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Abstract: Oocyte activation, a fundamental event during mammalian fertilisation, is initiated by
concerted intracellular patterns of calcium (Ca2+) release, termed Ca2+ oscillations, predominantly
driven by testis-specific phospholipase C zeta (PLCζ). Ca2+ exerts a pivotal role in not just regulating
oocyte activation and driving fertilisation, but also in influencing the quality of embryogenesis. In
humans, a failure of Ca2+ release, or defects in related mechanisms, have been reported to result
in infertility. Furthermore, mutations in the PLCζ gene and abnormalities in sperm PLCζ protein
and RNA, have been strongly associated with forms of male infertility where oocyte activation is
deficient. Concurrently, specific patterns and profiles of PLCζ in human sperm have been linked
to parameters of semen quality, suggesting the potential for PLCζ as a powerful target for both
therapeutics and diagnostics of human fertility. However, further to PLCζ and given the strong
role played by Ca2+ in fertilisation, targets down- and up-stream of this process may also present a
significantly similar level of promise. Herein, we systematically summarise recent advancements
and controversies in the field to update expanding clinical associations between Ca2+-release, PLCζ,
oocyte activation and human fertility. We discuss how such associations may potentially underlie
defective embryogenesis and recurrent implantation failure following fertility treatments, alongside
potential diagnostic and therapeutic avenues presented by oocyte activation for the diagnosis and
treatment of human infertility.

Keywords: phospholipase C zeta (PLCzeta); oocyte activation; male infertility; sperm; fertilisation;
calcium

1. Introduction

Fertilization is a multistep process that is initiated by the interaction of sperm and
the layer surrounding the oocyte, or what is known as zona pellucida (ZP), after which
the sperm and oolemma will interact. This results in a signal transduction cascade, which
will convert the oocyte into a diploid zygote, through a series of collective processes
termed oocyte activation (OA). OA involves well-defined morphological and biochemical
endpoints that occur following sperm-oocyte interaction, such as the resumption of meiosis
II, prevention of polyspermy, and cortical granule exocytosis. These endpoints can vary
in duration; some will require minutes, and some will require hours after the interaction,
but calcium levels are critical for all of them [1]. Prior to fertilisation, the oocyte first
arrests in prophase I in the pre-ovulatory phase [2], until the release of luteinizing hormone
(LH), which resumes meiosis until the metaphase II (MII) stage where another meiotic
arrest occurs until fertilisation, regulated by cAMP. Increasing cAMP analogues or cAMP
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phosphodiesterase inhibitors will prevent oocyte maturation and will keep it arrested. Gs
and Gs-coupled receptors [GPR3 and GPR12] play a major role in meiotic arrest because
the activation of Gs will increase the level of cAMP [3]. Numerous lines of investigation
have established that the underlying factor of key importance at OA are intracellular
Ca2+ ions [4].

Indeed, many experiments have demonstrated the importance of Ca2+ at OA in
mammalian and non-mammalian species [5], with further studies suggesting that the
specific profile of Ca2+ release at fertilisation can exert effects upon postnatal growth
and the weight of mice offspring [6]. Intracellular Ca2+ release is a crucial component
of OA, occurring in a dramatic wave-like manner, starting from the point of fusion to
all over the oocyte. Generally, this increase in intracellular Ca2+ release seems mediated
in an inositol 1,4,5-triphosphate (IP3) receptor-dependent manner and from Ca2+ stores,
predominantly being the endoplasmic reticulum (ER). While in some species, such as
Xenopus and sea urchins, there is a single wave of Ca2+ release, in others, such as mammals,
this release pattern occurs in an oscillatory manner, the amplitude and frequency of which
vary in duration, amplitude, and frequency depending on the species. Generally, Ca2+

oscillations are a linear result of IP3 activation [7]. Many experiments have observed IP3
peaks preceding Ca2+ release in oocytes during fertilisation [8], while other experiments
also observed that Ca2+ ions could also initiate oocyte activation following microinjection in
oocytes [8,9]. The down-regulation of IP3 receptors in hamster and mouse oocytes inhibited
Ca2+ oscillations and oocyte activation [10–13].

Normally, basal cytosolic Ca2+ levels in the oocyte are kept relatively low compared
to the extracellular environment, making the cytosol a favourable site for minor Ca2+

variation, as a response to extracellular or intracellular Ca2+ signalling [14]. The Ca2+

oscillation signals the start as a result of the disturbance of cytosolic Ca2+ equilibrium. This
disturbance occurs as a response to stimulatory signals that act on Ca2+ receptors which are
found either in the cytoplasmic membrane or ER (Ca2 store) and will result in an increase in
cytoplasmic Ca2+ [15]. Coordinated calcium waves will be produced by internal Ca2+ stores,
where a sudden increase of Ca2+ will induce more Ca2+ release through a series of events
as positive feedback [16], a process termed calcium-induced calcium release (CICR). The
most essential mediator for Ca2+ waves is inositol trisphosphate receptors (IP3Rs) which
are found abundantly as calcium-releasing channels on ER in the cytosol [17]. IP3 resulting
from various cascades produced by extracellular stimulants will bind to IP3Rs, causing
a conformational change to Ca2+ channels found on the cell membrane leading to Ca2+

influx into the cell [18]. Following sperm penetration, Ca2+ oscillations are initiated that
are critical for OA and the completion of meiosis II [19]. Ca2+ oscillations will activate Ca2+

calmodulin-dependent kinase II (CaMKII) which then will activate an anaphase-promoting
complex (APC) [20]. The activation of the latter will then degrade securin and cyclin B1
(CCNB1) (cell cycle regulators) [21]. The degradation of such regulators enables cell cycle
progression and segregation of sister chromatids, and thus (perhaps indirectly) may also
control the occurrence of abnormal chromatid segregation and aneuploidy (for review see
Jones and Lane [22]), although the exact mechanisms underlying this remain to be fully
elucidated. Ca2 oscillation has also proven to play a major role in other developmental
stages at the genome level and nuclear signalling level [19,21,23,24].

In mammalian oocytes, all of the events following Ca2+ oscillation occur in the tempo-
ral order, unlike non-mammalian cells where all of the events occur simultaneously after
being exposed to single Ca2+ transients. Therefore, mammalian cells are more reactive to
the frequency, duration, and amplitude of Ca2+ release. Along with the accuracy of the
oscillations, the mature oocyte that is coordinated by important organelles, such as ER and
mitochondria, are essential to maintain the periodical increase in Ca2+ [25].

