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Abstract: Antimicrobial peptides (AMPs) have recently gained attention as a viable solution for
combatting antibiotic resistance due to their numerous advantages, including their broad-spectrum
activity, low propensity for inducing resistance, and low cytotoxicity. Unfortunately, their clinical
application is limited due to their short half-life and susceptibility to proteolytic cleavage by serum
proteases. Indeed, several chemical strategies, such as peptide cyclization, N-methylation, PEGylation,
glycosylation, and lipidation, are widely used for overcoming these issues. This review describes how
lipidation and glycosylation are commonly used to increase AMPs’ efficacy and engineer novel AMP-
based delivery systems. The glycosylation of AMPs, which involves the conjugation of sugar moieties
such as glucose and N-acetyl galactosamine, modulates their pharmacokinetic and pharmacodynamic
properties, improves their antimicrobial activity, and reduces their interaction with mammalian cells,
thereby increasing selectivity toward bacterial membranes. In the same way, lipidation of AMPs,
which involves the covalent addition of fatty acids, has a significant impact on their therapeutic
index by influencing their physicochemical properties and interaction with bacterial and mammalian
membranes. This review highlights the possibility of using glycosylation and lipidation strategies to
increase the efficacy and activity of conventional AMPs.

Keywords: antimicrobial peptides; chemical strategies; glycosylation; lipidation

1. Introduction

The last decade has seen an increase in the improper use of antibiotics, resulting in
a rise in antibiotic-resistant infections [1,2]. Pathogens belonging to the ESKAPE group,
including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter bau-
mannii, and Pseudomonas aeruginosa, are responsible for causing multidrug-resistant infec-
tions. The difficulty in treating these infections has led to high levels of morbidity and
mortality, making them a global concern [3,4].

Antimicrobial peptides (AMPs) have emerged as new drug candidates and have
attracted the attention of researchers as the most viable replacement for conventional
antibiotics [5]. AMPs are host defense molecules that play a crucial role in the innate
immune response and exhibit significant efficacy against a broad spectrum of pathogens,
including Gram-positive and Gram-negative bacteria and fungi [6–10]. AMPs are generally
composed of up to 40 amino acid residues, are characterized by a positive net charge
due to the presence of cationic residues (e.g., Arg, Lys), and are amphipathic thanks to
the simultaneous presence of hydrophobic residues (e.g., Phe, Trp) (Figure 1). They are
typically classified based on their secondary structures such as β-sheet, α-helical, loop,
and extended peptides [11]. The ratio between the hydrophilic and hydrophobic residues
determines their amphiphilic features, which is crucial for their biological activity [12].
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Figure 1. Schematic representation of advantages and disadvantages of AMPs and their structural 
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The mode of action of AMPs varies widely and includes direct permeabilization and 
disruption of the bacterial membrane, binding with intracellular targets, and immuno-
modulation of the host [13]. This mechanism of action differs from most conventional an-
tibiotics, which generally act on specific cellular targets [14], making it more difficult for 
bacteria to develop resistance [15]. Furthermore, evidence has shown that AMPs can cross 
the bacterial membrane and reach intracellular targets such as DNA and RNA or induce 
the production of reactive oxygen species that cause cell damage. Moreover, AMPs can 
modulate the immune response or exhibit anticancer activity [16–18]. This diversity in 
their mode of action has generated great interest in the clinical potential of AMP-based 
therapies. 

The main mechanism of action of AMPs is based on their interaction with the mem-
brane of the pathogen [19]. Although the exact process is not yet fully defined, studies 
performed on model membranes (e.g., liposomes) have shown that the positive charge is 
responsible for the initial interaction with the negatively charged membrane of microor-
ganisms, whereas the hydrophobic portion is responsible for their insertion into the lipid 
bilayer [20]. Consequently, achieving the right balance between the hydrophilic and hy-
drophobic domains is key in determining the specificity of action of AMPs [21]. The posi-
tioning on the surface of the membrane and/or the incorporation into the membrane 
causes the disruption of membrane integrity with pore formation or membrane permea-
bilization followed by osmotic shock and loss of homeostasis [22]. The hypothetical mech-
anisms of membrane action are generally classified into three models: (i) the barrel-stave 
model, where peptides, typically in their α-helical conformation, embed into the hydro-
phobic core of the bacterial membrane and interact with the polar head groups of phos-
pholipids, inducing the formation of transmembrane pores and leading to bacterial cell 
death [23]; (ii) the carpet model, where AMPs position themselves on the membrane sur-
face by inducing membrane disruption in a detergent-like manner [24]; and (iii) the toroi-
dal-pore model, a mechanism similar to the barrel-stave model, where the peptide mole-
cules fold inwards, leading to the formation of a toroidal-shaped pore [25]. In both the 
barrel-stave and the toroidal-pore models, transmembrane pores form spontaneously be-
cause of peptide aggregation on the membrane surface [26]. 

