA) translocation,
phosphorylation, and the “hummingbird” cell-scattering effect [14,21]. Lin et al. [18] also
found that treatment of probiotics reduced H. pylori colonization burden and stimulated
the release of metabolites important in the immune response in mice.

2.4. Antibacterial Activity of Natural Products from Plants and Nanoparticles against H. pylori

Supplementary Table S1 [22–49] shows a list of plants used to examine the antibacterial
activity of natural products from plants against H. pylori. In total, 28 studies examining
the antibacterial activity of natural products against H. pylori were included in this review.
Most studies (n = 15) assessed the antibacterial activity of plant extracts, while the remain-
ing studies (n = 13) assessed isolated compounds from plants. The minimal inhibitory
concentration (MIC) value was assessed in 20 studies, among which eight studies also
assessed the minimal bactericidal concentration (MBC) value. Most studies that reported
the MIC value (n = 16) adopted the broth microdilution assay to assess MIC value, whereas
the remaining studies used the disc diffusion assay (n = 2) or both the disc diffusion assay
and the agar dilution method (n = 2). Nineteen out of 20 studies (95%) providing the MIC
value reported the susceptibility of H. pylori against the plant extracts or isolated com-
pounds examined, while one study (1/20; 5%) reported no direct antibacterial activity. The
lowest MIC value was 1.25–5 µg/mL in a study that examined the compound nimbolide
isolated from Azadirachta indica [41]. In addition, this compound from a similar study
also demonstrated an MBC against H. pylori ranging from 2.5 to 10 µg/mL. A high MIC
value ≥500 µg/mL was reported in the studies that examined the antibacterial activity
of the compound taxifolin from Mimusops balata fruit [25], the ethyl acetate fraction of
Physalis alkekengi L. var. franchetii, and the dry extract of Libidibia ferrea. The antibacterial
mechanisms of plant extracts or compounds were examined in 20 studies.

Overall, 10 categories of antibacterial mechanism were examined in the studies: (1) anti-
biofilm, (2) anti-urease, (3) gastroprotection, (4) anti-inflammation, (5) effect on H. pylori
virulence factors, (6) ATP leakage from H. pylori, (7) immune response, (8) H. pylori con-
version from spiral to coccoid (inactive form), (9) cellular signaling, and (10) bacterial
burden. Two studies found that the ethyl acetate fraction from Hibiscus rosa-sinensis red
flower [29] and phylligenin, a compound isolated from flowering plant Forsythia [37], ex-
hibited anti-biofilm activity against H. pylori. Meanwhile, four studies found that natural
plant products possessed anti-urease activity, and six studies showed the gastroprotective
properties of plant natural products. Furthermore, six studies demonstrated the anti-
inflammatory activity of six different plant products. Five studies showed a reduction in
H. pylori virulence factors, namely, cagA, vacA, ureA, flaA, and Omp18, while three studies
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showed a reduction in bacterial load and colonization. Two studies each demonstrated a
reduction in cellular signaling important in H. pylori-induced carcinogenesis [30,48] and
conversion of H. pylori from the active (spiral) to inactive coccoid form [29,42]. Li et al. [37]
observed that phylligenin extracted from Forsythia induced ATP leakage in H. pylori and
inhibited the mechanism of antibacterial resistance in the bacteria, as well as induced a
good immune response.

It is suggested that to be considered as good antibacterial agent against H. pylori, the
potential therapeutic candidate natural product must have antibacterial activity against not
only the bacteria itself, but also its virulence factors that orchestrate gastric carcinogenesis.
Taken together, the studies included in this systematic review (Table S1) demonstrated the
application of natural products that can be used as future alternative therapies against
H. pylori. Mechanisms targeting H. pylori examined in this study included the effects of
the products from plants against important H. pylori virulence factors, namely, urease
and CagA, which are both important for H. pylori to establish colonization in the human
stomach due to its inhospitable environment. Furthermore, the effect of plant compounds
in decreasing CagA activity is also important to prevent gastric carcinogenesis orchestrated
by this oncoprotein [30,48]. Nevertheless, modeling of the natural products against specific
target molecules of H. pylori is still lacking. The interaction of potential compounds
with H. pylori using molecular docking and machine learning, coupled with in vitro and
in vivo experiments, should be conducted in the future to elucidate the mechanism of
antibacterial activity.