2. Endoplasmic Reticulum (ER)

Ca2+ is pumped against a concentration gradient from the cytoplasm into the ER by
the plasma membrane pump sarco-ER Ca2+-ATPase (SERCA). Three genes in mammals
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(ATP2A1–3) are responsible for producing three different isoforms of SERCA (SERCA1–3),
and through alternative splicing, they produce 11 SERCA isoforms. Each one of these iso-
forms has a location, developmental expression, and most importantly, a unique affinity and
sensitivity to Ca2+. Like any Ca2+ ATPase, SERCA’s functional structure is trans-membranal,
containing three cytoplasmic domains (phosphorylation and nucleotide-binding domains
in addition to the actuator) and ten membrane-spanning helices. The transmembrane
domain contains two Ca2+-binding sites, making SERCA capable of transporting two Ca2+

ions per ATP. Any general plasma membrane ATPase inhibitor, such as orthovanadate, is
able to inhibit an undetermined SERCA isoform or a specific one, such as thapsigargin [26].

Many studies have illustrated the influence of SERCA2 isoforms in sustaining Ca2+

oscillation during fertilisation in animal models, such as Xenopus, frogs, and mice. Inter-
estingly, thapsigargin treatment significantly reduced the magnitude and duration of the
first Ca2+ peak and oscillation persistence. During oocyte maturation, SERCA2B protein
levels remain constant but are redistributed spatially from diffuse patterns to cortical clus-
ters mimicking ER redistribution. This arrangement will allow SERCA to pump closer to
IP3 receptors. This would be necessary for depletion that follows fertilisation, as it will
facilitate the refilling of Ca2+ stores in ER [26].

3. Oocyte Mitochondria

Prior to oocyte and mitochondria maturation, the granulosa cells and cumulus provide
the cell with energy. Following ovulation, the mitochondria start to activate and become
the main source of energy in the mature oocyte [27]. Further to meeting the energy re-
quirements of the oocyte (and subsequent embryo), the ATP supplied by the mitochondria
also plays a critical role in genetic stability, due to its function in assembling microtubule
spindles during meiosis [I and II]. Indeed, any decrease in ATP levels will cause chromo-
some rearrangements in the cells and that will lead to genetic disorders. Furthermore,
the mitochondria is one of the major players in cellular homeostasis, in particular Ca2+

intracellular homeostasis. Alteration in cellular homeostasis depends on the change of Ca2+

concentration, for example, if the concentration of Ca2+ entering the mitochondria decreases
more than it should, this will cause a bioenergy disaster. Moreover, if the concentration
of Ca2+ in the cell increases, causing apoptosis because the abnormal Ca2+ concentration
disrupts the oxidative phosphorylation and can open the transition pore in mitochondria,
this will cause mitochondrial dysfunction [27].

4. Ca2+ Oscillation Models

Ca2+ oscillations have been proven for a long time in many studies as an important
step of OA, but the exact mechanism that results in the oscillation, specifically in relation to
gamete fusion, remains unclear. Few hypotheses have been suggested [28].

5. The Ca2+ Conduit Model

Based on the sea urchin model, it was suggested that the infusion of a considerable
amount of Ca2+ into the oocyte right after sperm fusion would lead to Ca2+-induced Ca2+

release, allowing Ca2+-influx into the oocyte. However, this model was not successful on
other animal models, such as mice and ascidians. Moreover, experiments emphasize the
importance of the IP3 pathway to release and maintain calcium in OA [28].

6. The Membrane Receptor Model

The basic theory underlying this model suggests that OA would result from the inter-
action between a specific sperm-ligand and oocyte-receptor, activating a phospholipase C
(PLC) inside the oocyte. However, such assertions were supported by indirect evidence
and the experiments involved overexpressed G-protein linked receptors which might be re-
sponsible for activating PLC-β, as a response to gamete interactions and the corresponding
application of ligands. Some experiments showed Ca2+ release by injecting the hydrolysis-
resistant GTP analogue GTP-γS, in sea urchins and frog eggs. However, resultant patterns
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of Ca2+ release were not comparable to that at fertilisation, specifically in mammalian
cells. Moreover, the direct injection of sperm into the oocyte cytosol using intracytoplasmic
sperm injection (ICSI) can undergo successful fertilisation and embryogenesis, without any
such membrane-membrane interactions [28], creating doubt regarding the veracity of this
model, at least within mammals. Interestingly, ICSI can also yield Ca2+ oscillations and the
production of considerable IP3 levels [29–32].

7. The Soluble Sperm Factor

This model suggests that a soluble sperm factor is released into the oocyte during
or immediately after gamete fusion, which in turn is responsible for OA. Injection of
sperm cytosolic extracts into the eggs/oocytes of sea urchins, mice, humans, pigs, and
cows triggered the characteristic series of Ca2+ oscillations seen at fertilisation, while also
producing the subsequent events of OA [33–35]. One would also expect that considering
the IP3-mediated nature of Ca2+ release in mammalian oocytes, it would be suitable to
consider that a phosphoinositide (PI)-specific PLC-associated pathway is simulated [32].
Indeed, the characteristic pattern of Ca2+ release at fertilisation is not stimulated by Ca2+

injection (although in suitably high concentrations, this can result in OA), nor does injection
of IP3 or stimulating G-proteins (although these do result in an insufficient series of Ca2+

release highly different from those at fertilisation) [32,36]. Most scientific opinion suggests
that the correct theory is indeed a specific soluble protein delivered to the oocyte by the
sperm, resulting in Ca2+ release and OA. Indeed, given the specifications underlying the
signalling mechanisms underlying OA, most opinions suggest a PLC-mediated mechanism
is the essential factor to initiate the IP3 pathway for OA [28,32].

8. The Mammalian Sperm Factor: Phospholipase C Zeta

A number of factors and proteins have been proposed to be the sperm factor, including
the post-acrosomal WW-domain binding protein (PAWP), where its implied function in
OA is through a yes-associated protein (YAP) to activate PLC-γ, similar to what happens
in Xenopus eggs [37,38]. The role of PAWP was seen when the binding of a competitive
inhibitor to a PPGY peptide, which is derived from PAWP in murine and human oocytes,
inhibited the rrelease of Ca2+ [38,39]. Microinjection of recombinant PAWP into mouse
oocytes did not cause Ca2+ oscillations, while the suggested signalling pathway associated
with PAWP seemingly has no relevance to OA [40]. A further candidate sperm factor has
also included a truncated c-kit receptor, tr-kit, which was able to induce parthenogenetic
mouse OA via phosphorylation and activation of PLCγ1 [41,42] (like the proposed action
of PAWP). However, these findings have yet to be independently verified.