Figure 1. Schematic representation of advantages and disadvantages of AMPs and their structural
features and biological activity.

The mode of action of AMPs varies widely and includes direct permeabilization and
disruption of the bacterial membrane, binding with intracellular targets, and immunomod-
ulation of the host [13]. This mechanism of action differs from most conventional antibiotics,
which generally act on specific cellular targets [14], making it more difficult for bacteria to
develop resistance [15]. Furthermore, evidence has shown that AMPs can cross the bacterial
membrane and reach intracellular targets such as DNA and RNA or induce the production
of reactive oxygen species that cause cell damage. Moreover, AMPs can modulate the
immune response or exhibit anticancer activity [16–18]. This diversity in their mode of
action has generated great interest in the clinical potential of AMP-based therapies.

The main mechanism of action of AMPs is based on their interaction with the mem-
brane of the pathogen [19]. Although the exact process is not yet fully defined, studies
performed on model membranes (e.g., liposomes) have shown that the positive charge
is responsible for the initial interaction with the negatively charged membrane of mi-
croorganisms, whereas the hydrophobic portion is responsible for their insertion into the
lipid bilayer [20]. Consequently, achieving the right balance between the hydrophilic and
hydrophobic domains is key in determining the specificity of action of AMPs [21]. The
positioning on the surface of the membrane and/or the incorporation into the membrane
causes the disruption of membrane integrity with pore formation or membrane perme-
abilization followed by osmotic shock and loss of homeostasis [22]. The hypothetical
mechanisms of membrane action are generally classified into three models: (i) the barrel-
stave model, where peptides, typically in their α-helical conformation, embed into the
hydrophobic core of the bacterial membrane and interact with the polar head groups of
phospholipids, inducing the formation of transmembrane pores and leading to bacterial
cell death [23]; (ii) the carpet model, where AMPs position themselves on the membrane
surface by inducing membrane disruption in a detergent-like manner [24]; and (iii) the
toroidal-pore model, a mechanism similar to the barrel-stave model, where the peptide
molecules fold inwards, leading to the formation of a toroidal-shaped pore [25]. In both
the barrel-stave and the toroidal-pore models, transmembrane pores form spontaneously
because of peptide aggregation on the membrane surface [26].

Another factor that plays a crucial role in the mechanism of action is undoubtedly the
secondary structure assumed by AMPs. Usually, AMPs are characterized by conformational
flexibility, changing their structure when moving from the aqueous solution to the lipid
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environment. Their structural flexibility is the driving force for the interaction. For instance,
as observed in some AMPs isolated from the skin of Australian tree frogs, adsorption inside
bacterial membranes is driven by electrostatic and hydrophobic interactions that cause
conformational changes in the peptide [27].

As mentioned above, the interest in AMPs as alternative or combination therapies
compared to traditional antibiotics stems from several key advantages, including their
broad-spectrum activity, near absence of resistance issues, and potential synergistic effects
when combined with other antibiotics [28]. Despite their potential, AMPs also present
several limitations due to a number of issues. Firstly, natural AMPs are composed of
L-amino acids easily recognized by proteases, causing rapid degradation and kidney
clearance. Other disadvantages include high production costs and poorly understood
pharmacokinetics and toxicity [29].

Indeed, many approaches have been investigated to circumvent these limitations given
the possible therapeutic uses of AMPs. An understanding of the structure–function relation-
ship has allowed the design of analogs of natural AMPs through chemical modifications
and/or the use of delivery tools. Therefore, this review will focus on chemical modifications
with an emphasis on the covalent conjugation of carbohydrates and lipid tails to optimize and
enhance the potency and stability of AMPs, as well as to improve their delivery.