Nanoparticles have emerged alternative antibacterial agents against H. pylori because
of their chemical properties that enable the attachment to and disturbance of the membrane,
targeting bacterial DNA replication and transcription, as well as RNA translation [50].
In this review, only one study [51] examined the antibacterial activity of nanoparticles
against H. pylori. The nanoparticles (namely, N-acylhomoserine lactonase-stabilized silver
nanoparticles (AiiA-AgNPs)) inhibited the quorum sensing molecules of H. pylori, which in
turn reduced the biofilm formation of the bacteria, production of urease, and cell surface
hydrophobicity of H. pylori [51].

2.5. Progress on H. pylori Vaccine

Seven studies that evaluated vaccine candidates against H. pylori were included in this
systematic review. A list of the vaccine candidates examined is available in Table 2.
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Table 2. List of vaccine candidates against H. pylori and their potent immune response in animal models.

Authors Name of Vaccine Type of
Vaccine

Vaccine
Delivery Target Model Used Type of Immune Response

Elicited

Cen et al.
(2021) [52]

Saccharomyces
cerevisiae-based oral vaccine

EBY100/pYD1-UreB,
EBY100/pYD1-VacA, or
EBY100/pYD1-UreB +
EBY100/pYD1-VacA

Vector-based Oral Urease and
VacA Mice Humoral and mucosal

immune response.

Wang et al.
(2021) [53]

L. monocytogenes-based
vaccine, a multi-epitope

chimeric antigen (MECU)
containing multiple B

cell epitopes

Vector-based Oral

5 B-cell
epitopes from

FlaA, AlpB,
SabA,

and HpaA

Mice

Elicited high levels of IFN-γ,
IL-4, and IL-17 in splenic

lymphocytes; increased IgA
and IgG.

Xie et al.
(2021) [54]

Oral multivalent
epitope vaccine

Multivalent
epitope Oral

Three Th cell
epitopes and
five against

B cells

Mice

Increased IFN-γ, IL-4, and
IL-17 in lymphocyte

supernatants to activate Th1,
Th2, and Th17 mixed T-cell

immune responses;
increased IgA and IgG.

Liu et al.
(2019) [55]

Outer-membrane vesicles
(OMVs) derived from

gerbil-adapted H. pylori
strain 7.13

Outer
membrane

vesicle
Oral

Membrane
proteins of H.

pylori
Mice Th2-biased immunity;

increased IgA and IgG.

Peng et al.
(2018) [56]

Neutrophil-activating
protein A subunit (NapA)

and L. lactis as vector
Vector-based Oral

Neutrophil-
activating
protein A
subunit

Mice
Polarized Th17 and Th1
responses; increased IgA

and IgG.

Espinosa-
Ramos et al.
(2019) [57]

H. pylori 50–52 kDa
immunogen-derived

peptide antigen with the
sequence Met–Val–Thr–Leu–

Ile–Asn–Asn–Glu
(MVTLINNE)

Peptide
antigen Subcutaneous

Immunogen
synthetic
peptide

Mice
Induced thymus
lymphocytes and

significantly induced IL-6.

Pan et al.
(2018) [58]

Multivalent epitope-based
vaccine cholera toxin B

subunit (CTB)-HUUC with
the intramucosal adjuvant
CTB and tandem copies of

B-cell epitopes

Multivalent
epitope Oral

3 B-cell and 9
T-cell

epitopes
Mice

H. pylori-specific
lymphocyte responses and a
mixed CD4+ T-cell immune
response; increased IgA and

IgG.