The series of Ca2+ oscillations that are seen in OA that are attributed to be the function
of the “sperm factor” is believed to be the direct result of Ca2+ release via (IP3-mediated
reactions [10,15,28,43–45], and PLCs are a class of enzymes well characterised to be involved
in the catabolism of phosphatidylinositol 4,5-bisphosphate (PIP2) into IP3 and diacylglycerol
(DAG) [28,46–48]. PLCs have 13 known isoforms that can be classified based on function
and structure and they are PLC beta (β1–4), PLC delta (δ1,3 and 4), PLC epsilon (ε), PLC
eta (η1–2), PLC gamma (γ1–2), and PLC zeta (ζ) [28,47,49–52]. PLC isoforms generally
function as enzymes involved in protein kinase C activation via DAG and release Ca2+

from intracellular stores [28,46–48], all of which share a similar structure with greatly
conserved catalytic X and Y domains which are responsible for PIP2 hydrolysis. PLCs
also comprise EF-hands, which are the Ca2+ binding structures in the enzyme; a pleckstrin
homology (PH) domain that is generally used for targeting the enzyme substrates; and a
C2 domain, which is also essential in Ca2+ activity [53–55]. All PLC isoforms may function
similarly, but they do differ in tissue distribution and regulatory mechanisms, and even
have additional functions that make them variable from each other [55]. However, most
investigated relevant PLCs were unable to elicit physiological patterns of Ca2+ release
following microinjection into oocytes [56].
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The specific PLC isozyme responsible for Ca2+ release at OA was first identified using
mouse expressed sequence tag (EST) databases to describe a novel, testis-specific PLC,
termed PLCzeta (PLCζ), a ~74 kDa protein in mice, its immunodepletion from sperm
extracts suppressed Ca2+ release at OA [4,57]. Recombinant PLCζ injection in the form
of protein or cRNA into mouse oocytes caused Ca2+ release similar to those at natural
fertilisation [57–59]. The amount of PLCζ protein injected/expressed in mouse oocytes that
resulted in successful Ca2+ release and OA corresponded to the same range as the amount
of PLCζ found in a single sperm, estimated to be ~40 fg, which was also found to be the
level at which PLCζ is most effective [32,44,57–60]. Therefore, PLCζ is the only protein that
is shown to satisfy the requirements needed to be the sperm factor, as it is the only one that
can induce Ca2+ oscillations which are seen during fertilisation [45].

The suggested PLCζ mechanism of action is that PLCζ targets the cytoplasmic vesicle-
bound PIP2 in the oocyte, yielding IP3, which targets the IP3R on Ca2+ stores, such as
the endoplasmic receptors, to release intracellular Ca2+ [61–63]. RNA interference (RNAi)
experiments targeting PLCζ in mice led to an early inhibition of Ca2+ release before OA,
with such mice yielding a decreased number of offspring [57]. PLCζ, like other PLC
isoforms, elicits Ca2+ release from intracellular stores via hydrolysation of PIP2 into DAG
and IP3 [10,28,43–45]. However, given its high Ca2+ sensing ability and the distribution of
the protein mainly in sperm and testes [55], PLCζ has currently been suggested to primarily
function at fertilisation, inducing oocyte activation and embryogenesis [54,64–66].

9. PLCζ Structure and Function

PLCζ is currently the smallest known PLC isoform (ranging in size from
70–75 kDa) [44,45,54,57], sharing a similar structure distribution as other PLC isoforms
(Figure 1A), with an up to 60% similarity in its X and Y domains, especially with PLCδ1 [55].
The X and Y domains are said to consist of eight repeating units of beta/alpha helixes [44,67],
where they play an essential role in fertilisation [68–71]. Moreover, the XY linker region,
connecting the X and Y domains, exhibits significant species-dependant differences. Inter-
estingly, the PLCζ does not have a PH domain [55], so the PLCζ targeting the membrane-
bound substrate would have to be carried out by another mechanism, such as through the
XY linker and possibly the C2 domain [55]. Removal of the C2 domain of PLCζ resulted in
only a slight decrease in Ca2+ sensitivity and binding [53], suggesting that the C2 domain is
not involved in Ca2+ sensitivity but rather Ca2+ oscillatory activity [45,54]. The C2 domain
can also interact with phospholipids, such as PI(3)P and PI(5)P, indicating the possibility of
the C2 domain being associated with targeting these phospholipids [54,67,72]. This notion
was supported following the identification of homozygous PLCζ mutations in two infertile
patients, which, while theydid not necessarily affect enzymatic activity in vitro, the mutated
PLCζ exhibited a significantly lower affinity in binding to PI(3)P and PI(5)P [45,54,73].

PLCζ is also involved in nuclear sequestration activity that directs the protein to act in
a cell cycle-dependent manner [28,74,75]. Inhibiting pronuclear formation resulted in per-
sistent Ca2+ oscillations for an extended period of time [76,77]. This nuclear sequestration
is attributed to a specific ‘nuclear localisation’ sequence found in the XY linker region of at
least mouse PLCζ. Indeed, the presence of accumulated tagged-PLCζ in nascent pronuclei
correlated with pronuclear formation [28,78–80], while the release of this tagged-PLCζ back
into the cytoplasm corresponded to the pronuclear breakdown before mitosis, coinciding
with the resumption of Ca2+ release [28,78]. The EF-hand region in PLCζ consists of four EF-
hand motifs, each structured into a helix-loop-helix confirmation located at the N terminal
of the protein. The EF-hand region not only plays a crucial role in Ca2+ sensitivity, distin-
guishing it from other PLC isoforms, but also perhaps exerts a role in nuclear translocation
during fertilisation and binding to PIP2 [4,44,79,81]. Interestingly, the truncation of three
out of four EF-hands led to an accumulation of PLCζ in the pronuclei [81]. PLCζ, through
its EF-hands, exhibits supreme Ca2+ sensitivity [53], allowing it to be active even at basal
oocyte cytosolic Ca2+ levels after gamete fusion [45,53]. Truncation of the EF-hands, or
replacement with another PLC isoform EF-hands altered the Ca2+ sensitivity of the altered
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PLCζ but did not affect the enzymatic function [45,53,72]. Apart from a shared nuclear
translocation role with the XY linker, the EF-hands may also play a further shared role with
the XY linker in residue binding due to the presence of basic residues [53,54], illustrated by
a decreased PIP2 interaction following the deletion of EF-hands [4,45,67].
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The duration and frequency of PLCζ-induced Ca2+ oscillations are also an impor-
tant part of fertilisation, which varies between species, extending from minutes to hours
in terms of duration [43,63,82,83]. The precise amount of PLCζ is what determines the
number of oscillations that can be induced during fertilisation. Indeed, increasing the
amount of PLCζ injected into human oocytes resulted in an elevation in Ca2+ oscillation
frequency and amplitude [54,84], this then can affect the level of gene expression found
in the oocyte [23,54,85]. The amount of PLCζ needed to activate the oocyte also seems to
differ between species [28,75,86]. PLCζ is currently understood to localise in the oocyte
cytoplasm, specifically within intracellular vesicles [79,81,87,88]. Indeed, most PIP2 hy-
drolysation occurred in the cytoplasm, corresponding to PLCζ localisation in the cytoplasm
near the nuclear envelope rather than the plasma membrane [69,89]. Furthermore, oocyte
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cell membranes do not exhibit any discernible PLCζ localisation, while depletion of plasma
membrane PIP2 did not significantly affect Ca2+ oscillations at fertilisation [90]. Inter-
estingly, the fusion of inositol lipid phosphatase with inactive PLCζ and injection into
mouse oocytes to diminish PIP2 in vesicles led to the inhibition of Ca2+ oscillations [90].
This collectively suggested that PIP2 hydrolysis from intracellular vesicles, rather than
the plasma membrane, is the primary source of the cytosolic Ca2+ oscillations in oocytes
induced by PLCζ [89].