2. Structural Modification of AMPs

Approaches used to increase the activity, specificity, biocompatibility, and half-life
of AMPs include the replacement of natural L-amino acids with their D-enantiomers or
non-natural amino acids [30,31]; peptide cyclization, including side chain-to-side chain and
head-to-tail peptide cyclizations [32–35]; and the N-methylation of the peptide backbone
(Figure 2) [36]. For instance, the cyclization of linear peptides has been shown to reduce
cytotoxicity toward mammalian cells while showing greater selectivity toward bacterial
cells, demonstrating that linearity is not a prerequisite for the lytic activity of AMPs [37,38].
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Other strategies include (i) PEGylation [39,40], which allows for greater solubility
and stability in aqueous solutions while reducing renal clearance [41]; (ii) glycosylation
involving carbohydrate conjugation, which broadens peptide diversity by extending their
properties and functions [42]; and (iii) lipidation involving the covalent attachment of fatty
acids, which affects peptide activity through several mechanisms [43,44].

Here, we describe glycosylation and lipidation as the most widely used strategies to
enhance the efficacy, broad-spectrum activity, biocompatibility, and protease resistance of AMPs.

3. AMP Glycosylation

The glycosylation strategy consists of the covalent conjugation of a sugar moiety to
the AMP sequence, likely promoting changes in their conformation and chemical, physical,
and biological properties. In general, glycosylation increases the diversity of peptides and
broadens their range of functionality. In fact, the incorporation of a glycan moiety has
been shown to improve their antimicrobial potency and immunomodulation while also
influencing their pharmacokinetic and pharmacodynamic properties.

The presence of the glycan unit increases the hydrophilicity and bioavailability of pep-
tides, which improves their active transport through cell membranes by targeting glucose
transporters located on the surface [45], induces specific conformations influencing their
activity, and increases their resistance to enzymatic degradation, thus raising their half-life.

However, glycosylation does not always improve the antimicrobial potency of AMPs
because the glycan conjugation may reduce both the hydrophobicity and overall positive
charge of the peptides, which highly influences their interaction and insertion into the
anionic membranes of bacteria [46].

From a chemical point of view, the development of glycosylated peptides involves
covalently linking glycans to a specific side chain of the amino acid residues present in
the peptide sequence. Depending on the functional group implicated, glycosylation can
be classified into four groups: N-glycosylation, O-glycosylation, C-glycosylation, and S-
glycosylation [47]. In addition, the glycan composition, structure, and length determine the
type of glycosylation. A variety of sugar moieties, including L/D-glucose, L/D-mannose,
L/D-glucosamine, and N-acetyl- L/D-glucosamine (Figure 3), can be used and linked based
on the designed AMP to improve its functionalities. As early as 20 years ago, several
O-linked glycosylated and proline-rich AMPs derived from insects were identified such
as diptericin, drosocin, formaecin, lebocin, and phyrrorricin [48]. Therefore, glycosylated
AMPs represent only a small group of AMPs with broad-spectrum activity.
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Glycosylation enhances the antimicrobial properties of AMPs, as well as their stability
and biological properties both in vitro and in vivo. It also influences their physicochemical
properties such as peptide rigidity, solubility, aggregation ability, and secondary struc-
ture [49–52]. Peptide stability is particularly important for the development of therapeutic



Pharmaceuticals 2023, 16, 439 5 of 16

peptides and glycosylation offers many opportunities for modifying the degree of gly-
cosylation, glycan type, structural composition, and size. For instance, enfuvirtide is an
antiretroviral drug that has been glycosylated with sialic acid residues to improve its
half-life without affecting its sensitivity and activity toward the target [53].

3.1. O–Glycosylation

The O-glycosylation strategy involves covalently linking the glycosidic moiety to the
serine (Ser) or threonine (Thr) side chains.