All studies adopted mouse models to study the vaccine efficacy. The types of vac-
cine adopted in the studies included vector-based vaccines using vectors of Saccharomyces
cerevisiae (n = 1), Listeria monocytogenes (n = 1), and Lactococcus lactis (n = 1). Multivalent
epitope vaccines were employed in two studies, and outer membrane vesicles and peptide
antigens were used in one study each. Six studies (85.7%) administered vaccine delivery
to the animal models orally, while one study (14.3%) administered the vaccine through
subcutaneous injection. H. pylori virulence factors targeted for vaccine design included ure-
ase, CagA, VacA, FlaA, neutrophil-activating protein A subunit, outer membrane vesicles,
AlpB, SabA, and HpaA. Two studies that employed multivalent epitope vaccines targeted
epitopes on B and T cells. A study conducted by Liu et al. [55] targeted 169 outer membrane
proteins of H. pylori. In summary, all vaccine candidates showed promising results at a
preclinical level. All studies observed higher IgA and IgG levels in mice immunized with
vaccine candidates compared to controls. A reduction in the bacterial load and stomach
inflammation were observed in most studies (6/7; 85.7%). Furthermore, three studies
showed that immunization elicited an immune response in mouse models, including an
increase in the secretion of interferon gamma (IFN-γ), IL-4, and IL-17. Contradictory T-cell
polarization was observed, whereby one study [55] observed T helper 2 (Th2) polarization
in immunized mice while Peng et al. [56] observed Th17 and Th1 polarization.
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3. Discussion

In this systematic review, we systematically reviewed the antibacterial activity of
probiotics, nanoparticles, and natural products from plants against H. pylori, as well as
progress in H. pylori vaccine development. We restricted our analysis to articles published
from 2018 to 2022 to obtain insights into recent publications describing alternative therapies
against H. pylori. Studies that assessed the antibacterial activity of alternative therapies in
combination with approved commercialized antibiotics were excluded from our review
because the objective of our review was to assess the efficacy of alternative therapy admin-
istered as monotherapy. This is because antibiotics have been shown to disturb the gut
microbiota and microbiome, which can have negative consequences for gastrointestinal
health [59]. Additionally, antibiotic treatment regimens to eradicate H. pylori consist of
multiple antibiotics, which may hinder patient compliance and contribute to an increase in
the H. pylori antibiotic resistance rate. Hence, the discovery of alternative monotherapy is
pertinent in the research and development of new drugs against H. pylori. Nevertheless,
studies have shown that supplementation of probiotics together with antibiotics has helped
to eradicate H. pylori infection in patients [60,61]. Despite an observed increase in publica-
tions from 2018 to 2022 regarding the alternative therapy of H. pylori in preclinical studies,
a lack of publications on human studies was noted. Factors that contribute to a lack of
clinical trials on potential therapies include a lack of financial resources and skilled medical
specialists, as well as government regulations and administrative issues, specifically in
middle- and low-income countries [62]. As the prevalence of H. pylori is high in middle-
and low-income countries [63], collaboration between high-income countries and middle-
and low-income countries in clinical trials should be encouraged to mitigate this issue.
The studies included in this systematic review showed that some probiotics exhibited
antibacterial activity or competitive exclusion against H. pylori. Furthermore, antibacterial
mechanisms of probiotics against H. pylori, including effects on virulence factors, the gut
microbiota, and the immune response, were also explored. However, there was a lack of
studies that identified and assessed the antibacterial activity of compounds secreted by
probiotics against H. pylori. This gap should be examined in future studies. Of note, the
clinical trial included in this review that investigated the effect of probiotic monotherapy
on human subjects failed to show a beneficial effect of probiotics in human subjects. In con-
trast, administration of probiotics together with antibiotics was demonstrated to improve
eradication with minimal adverse effects [64]. Thus, the mechanism (i.e., drug synergism
and antagonism of probiotic monotherapy and probiotic supplementation with antibiotics)
of combating H. pylori infection in human should be further investigated in the future.