Intriguingly, transgenic mice where PLCζ was knocked out (KO) in two different
studies indicated that KO male mice were able to have offspring but with a remarkably
decreased amount than usual following in vitro fertilisation (IVF) alongside abnormal and
delayed Ca2+ oscillations and an increased amount of polyspermy. However, ICSI of such
KO sperm was unable to successfully elicit Ca2+ release [54,64,65,91]. Collectively, both
studies indicated that although PLCζ plays an indispensable role at OA, it is possible that
further factors may contribute towards Ca2+ release at fertilisation, in addition to (and
perhaps independently of) PLCζ (discussed later in this review).

10. Abnormal Expression and Localization in Sperm

PLCζ has been found in the sperm of many different species and it typically localizes
to different subcellular areas of the sperm head. For instance, it has been shown that PLCζ
in mice is localized in the sperm’s head post-acrosomal region [92]. However, this pattern
interestingly changes during capacitation [92]. However, in unincapacitated human sperm,
PLCζ is mainly located in the sperm’s head, specifically in the equatorial region [93,94].
Another study showed that PLCζ in species, such as hamsters and mice, it is localized in the
sperm’s head/acrosomal region [94]. In porcine and mouse sperm, PLCζ has been found
in the acrosomal and post-acrosomal regions, and PLCζ has also been noticed in porcine
sperm tails [62,95,96]. As for equine sperm, PLCζ was discovered in the equatorial section,
acrosome, and head, mid-peace [97]. It is still unknown, though, as to whether these
populations are physiologically reliable. Numerous studies have found diverse patterns
of PLCζ among the same mammalian species, frequently using the same antibody probe,
which raises questions about specific PLCζ localisation [45].

Recent efforts, using specific antibodies and optimised protocols, specific patterns of PLCζ
localisation in human sperm were identified including equatorial, equatorial + acrosomal, and
a uniformly dispersed pattern, with a further pattern in the tail and the mid-peace of
the sperm [98]. The equatorial region is where PLCζ is most frequently found in human
sperm [43]. This is rational from a biological perspective, enabling the PLCζ release into
the cytoplasm immediately after gamete fusion [43]. Indeed, studies show that the specific
localisation of PLCζ was related to fertilisation success, with the acrosomal + equatorial
pattern corresponding to a higher chance of successful fertilisation, while dispersed PLCζ
in sperm had a lower capacity for fertilisation [98].

While PLCζ has been found to be localized at the sperm tail, it is still unclear whether
these results are accurate [99]. However, a previous study used an equine sperm tail
injection to induce Ca2+ responses in oocytes [97]. Therefore, the possibility that tail PLCζ
may function either as an activator or facilitator in subsequent processes cannot be ruled
out. However, according to a different study, the localisation of PLCζ in the sperm tail is
just an artifact, because the researchers had concluded that antibody specificity is still a
significant issue and that is why we must ignore the PLCζ1 localisation in the tail of the
sperm [98]. The potential role of PLCζ1 populations in the sperm tail has not yet been
investigated; more study is required to specifically address this possibility. Studies on other
species additionally indicate that the capacitation process in sperm is also important in
activating PLCζ. It was suggested that the protein is activated during capacitation through
tyrosine phosphorylation, and interaction with Na/K ATPase α4 (ATP1A), epidermal
growth factor receptor (EGFR) [63]. Henceforth, PLCζ plays a critical role in fertilisation,
where any abnormality associated with the protein can lead to infertility.
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An interesting assertion was made by Aarabi et al. [100], who suggested that PLCζmay
be expressed by the epithelial cells of the epididymis, secreted in exosomes, which was then
surface-associated with sperm. This could be a potential and novel aspect of understanding
PLCζ expression. However, in addition to this specific study using these points to suggest
that PLCζwas not the sperm factor in favour of the group’s own candidate (PAWP), this
particular study is viewed with significant caution given that the antibodies used were
notorious for non-specificity and was indicated as such by the authors themselves in their
study. Very little validation was performed of such assertions, and there is also little
consensus to support the authors claims that PAWP instead of PLCζ is the mammalian
sperm factor given the specific physiological requirements for gamete function [101]. Thus,
while potentially providing an explanation for tail and other localisations of PLCζ, much
more work is required before any assertions can be made with certainty.

11. PLCzeta in Human Male Infertility

Similar to defective PLCs and abnormal Ca2+ signalling (and involved downstream
pathways) in clinical conditions [102,103], defects in PLCζ have strongly been associated
with specific cases of male infertility wherein OA or fertilisation is defective (OA-deficient;
OAD). Generally, infertile males whose sperm fail to fertilise oocytes tend to exhibit ab-
normal expression of PLCζ in the sperm [98]. The higher the levels of PLCζ, the more
likely fertilisation succeeds. Moreover, when a depleted PLCζ from sperm was used to
fertilise a mouse oocyte, Ca2+ release was reduced. This shows that defects or absence
of PLCζ may lead to the failure of fertilisation [7]. Indeed, a specific PLCζ quantity is
needed for successful OA, which differs between species, and reductions in such amounts
may result in defective OA/fertilisation [43]. Sperm from oligoasthenoteratozoospermic,
teratozoospermic, and asthenoteratozoospermic patients have been found to have lower
levels of PLCζ [56]. Furthermore, sperm from globozoospermic patients usually exhibit
a low rate of success in OA [104], either due to a lack of PLCζ, or if present at reduced
amounts, they exhibit an abnormal localisation pattern [56,61,105,106].

PLCζ levels may also be associated with specific sperm structures, as globozoosper-
mic sperm with acrosomal buds selected from a population of sperm exhibiting a com-
plete round-headed globozoospermic morphology could be used to achieve successful
fertilisation without fertility treatment, also corresponding to an acrosomal pattern of
PLCζ localisation [107]. Moreover, sperm from several patients exhibiting either absent or
severely reduced levels of PLCζ were unable to induce Ca2+ release following injection
into mouse oocytes [93]. However, when such sperm were co-injected with PLCζmRNA
in mouse oocytes, Ca2+ oscillations were rescued and OA/fertilisation was able to pro-
ceed [93]. Infertile, OAD males also tend to exhibit mutations in the PLCζ gene [68,69,108].
Indeed, injection of mutant PLCζ cRNA into mouse oocytes did not lead to sufficient
patterns of Ca2+ release, resulting in failed OA in mouse oocytes, in stark comparison with
oocytes injected with wild type PLCζ cRNA [68]. Numerous such mutations have now
been identified by multiple independent studies and correlated with OA failure in humans
(Figure 1B) [99,108].