Depending on the kind of glycan moiety, this strategy can be further divided into
O-mucin-type O-glycosylation, O-fucosylation, and O-glucosylation. Several studies have
shown that O-mucin-type O-glycosylation, which involves the covalent attachment of
N-acetylgalactosamine (GalNAc) residue to the hydroxyl (-OH) group of Ser and Thr,
can enhance the antimicrobial activity of AMPs [54]. The importance of glycosylation
in AMPs such as diptericin, formaecin, and the bacteriocin-family member, enterocin
F4-9, is clearly supported by the fact that the absence of glycosylation eliminates their
antimicrobial activity [55,56]. Some proline-rich AMPs are already O-glycosylated when
isolated from natural sources and they are not active when synthesized without the GalNAc
residue. For instance, Bulet and co-workers have isolated the glycosylated peptide drosocin
(GKPRPYSPRPTSHPRPIRV) from Drosophila [57], which presents GalNAc and galactose
residues on the Thr residue in position 11 (Figure 4), which are crucial elements for its
antibacterial activity against E. coli D22 with a minimum inhibitory concentration (MIC) of
75 nM. In fact, synthetic derivatives lacking the O-glycosidic moieties exhibited a drastic
loss of activity that was about 5–10 times lower against E. coli D22 and other Gram-negative
strains [58,59]. However, the Thr residue of drosocin has undergone glycosylation screening
by designing and synthesizing several analogs bearing different carbohydrate moieties [56].
In that study, Talat et al. performed O-glucosylation, O-mannosylation, and O-mucin-type
O-glycosylation on the Thr residue, showing that the significant impact of glycosylation
on activity and peptide conformation depended on the stereochemistry of the sugar. The
authors also showed that β-linked sugars induced flexibility and unstrained conformations,
unlike α-linked analogs that led to limited conformations with high stability [60]. These
conformational changes had a drastic influence on the activity, with reduced activity
observed when the anomeric sugar configuration changed from α- to β, confirming the
dependence of glycosylation on the configuration of the sugar linkage [61].

Other examples of natural O-glycosylated AMPs are the peptides formaecin 1 (GRP-
NPVNNKPTPHPRL, Figure 4) and formaecin 2 (GRPNPVNTKPTPYPRL), with GalNAc
residue O-linked, which were identified in the bulldog ant Myrmecia gulosa. Mackintosh and
co-workers showed that the concentration of both non-glycosylated formaecins for killing
E. coli was 75 times higher than their glycosylated isoforms, confirming the importance of
GalNAc residue for their activity [62].

By applying the O-fucosylation strategy, Wu et al. developed a synthetic glycosylated
peptide, namely HYL-33, which was derived from the native peptide HYL isolated from the
venom of the Hylaeus signatus bee [63]. HYL-33 is a stapled peptide that is characterized
by an L-fucose residue on Ser4 and showed strong activity against a variety of bacteria
including S. lentus, E. faecalis, and A. johnsonii [64].

O-glycosylation is considered crucial for some insect AMPs, as in the case of the members
of the bacteriocin family. For example, deglycosylation of the Ser and Thr residues of enterocin
F4-9 caused a loss of activity toward E. faecalis and E. coli JM109 [65], showing that the GalNAc
residue interacts with the target molecules in these susceptible bacteria.
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Moreover, O-glycosylation has been proven efficacious in improving the activity of
antifungal peptides. For example, Hassallidins, produced by cyanobacteria and other
prokaryotes, are cyclic glycolipopeptides consisting of an eight-amino-acid residue peptide
ring, where a fatty acid chain and sugar moieties are attached [66]. Hassallidins are
highly selective against fungi because they showed antifungal activity against several
opportunistic human pathogenic fungi but did not have any antibacterial activity. For
example, the IC50 of Hassallidin D is 0.29–1.0 µM against Candida strains and acts by
disrupting sterol-containing cell surface membranes [67].

Interestingly, O-linked glycosylation has also been shown to improve the blood–brain
barrier (BBB) penetration of peptides such as opioid peptides [68], representing a promising
strategy for targeting infections and facilitating the elimination of persistent infections from
the nervous system.

3.2. N–Glycosilation

The asparagine (Asn) side chain represents a relevant N-glycosylation site to covalently
attach carbohydrates and enhance AMP activity [69,70]. Monosaccharides, disaccharides,
or lactose can be directly linked to Asn through solid-phase peptide synthesis using the
Fmoc/tBu strategy [71]. Hu and co-workers designed and synthesized a series of cyclic
N-glycosylated tyrocidine (Figure 4) derivatives bearing the glycans attached to the peptide
backbone through different linkers. They showed how this strategy had a strong impact
on the antibacterial activity of tyrocidine by increasing its efficacy against Bacillus subtilis,
methicillin-resistant S. aureus, and vancomycin-resistant Enterococcus [72].

Plants are also a rich source of glycosylated AMPs, for instance, datucin contains
a terminal GlcNac-asparagine and displays activity against both planktonic and biofilm
Candida albicans, and even against multidrug-resistant clinical strains [73].