A promising application of natural products from plants was also observed in this
systematic review. Every study adopted different plant species to determine antibacterial
activity, suggesting a broad spectrum of plant types that can be used as therapy against
the bacterium. The antibacterial activity of plant species against H. pylori has mostly
been determined from plant extracts without an identification of specific compounds with
activity against H. pylori. Given the complexity of plant chemical constituents, isolation
of desired chemical compound from plants is important to determine the safety and the
antibacterial efficacy of the compound intended for future human study. Most studies
reported MIC values of the products examined. Nevertheless, a lack of reports including
MBC values was noted. MIC values only provide information on the growth inhibition of
H. pylori, while MBC value provide information on bacteria killing. Studies to determine
antibacterial activity in the future should also report the MBC value of H. pylori. The
Clinical and Laboratory Standard Institute (CLSI) recommends the agar dilution method
to determine the MIC value of H. pylori [65]. However, we observed that most studies
employed the broth microdilution assay to determine the MIC value. This discrepancy is
because the agar dilution assay is difficult to perform and laborious, in addition to the fact
that H. pylori grows slowly. Various antibacterial mechanisms of plant products against
H. pylori were examined, including effects on virulence factors, bacterial burden in the
host, and anti-biofilm activity. Although the emergence of multidrug-resistant H. pylori
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has been observed in Southeast Asia [7], there is a paucity of recent studies examining the
antibacterial activity of plant natural products in this region. Given the richness of tropical
biodiversity in this region, the anti-H. pylori activities of products from plants should be
explored in the future using the diverse plant species in the region. Nanoparticles have
been demonstrated to display antimicrobial activity against multiple types of bacteria [66].
Nevertheless, only one recent study assessed the antibacterial activity of nanoparticles
against H. pylori with promising results. Barriers to the application of nanoparticles as
antibacterial agents include the design of nanoparticles for efficient delivery to the host and
the toxicity of the chemical to the host [67].

Vaccination remains a strategy to prevent infection. To date, no approved H. pylori
vaccine is available. Nevertheless, phase III clinical trials of an H. pylori oral vaccine in 4464
participants were conducted with effective, safe, and immunogenic results [11]. All studies
conducted at the preclinical stage in this systematic review demonstrated the promising
results of H. pylori vaccine candidates, in which the host’s immune response was elicited in
all studies. Interestingly, most studies explored the application of new vaccine technologies
including vector-based vaccines using bacteria and multi-epitope vaccines targeting specific
T and B cells. The unique design of multi-epitope vaccines harnesses a better immune
response than single-epitope vaccines, particularly for H. pylori strains with different anti-
gen variability [68]. Meanwhile, vector-based vaccines provide a robust immune response
since live bacteria are easily recognized by the immune system, and since the delivery of
live bacteria is more efficient compared to traditional vaccines [69]. Contradictory results
regarding T-cell polarization have been found, whereby Peng et al. [56] found Th1 to be
polarized in H. pylori vaccination, while Liu et al. [55] found Th2 to be polarized. Th2 cells
are important to neutralize extracellular bacteria such as H. pylori, while Th1 cells are im-
portant to neutralize intracellular bacteria [70]. However, both studies showed promising
results of H. pylori vaccine immunization. Further studies should be conducted to elucidate
the importance of Th1 and Th2 cells in H. pylori immunization.

While the data obtained from the studies included in this systematic review that
examined the alternative therapies against H. pylori are encouraging, there were several
limitations in this review. Firstly, we noticed heterogeneity of the studies included in
this systematic review. The methods adopted to examine antibacterial activity were not
universal, whereby some studies used broth microdilution while other studies used an
agar diffusion assay. However, the difficulty in culturing H. pylori in the laboratory with
different types of plants contributed to the choice of selecting appropriate antibacterial
assays that differ from one laboratory to another laboratory. Secondly, we only included
studies that were published in English, which may have missed studies that were published
in other languages. Lastly, most studies included in this review involved preclinical trials,
thus hampering our understanding of whether the findings from preclinical studies can be
translated to clinical trials. The lack of studies conducted on humans may have stemmed
from the expensive cost to conduct clinical trials, especially in developing countries with
limited funding resources and experts in respective fields. In addition, a lack of financial
resources in developing countries is also one of the factors leading to a lack of product
patents in preclinical studies that can be used for clinical trials before commercialization.
Lack of expertise in managing clinical trials is also a challenge that developing countries
must face before the implementation of clinical trials. Hence, this factor has contributed to
a lack of clinical trials conducted in developing countries where H. pylori infection is high.