12. Assisted Oocyte Activation (AOA)

AOA is a potential treatment for male-related infertility that aims to mimic physio-
logical Ca2+ release [109,110]. AOA methods currently comprise of various modalities,
consisting of either individual or combinations of electrical, chemical, and mechanical stim-
uli to activate oocytes during assessed reproductive technology (ART) methods, including
IVF and ICSI [7]. AOA will produce either multiple or single Ca2+ oscillations. Single
Ca2+ oscillations in some forms of AOA are not ideal for future successful development in
humans and mice [109,110]
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13. Electrical Activation

The electrical method has been tested in bovine and human oocytes [111], aiming
to apply nanoscale electrostimulation on oocytes, allowing for an influx of extracellular
Ca2+ through migration of lipid bilayer-charged proteins and pore formation within the
membrane [112]. This results in a long duration of single rapid Ca2+ increase in the
oocyte [111,113–115]. The success of this technique depends on the size of the pore formed
and the extracellular Ca2+ concentration. However, the downside of such a method is the
formation of excess reactive oxygen species (ROS), in addition to physical damage to the
oocyte [116]. Interestingly, perhaps measuring the electrical resistance in a cell could also
serve as a tool to detect oocyte viability and penetration [7], and thus while electrical AOA
may not be an ideal clinical therapeutic, perhaps some modifications could yield a potential
diagnostic of OA.

14. Mechanical Activation

Mechanical activation is the result of a mechanical disruption of the oocyte, resulting
in a ‘manual’ release of Ca2+ via intracellular store disruption or manual elevations of Ca2+.
This could be accomplished by piercing the oocyte, leading to increased Ca2+ influx, or
direct microinjection of Ca2+ into the oocyte. Perhaps more invasively, another mechanism
involves a physical ER membrane disruption and mitochondrial redistribution, or (more
popularly) manual oocyte membrane disruption followed by vigorous oocyte cytoplasm
disruption to increase the Ca2+ load. While of course significantly physically disruptive,
such mechanisms would perhaps enhance closer contacts between sperm and intracellular
membranes, further enhancing the chances of successful OA [7,117,118].

15. Chemical Activation

Chemical methods of activation stimuli utilise lipid-soluble chemicals termed ‘Ca2+

ionophores’ that diffuse into the oocyte and enhance Ca2+ permeability, Ca2+ influx, and
release of intracellular stored Ca2+ [7]. Such ionophores include ionomycin, A23187 (cal-
cimycin) [7,119], and ethanol [7] which all cause a single rise in Ca2+ [7,119]. There are,
however, further agents that facilitate to multiple Ca2+ transients, which include thimerosal,
phorbol esters, or strontium chloride (SrCl2) [7,119]. SrCl2 efficacy in human oocytes is still
debatable [7]. Ionomycin and A23187 (calcimycin) are the main used agents in IVF for AOA.
Thiomersal is not widely used because it causes oxidation of tubulin that will interfere
with polymerization and spindle formation, thus is prevented by follow-up treatment with
dithiothreitol. Calcimycin is an antibiotic that chelates Ca2+ and transports them through
biological membranes. Ionomycin has a similar action but is more potent and is specific to
Ca2+, and it stimulates gene expressions [7].

It is more effective to deliver Ca2+ ionophores after ICSI and not with it. Patients’ char-
acteristics also play role in determining the success of ICSI and Ca2+ ionophores. Indeed,
the effect in humans is not consistent; with some studies and meta-analyses indicating that
the effect of Ca2+ ionophores in the case of sperm morphological abnormalities is negative,
while other studies indicate positive results in cases with <30% successful fertilisation rates
in previous ICSI cycles [7]. Further to such conflicting data, the success of AOA protocols
is also determined by the concentration and length of exposure, the number of exposures,
and the timing of exposure following ICSI, all of which play a role in activation success.
Indeed, the literature exhibits heterogeneity in methodology success, making the broad
application and evaluation of safety difficult, particularly since ionophores could be toxic
to oocytes if the right parameters are not followed [7].

Some cases of successful OA after ICSI have been reported. However, ionophore
treatment may hold cytotoxic, teratogenic, or even mutagenic effects for the embryo. For
instance, the abnormal calcium-induced signal may have poor outcomes on epigenetic
processes. Furthermore, current protocols may not be effective for all patients receiving this
treatment [120]. The traditional concern of AOA use has always been that Ca2+ release fol-
lowing AOA methods differs from physiological release, specifically in the frequency and
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amplitude of Ca2+ release [56]. However, the application of AOA with ICSI did not affect
embryo quality [121–124], and increased fertilisation rates [7]. Indeed, the application of
AOA accelerated embryogenic cell division rates [125], and did not yield an increase in birth
defects, rates of medical abortions, or congenital malformations compared to normal preg-
nancies. However, other studies again suggested that the application of A23187 specifically
led to embryo degradation and to the failure of second body formation, [121,122,126–129].
There is a chance that the use of AOA will not avoid activation deficiency even with the
use of ionophores [7], particularly if the problem is not entirely sperm-related [130].

Interestingly, however, chromosomal abnormality and defective embryogenesis fol-
lowing AOA could be overcome by supplementation of AOA media with granulocyte-
macrophage colony-stimulating factor (GM-CSF), a cytokine involved in human preim-
plantation embryo development [129]. Indeed, such supplementation is in line with several
studies that indicate that the supplementation of AOA protocols enhances successful OA
and subsequent embryogenesis. Other chemical agents also include protein synthesis or
protein kinase inhibitors, such as puromycin and 6-dimethylaminopurine (6-DMAP), re-
spectively, which are most effective when used in combination with ionophores [7]. Indeed,
such concurrent treatments are standard practice for AOA in domestic animals and are
commonly used for OA after nuclear transfer. The reason underlying this need for multiple
stimuli is dependent upon cyclin B synthesis, which is continuously present and stimulates
CDK1 activity, and thus the meiotic arrest of mammalian oocytes [66,131].

A single Ca2+ transient would result in cyclin B degradation and reduction of CDK1 ac-
tivity, promoting meiotic resumption [132], which may underly some of the success of
single-transient AOA protocols in the clinic. However, a single Ca2+ transient would
only result in a temporary alleviation of arrest, with cyclin B resynthesis followed by the
resumption of CDK1 activity and re-arrest of the oocyte cell cycle [66]. To this degree,
it would be perhaps advantageous to concurrently inhibit cyclin B synthesis with the
termination of CDK1 activity via the prevention of protein kinase activity, or indeed eve
inhibition of protein synthesis. This could perhaps explain why AOA is most effective with
ionophore treatments when agents, such as puromycin/6-DMAP (protein kinase/protein
synthesis inhibitors) are used [66,131–134]. Indeed, Ca2+ ionophore treatments seem more
effective upon in vitro-aged oocytes following ovulation, perhaps due to a decline in cy-
clin B levels [66,131–134], and is perhaps an area requiring urgent investigation. Indeed,
Tsai et al. [135] recently demonstrated that AOA application in older patients with a di-
minished ovarian reserve seemed to improve the resultant embryo quality, particularly in
women aged ≥ 40 years.