In addition, the lysine (Lys) amino acid is considered an N-glycosylation site as shown by
Grimsey et al. [74]. In their study, the authors conjugated either glucose, N-acetyl glucosamine,
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galactose, mannose, or lactose residues to the synthetic AMP, peptide A1. In this case,
the impact of N-glycosylation on the antimicrobial activity of peptide A1 against different
microbial species was found to be negligible because the enhancement of hydrophilicity can
lead to both a reduction in hydrophobicity and weaker interaction with lipopolysaccharides
and teichoic acids of Gram-negative and Gram-positive bacteria, respectively.

3.3. S–Glycosilation

The free thiol group of the cysteine (Cys) side chain is the main site implicated in
S-glycosylation [75], which has been shown to improve the peptide half-life in serum.
Different studies performed on S-glycosylation showed an increase in the antimicrobial
potency of several AMPs and antibiotics. For example, Amso et al. showed that the
S-glycosidic linkage of the bacteriocin glycocin F offers a promising route for achieving
more bioactive bacteriocins [76]. By applying the chemical ligation strategy and incorpo-
rating two GalNAc moieties on Cys in positions 18 and 43, the authors developed a more
active glyco-mutant analog with enhanced activity (IC50 of 0.60 ± 0.10 nM) against Lacto-
bacillus plantarum. However, a study conducted by Oman and co-workers identified the
S-glycosylated sublacin peptide containing a glucose moiety attached to Cys22 [77], which
is essential for its activity against a spectrum of Gram-positive species, including B. subtilis,
B. megaterium, and S. aureus. Subsequently, Hsieh et al. synthesized two S-glycosylated
sublacin analogs by replacing glucose with D-galactose and D-GalNAc moieties on Cys22 to
understand the impact of the glycan on the secondary structure [78]. Both sugar moieties
induced an α-helix structure, as observed by circular dichroism (CD) and nuclear magnetic
resonance (NMR) spectroscopies.

3.4. C–Glycosylation

C-glycosylation is not the most widely used strategy for obtaining glycosylated AMPs,
with just a few examples reported in the literature. C-glycosyl amino acids and peptides can
be synthesized by employing copper(I)-catalyzed azide–alkyne 1,3-dipolar cycloaddition
(CuAAc) [79,80] or via a nickel-catalyzed reductive hydroglycosylation reaction between
alkyne and glycosyl bromide residues [81].

For example, Junior and co-workers synthesized two C-glycosylated derivatives of
the antifungal hylaseptin-P1 peptide (HSP1, Figure 4) by performing the CuAAc reaction
between the azide group linked to carbohydrate (GlcNac and Glc) and the alkyne present
on backbone peptide [82]. Biologically, these glycosylated peptides not only displayed
better antifungal activity against Candida albicans but also promoted a strong inhibition of
ergosterol biosynthesis due to the presence of triazole and sugar moieties in comparison to
the deglycosylated peptide HSP1.

In addition, the C-glycosylation strategy has demonstrated promise and efficacy in
enhancing the anti-HIV activity of the peptide C34 (IC50 of 21 nM) derived from the C-
terminal ectodomain of gp41 [83]. In this case, the presence of triazole and monosaccharide
GlcNac was found to improve both the activity and resistance against protease and glyco-
amidase-catalyzed digestion.

4. AMP Lipidation

Another strategy to improve the antimicrobial potency of AMPs without causing
structural modifications to their properties is lipidation, which involves the attachment of a
fatty acid moiety to N-terminal residues or lysine side chains [84,85]. The incorporation
of lipid tails of different lengths enhances the hydrophobicity of AMPs and confers better
membrane interaction, better permeability, and protection against enzymatic proteolysis
(Figure 5) [86–88]. It is likely that the improved potency is correlated to the length of
the acyl chain, which also influences their pathogenic specificity [88] and enhances the
interactions between the bacterial cell membrane and the fatty acid conjugated on the
peptide. As acyl chains grow in length, there is an increased tendency for self-assembly
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in an aqueous solution, which determines a loss of peptide interaction with bacterial or
fungal membranes.
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As demonstrated by Húmpola et al., lipopeptides with longer chains of C17 and C20
were not active against bacteria and Candida species, probably due to their strong ability to
self-assemble, whereas the best activity was observed for lipopeptides with fatty acids of
C8 and C14 with an MIC of between 0.7 and 5.8 µM [89].