4. Materials and Methods
4.1. Literature Search

Four literature databases, namely, PubMed, Scopus, Web of Science, and EBSCO
Medline, were used for literature search. We systematically evaluated all articles obtained
from the literature search using Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines. The following keywords were used to search the articles:
((“natural product” OR “plant” OR “nanoparticle” OR “probiotic” OR “vaccine”) AND
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(“treatment”) AND (“Helicobacter pylori” OR “H. pylori”)). We defined natural products as
compounds or extracts obtained from plant sources because our systematic review focused
on natural products from plants. For probiotics, we defined the term as live microbes
generally regarded as safe and administered to hosts that may have benefits for the hosts.
Commercialized antibiotics are defined as antibiotics currently available to treat H. pylori,
which include amoxicillin, tetracycline, clarithromycin, metronidazole, levofloxacin and
rifampicin. Nanoparticles are ultrasmall particles in the range of 1–100 nm in diameter,
while vaccines are defined as substances that can elicit an immune system response against
H. pylori.

4.2. Inclusion and Exclusion Criteria

Inclusion criteria of this study included (1) studies that evaluated natural products
from plants or nanoparticles against H. pylori, (2) studies that evaluated the antibacterial
properties of potential probiotics against H. pylori, (3) studies that evaluated vaccine can-
didates of H. pylori in preclinical trials, (4) studies that were published in the last 5 years
(from January 2018 to August 2022), (5) studies conducted in vitro, in vivo, or in humans,
and (6) studies published in English with the full text available. Exclusion criteria in-
cluded (1) studies that evaluated natural products, potential probiotics, or nanoparticles in
combination with commercialized antibiotics against H. pylori, (2) studies that evaluated
potential probiotics, natural products, vaccine, or nanoparticles against bacteria other than
H. pylori, (3) studies not published in English or with full text not available, (4) studies
that examined vaccine candidates in clinical trials, (5) book chapters, conference abstracts,
and literature, systematic, or meta-analysis reviews, and (6) studies published before 2018.
Two independent researchers evaluated the articles to be included in this review; if there
was disagreement for inclusion or exclusion of the articles, a third researcher was consulted
to reach consensus. The literature search was conducted from May to August 2022.

4.3. Data Extraction and Synthesis

Data such as authors, year, type of study (preclinical or clinical trials), type of natural
products used in the study, name of probiotic or name of vaccine candidate and their
evaluation in vitro and in vivo, and results of antibacterial activity against H. pylori were
extracted and organized using Microsoft Excel 2016. Data were synthesized according to
antibacterial activity and mechanism of the products against H. pylori.

5. Conclusions

In conclusion, probiotics and natural products from plants show promising results
to be harnessed as alternative therapies against H. pylori to combat the emergence of
multidrug-resistant strains. However, there is still a paucity of clinical trials on probiotics
and natural products from plants. This stems from the fact that H. pylori infections are
mostly diagnosed in developing countries where clinical trials are expensive and require
a team of clinical experts. Consequently, the findings from preclinical studies cannot
be properly translated to human studies. With the advent of artificial intelligence and
machine learning technology, the research and development of drugs and vaccines are
no longer limited to wet laboratory experiments; they can also include silico studies. Of
note, studies that employed both wet and dry laboratory experiments for drug discovery
were still lacking in our systematic review. In silico studies prior to commencement of wet
laboratory experiments can provide valuable insights into potential drug candidates that
can be screened in vitro and in vivo. Probiotics from fermented foods and natural products
extracted from plants, especially from areas with rich biodiversity, can be harnessed for the
research and discovery of novel antimicrobial agents against antibiotic-resistant H. pylori.
H. pylori vaccines using new vaccine technologies show promising results in preclinical
trials and should be explored further.
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