16. Therapeutic and Diagnostic Options for PLCζ

In recent years, numerous studies have successfully demonstrated the induction of
Ca2+ oscillations following injection of recombinant PLCζ RNA or protein, with both modes
leading to successful OA and subsequent embryogenesis to the blastocyst stage at rates
comparable to those achieved by IVF [110,120].

To this degree, production of active and pure recombinant PLCζ protein is another
option for rescuing OA in case of ICSI failure, and other similar male infertility condi-
tions [119]. The use of recombinant PLC holds the advantage of knowing the dose needed
for administration from human assays in sperm (50–100 fg\sperm) [7]. However, a dis-
advantage to this method is the chance of over-injecting PLCζ, which can lead to the
abnormal frequency and amplitude of Ca2+ oscillations and a low rate of blastocyst devel-
opment [119]. Indeed, this is specifically detrimental to the utilisation of PLCζ RNA due to
the potential for uncontrolled expression of PLCζ RNA in oocytes, even if it was successful
in causing prolonged sperm-like repetitive transient Ca2+ waves. Other disadvantages
with RNA injections is the chance that the dose of injected RNA is small or not enough for
translation into PLCζ needed for Ca2+ influx or release from ER, or it may lead to abnormal
Ca2+ release [7] following a delay by 15–20 s compared to PLCζ protein utilisation [136].
Surprisingly lower doses of PLCζ RNA injection were more effective than higher doses.
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Using these parameters to compare PLCζ mRNA used with other methods, including
cytosolic aspiration, electrical stimulation, and ionomycin treatment, PLCζ RNA utilisation
is a better therapeutic agent. However, the ultimate decision for the applicability of PLCζ
mRNA as a therapeutic agent needs a further trial with the treatment leading to the full-
term development of the embryo with no side effects. Another disadvantage to this method
is that the protein is continuously expressed, making it difficult to control the frequency of
Ca2+ oscillations, which is important in proper embryogenesis. Furthermore, the average
half-life of mRNA molecules is 9 h, making it difficult to exist in cells beyond that time.
Further, mRNA lacks the ability to integrate into the host genome, thus generating induced
pluripotent stem (iPS) cells [84].

Thus, while the utility of recombinant PLCζ represents a potential therapeutic option
for OAD patients, perhaps even for a wider range of patients where fertilisation occurs,
but embryogenesis is poor [56], reliably generating purified recombinant PLCζ remains
to be established, with further focused clinical trials required to ascertain applicability.
Furthermore, administration of recombinant therapeutic PLCζ (either RNA or protein)
currently requires co-injection with sperm, which is not entirely accurate in terms of delivery
of specific amounts of PLCζ. Considering that the amount of PLCζ protein delivered to
the oocyte directly underlies embryogenic quality, current injection methods may not
necessarily enhance current success rates achieved with AOA [7,56]. As such, while the
therapeutic application of recombinant PLCζ is exciting and represents a potentially very
powerful clinical tool, much more work is required before clinical application (Figure 2).

Considering the large body of work examining PLCζ levels and localisation patterns in
mammalian, and particularly human, sperm, it is prudent to consider PLCζ as a powerful
diagnostic indicator of sperm fertility not just in cases of OAD, but also perhaps a larger
range of male factor conditions and cases of poor/abortive embryogenesis [56,110]. Indeed,
recent studies have correlated specific localisation patterns and levels of PLCζ with suc-
cessful fertilisation and parameters of sperm fertility [98]. However, while sperm PLCζ has
been correlated with sperm DNA fragmentation [137–139], abnormal sperm parameters
and morphology [98,140–153], abnormal embryogenesis [154], and perhaps also a potential
utility for round spermatid injection [98], most such analyses have assessed sperm PLCζ
RNA rather than protein [98]. Given that the role of not just PLCζ RNA but all sperm
RNA at fertilisation is considered limited, much more work is required to establish links
between PLCζ protein and the sperm defects examined with specific tools and established
protocols [98]. An indirect approach to examine sperm PLCζ deficiency has employed the
use of human sperm microinjection into mouse oocytes and examination of the resultant
Ca2+ release, known as the mouse oocyte activation test (MOAT). However, given that
human PLCζ is significantly more potent in activity compared with mouse PLCζ in mouse
oocytes, even minimal human PLCζ could result in high frequency and amplitude Ca2+

oscillations, and would thus perhaps not represent a method to examine cases of reduced
PLCζ, but cases of outright absence [98].
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Figure 2. Schematic representation of the mechanistic function of PLCζ underlying Ca2+ release
at fertilisation, with associated processes resulting from the completion of oocyte activation. The
release of PLCζ from sperm, or even injection into the oocyte, hydrolyses PIP2, yielding DAG and
IP3. IP3 binds to specific IP3R on the ER, triggering Ca2+ release, and Ca2+-induced-Ca2+-release
(CICR). Released Ca2+ activates CaMKII, which phosphorylates EMI2 (CSF), releasing APC/C from
its usual inhibition that otherwise maintains cell cycle arrest. Ca2+ release is also linked to the release
of Zn2+ at the Zn2+ spark, which also down-regulates EMI2 due to a decrease in intracellular Zn2+

availability. Active APC/C further causes ubiquitination of cyclin B1, resulting in inactivation of MPF,
releasing MII arrest. Concurrently, Ca2+ also activates protein kinase C (PKC), which phosphorylates
myristoylated alanine-rich C kinase substrate (MARCKS), which disassociates from F-actin, causing
actin breakdown in the oocyte cortex, allowing for cortical granule exocytosis. Ca2+ release also
inactivates mitogen-activated protein kinase (MAPK), leading to pronuclear formation. Figure is an
original work, but inspired by [155].

Thus far, sperm PLCζ protein has predominantly been examined using immunocyto-
logical analyses [94,98,152,156,157]. Indeed, while current ART clinics possess at least basic
microscopy facilities conferring the capability to perform such methods, the main issue
lies with antibody and methodology variance and specificity, with most studies relying
upon antibodies (predominantly only one) with low PLCζ specificity. We can quantify
PLCζ protein levels through immunofluorescent staining with an anti-PLCζ antibody and
compare the relative fluorescence of the PLCζ levels in the sperm (Figure 3). Furthermore,
Kashir et al. [157] concluded that while OAD sperm exhibited lower immunofluorescence
for PLCζ compared to normal subjects, a high variability in the immunofluorescence levels
of both patients and controls was noted, where some control patients had immunofluo-
rescence levels similar to OAD patients. Since mouse oocytes require 20–50 fg PLCζ to
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undergo activation, a similar statement with unknown ranges can be said about human
oocytes, inconsistent or inaccurate methodology may result in misdiagnosis [158].
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acrosomal + equatorial localisation (red arrow indicates acrosomal localisation), and dispersed
localisation patterns. The leftmost panels include further examples of each pattern, illustrating the
lack of uniformity of patterns. The bottom-most panel indicates fluorescence observed in the mid-
peace and tail. White scale bars represent 10 µm. (B) Histograms indicating differences in (i) relative
fluorescence, (ii) relative density and (iii) Ac + Eq/dispersed localisation ratio of sperm PLCζ between
cases of fertilisation failure and fertilisation success following fertility treatment. Asterisks (*) indicate
statistically significant differences (p ≤ 0.05). Data indicate the potential diagnostic capability of
sperm PLCζ parameters in indicating potential fertilisation success. Reprinted with permission from
Ref. [99]. Copyright 2020 Andrology.

17. Alternative Diagnostic and Therapeutic Targets of OA

Given the considerable amount of data present in the literature pertaining to PLCζ, the
importance of this enzyme is apparent for potential therapeutic/diagnostic applications.
However, several issues remain regarding its clinical utilisation, related to both technical
aspects, but also perhaps pertaining to the incomplete picture regarding the role of PLCζ in
OA. Indeed, the independent PLCζKO studies, while supporting the importance of PLCζ at
OA, also suggest that alternative contributory mechanisms may also be present [54,64,65,91].
Indeed, it is possible that an alternative ‘cryptic’ sperm factor(s) may be present within
sperm, which may facilitate or complement PLCζ action [159]. While any clues regarding
the absence/presence of such a cryptic factor remains to be elucidated, several molecular
players are involved during the complex series of concurrent events known as OA.

18. Actin-Mediated Cytoskeletal Movements

A particular example of this is actin, perhaps the most conserved and abundant family
of proteins in eukaryotic cells, may possess specific roles in the oocyte cortex development
and fertilisation [160]. Indeed, actin exhibits high-affinity binding to Ca2+, suggesting that
actin could act as an intracellular buffer to store and release [161–163]. Based on this, using
latrunculin A (LAT-A) and mycalolide B, which are actin-depolymerizing agents, on the
mature egg of A. aranciacus at the optimum period of fertilisation, induced an increase in
Ca2+ and depolarization of plasma membrane after activation [164–166]. New evidence
provided by recent studies supports the importance of actin in controlling the events of
oocyte maturation, OA, and cleavage. Comparing the organization and morphology of
cortical actin cytoskeleton in immature and mature oocytes provide a better understanding
of the cortical F-actin structure role in regulating normal egg maturation and monospermic
fertilisation [167].

In Drosophila, actin was found to be smoothly distributed before OA, the onset of which
resulted in actin spreading out, with a relaxed actin cytoskeleton required for initiation
and propagation of Ca2+ release, which in turn leads to a reorganization of actin in a
wavelike manner [168]. Drugs promoting F-actin depolymerization or stabilization on the
fertilisation reaction of sea urchin eggs resulted in the modification of the actin structure
and dynamics, which in turn altered Ca2+ release patterns [169]. Following fertilisation,
the actin cytoskeleton visibly reorganizes at the point of gamete fusion. Interestingly,
actin bundle formation requires an elevation of Ca2+ levels, while detachment and cortical
translocation of actin is a prerequisite for normal cellular cleavage, indicating an important
role for Ca2+-dependent actin reorganisation [167,170–172]. It was suggested that heparin-
or age-induced hyperpolymerization of the starfish egg cortical actin disrupted cytoskeletal
dynamics at fertilisation, which in turn detrimentally influenced Ca2+ release [167,173–175]

Considering that the relationship between actin and Ca2+ could be viewed as one
where actin acts as a buffer to store and release Ca2+ [161–163], it is thus possible that
such a phenomenon could be affecting the timing of cellular cleavage apart from other
events in cell division, such as cleavage furrow formation, nuclear envelope breakdown,
and reformation [176]. To this degree, particle image velocimetry (PIV) detected specific
rhythmic cytoplasmic movements due to contraction of the actomyosin cytoskeleton trig-
gered by Ca2+ oscillations. This is a non-invasive and safe diagnostic method and can
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also be related to the development potential of forming zygotes. This test can be used
after the injection of PLCζ cRNA into the human oocyte. PIV was used in humans for
imaging post-microinjecting with PLCζ cRNA in oocytes that failed ICSI. These oocytes
were donated by patients and microinjected with PLCζ cRNA with a mixture of substances
using a micropipette needle with a brief electrical pulse. The first Ca2+ spike was delayed
by 15–20 s with the use of PLCζ cRNA compared to normal sperm injection. This correlates
with the translation of PLCζ protein. The cytoplasmic movement follows Ca2+ oscillation
pattern, the higher the Ca2+ peak, the slower the movement [136,177]. This movement
depends on the actin cytoskeleton and is influenced by the presence of the sperm. This
was proven by the failure of oocytes injected with PLCζ cRNA without prior ICSI to show
cytoplasmic movement [136]. In summary, the PIV can be used to decide on the success of
inducing Ca2+ oscillations by confirming cytoplasmic movement, which could be used as a
diagnostic predictor of OA efficacy and thus embryogenesis [177].

19. Modulators of Ca2+ Homeostasis

Store-operated calcium entry (SOCE) is a system that maintains Ca2+ cytosolic con-
centration when ER stores are depleted. The major components of the SOCE are sarco-ER
Ca2+-ATPase (SERCA), Ca2+ release-activated Ca2+ channel protein 1 (ORAI1), stromal
interaction molecule-1 (STIM1), and other membrane channels. Targeting these proteins
may produce Ca2+ oscillations without PLCζ. STIM1 senses Ca2+ stored in the ER, and
with the help of a sterile alpha motif domain, STIM1 polymerizes to the plasma membrane
yielding to the protein-protein interaction with ORAI, which will result in extracellular
Ca2+ influx. Any mutation in STIM1 leads to a persistent influx of Ca2+ regardless of ER
status. CaMKII and mitogen-activated protein kinase (MAPK) are proteins responsible for
progression in MII and pronuclei formation, any modulation in their function can affect
OA, making them a potential therapeutic option. These systems are believed to have a role
in spontaneous oocyte activation (SOA) [152].

SOA is a phenomenon where the oocyte decides to exit MII, enter anaphase II and form
a single pronucleus without any interaction with sperm. This could perhaps be explained
by changes in cell cycle regulators, post-ovulatory oocyte aging, and temperature changes
during oocyte harvesting. Such a concept is the extreme opposite to infertility resulting
from failure of sperm to activate oocytes through PLCζ and Ca2+. One proposed mechanism
is the elevation of LH which can initiate Ca2+ release. However, oocyte collection without
any hormonal stimulation also revealed SOA, excluding LH as a possible cause. Another
theory explains SOA due to problems in cell cycle regulators that arrest oocytes at MII,
c-mos KO mice showing SOA can support this hypothesis. Some patients showed a
repeated incidence of SOA highlighting the possibility of a genetic cause [178]. Perhaps
some oocyte molecular factors that could explain SOA are STIM1 and ORAI1 at SOCE, or
perhaps CAMKII/MAPK, which are Ca2+-ATPases or Ca2+-dependent proteins. MAPK
early decrease in addition to activation of spindle assembly checkpoint proteins may have
an input in SOA [178].

Further to such aspects, plasma membrane Ca2+ ATPase 1 (PMCA1) protein support
Ca2+ efflux at fertilisation and the proper growth, weight, and body composition of the
ensuing offspring, is indicated in mice oocytes. PMCA1, along with other proteins, such as
SERCA2B, functions in decreasing cytoplasmic Ca2+ levels following each Ca2+ transient.
Furthermore, two Ca2+ influx channels, TRPM7 and Cav3.2, increase cytosolic calcium [6].
TRPM7 senses the extracellular concentration of Ca2+ and Mg2+ to control Ca2+ influx [7].
A lack of these causes subfertility, since threshold calcium levels are not attained [6] and
lead to the premature end of Ca2+ oscillations [7]. Obesity and inflammation also impact
physiologic calcium oscillations through their effect on the redox balance and mitochondrial
function [6]. Modulating mediators that control Ca2+ influx, such as TRPM7 and CaV3.2,
can maintain Ca2+ oscillations [7]. In starfish, gamete fusion activates a voltage-gated
Ca2+ channel [179,180], while both voltage-gated channels and NAADP underlie Ca2+

release in sea urchins [181]. While IP3-dependent Ca2+ release is an essential component of
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OA for at least mammalian species, others utilise alternative or additional pathways [26].
For example, cADPR can also induce Ca2+ release via perhaps the ryanodine receptor in
sea urchin fertilisation [182,183], while evidence also exists for a role of NAADP in sea
urchins and starfish [184–186]. Some species, such as Drosophila, induce OA before gamete
fusion, mediated via extracellular Ca2+ in response to a physical compression of egg plasma
membrane TRP channels during ovulation [187,188] (although the propagation of the Ca2+

is still IP3 receptor-mediated [188]).
In other species, Ca2+ influx supplements cytoplasmic Ca2+ release at OA in echino-

derms, molluscs, and worms [26]. Other such species include zebrafish and Sicyonia shrimp,
which involve an extracellular induction of Ca2+ without sperm involvement [189,190],
presumably due to extracellular ionic concentrations. Indeed, shrimp egg Ca2+ waves seem
initiated by magnesium ions (Mg2+) in the extracellular milieu [26,190]. As previously
discussed, TRPM7 senses extracellular Ca2+ and Mg2+ to control Ca2+ influx [7]. Indeed, the
ratio of Mg2+:Ca2+ in culture media may exert a role in AOA, as decreasing the Ca2+:Mg2+

ratio increased Ca2+ release within the oocyte [7]. Indeed, extracellular factors may yet
be playing a significant (yet under-appreciated) role in determining the success of OA.
Changes in salinity and pH affect the OA and fertilisation in sea urchins, with both dilution
and acidification of seawater exerting significant detrimental effect upon the efficacy of OA
and fertilisation [191]. Furthermore, in addition to the external physical stimuli required for
Drosophila egg activation, osmotic pressure generated by the uptake of external fluid drives
the initiation of Ca2+ release. This mechanism is regulated by conserved osmoregulatory
channels, aquaporins, and DEGenerin/Epithelial Na+ channels, utilising transient receptor
potential M channels to transport Ca2+ across the plasma membrane into the egg [192].

20. The Role of Zinc (Zn2+)

Perhaps the most intriguing non-Ca2+ related to OA are the intracellular levels of Zn2+,
levels of which increase before fertilisation, while after fertilisation, Zn2+ levels decrease,
correlating to the release of meiotic arrest [109]. The chelation of Zn2+ leads to cell cycle
promotion in oocytes, whilst also regulating the function of CDC25, which in turn regulates
maturation-promoting factor (MPF) [178,193], early mitotic inhibitor 2 (EMI2) [178,193,194],
and zinc-binding domain in CSF (i.e., the molecular players involved in maintenance of
oocyte MII arrest). Indeed, multiple techniques have utilised this dependency for AOA
protocols using Zn2+ chelators to trigger a resumption of MII in human oocytes. This
concept can be used to treat fertility due to the failure of OA with Ca2+ [178,193]. A
Zn2+ chelating agent, N,N,N′,N′-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN),
enabled the effective completion of MII and blastocyst development in pigs, but to a lower
extent compared to other Ca2+ ionophores [7]. The absence of intracellular Zn2+ with
heavy metals led to the activation of the oocyte and miotic resumption without changes
in Ca2+ levels. Indeed, TPEN affects Zn2+ levels without altering intracellular Ca2+. In
mice, TPEN resulted in blastocysts with lower inner cell mass and trophectoderm cell
quantity. The effect of TPEN use in humans is not well established and does not seem
entirely effective [109].

Imaging experiments indicated that mouse OA triggered transient ejection of Zn2+

into the extracellular milieu in a series of events called the ‘zinc spark’ [178,195,196],
immediately following the first Ca2+ transient. Similar observations have been made
in human, bovine, porcine, and primate systems [197,198], suggesting (like Ca2+) that
this Zn2+ spark is highly conserved (at least in mammals) [199,200]. Although recent
studies do suggest that a similar process involving Zn2+ depletion at fertilisation occurs
in Drosophila [201] and zebrafish [202]. Immature mouse oocytes are unable to elicit a
Zn2+ spark, indicating Zn2+ accumulation is required during meiotic maturation [203,204].
Analysis of Zn2+ spark dynamics indicated that zygotes successfully able to reach the
blastocyst stage released more Zn2+ compared to those unable to develop [205], suggesting
that perhaps quantification of Zn2+ could represent a diagnostic marker of embryogenic
capacity in mouse zygotes [206].



Pharmaceuticals 2023, 16, 441 17 of 25

21. Conclusions

Given the complexities underlying OA at fertilisation, it is astounding that much work
has been accomplished, establishing the mechanisms underlying Ca2+ release, the indis-
pensable involvement of the sperm factor PLCζ, and the utilisation of both these players
in a therapeutic and diagnostic context. However, research has yet again demonstrated
that there is yet much more to be elucidated, particularly regarding the role of seemingly
disparate, yet utterly interdependent actors, such as Zn2+, modulators of Ca2+ homeostasis,
and the mechanisms of actin cytoskeleton dynamics. The discussion surrounding OA
has traditionally revolved around the intracellular Ca2+ release and PLCζ (at least within
mammals). While these aspects are without a doubt integral to the process, it is increasingly
clear that just these by themselves do not constitute the ‘end sum game’ OA. Indeed, as
our understanding of several intra- and extracellular aspects surrounding OA increases, it
becomes clear that OA (including intracellular Ca2+ release and PLCζ) need to be viewed
as part of a much larger, interconnected, and vastly more complex overview. Indeed, much
promise is present for the therapeutic and diagnostic targeting of such players, although
much more work is yet required to fulfil this potential.
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