When the fatty acids are conjugated to AMPs, it is also crucial to preserve their net pos-
itive charge to ensure their binding and bacterial interaction. Indeed, the conjugation of the
lipid tails of C13, C10, C7, and C5 at the N-terminus of the peptide [Pro3,DLeu9,DLys10]TL
derived from the natural Temporin L peptide caused a reduction in the net positive charge
from +4 to +3, with a consequent reduction in the activity of lipopeptides toward S. aureus,
K. pneumoniae, and P. aeruginosa. In [90,91], the authors identified the para position of Phe1

as the optimal position for the attachment of fatty acids, as it preserved the positive charge
+4 and demonstrated the best activity against both bacteria and Candida species.

In addition, the length of the conjugated fatty acids may increase hydrophobicity,
enhancing the selectivity toward mammalian cells with consequent toxicity. Thus, although
the increase in the hydrophobicity of peptides can improve antimicrobial activity, it is
crucial to preserve the right hydrophilicity/hydrophobicity balance to avoid an increase in
toxicity. The general toxicity is its direct dependence on the acyl chain length because longer
acyl chains cause greater hemolysis. As mentioned previously, this trend is likely due to
the high affinity and insertion of the long acyl chains of lipopeptides into the eukaryotic
membrane. Clearly, a well-chosen chain length is key to determining the balance between
improved antibacterial properties and selectivity.

The optimal chain lengths are most commonly C8–C12, which seem to be the most
beneficial to secondary structure formation and membrane insertion. Indeed, the conju-
gation of fatty acids to the synthetic peptide CG117-136 induced higher α-helical content
compared to the native peptide in the presence of a membrane-mimetic environment,
favoring an enhanced insertion into liposomes and thus a higher ability to disrupt the
bacterial membrane [92].
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In addition, several studies involved ultrashort lipopeptides with potent antimicrobial
activity against a variety of microorganisms. Makovitzki and co-workers synthetized
peptides composed of only four D,L amino acids conjugated to aliphatic acids with different
chain lengths [93]. Lohan et al. reported a library of small cationic ornithine-based non-
natural lipopeptides by varying the content of both the cationic charge and hydrophobic
bulk and analyzed their antimicrobial activity [94,95]. Interestingly, despite their short
peptide chain length, their mode of action was similar to that of AMPs, providing great
economic advantages.

Another interesting study performed by Sikora et al. showed the significant impact
of glycosylation on a library of ultrashort lipopeptides. In particular, three different fatty
acids (C14, C16, C18) were attached to the N-terminal amino group of tripeptides (SRR-
NH2, RSR-NH2, RRS-NH2) and the β-D-GlcNAc sugar was attached to Ser. The obtained
glycol-lipopeptides displayed stronger activity against both planktonic and biofilm cultures
of ESKAPE strains. However, their toxicity toward human erythrocytes was found to be
correlated to the hydrophobicity and position of serine/glycosylated serine [96].

Moreover, among the various approaches, the combination of peptide cyclization and
lipidation represents another strategy for enhancing the antimicrobial activity of AMPs.
Jensen et al. introduced fatty acid moieties of different lengths and in diverse positions in a
cyclic head-to-tail peptide called S3(B). They found that the introduction of fatty acids in
positions adjacent to the flexible linker was more strongly correlated to an enhancement of
antimicrobial activity, whereas these cyclo-lipopeptides became highly hemolytic when the
carbon-chain length exceeded 10 (C10), overlapping with the optimum for antimicrobial
activity (C8–C12). The authors found that the most promising candidate (C8) 5 showed
similar antimicrobial activity to that of S3(B) and also featured an improved hemolytic
profile [97].

Several lipopeptides with higher antimicrobial activity and moderate cytotoxicity
have been isolated and identified from natural sources (Table 1). For example, daptomycin,
produced and isolated from Streptomyces roseosporus, represents one of the most studied
lipopeptides active against Gram-positive bacteria and multi-drug resistant pathogens [98].
Daptomycin is a thirteen-amino-acid peptide linked to a C10 fatty acid chain and was
approved by the Food and Drug Administration (FDA) in 2003 for the treatment of skin
and soft tissue infections caused by Gram-positive bacteria. The daptomycin mechanism
consists of membrane permeabilization, the inhibition of cell wall synthesis, and the
alternation of membrane fluidity and curvature. Unfortunately, its extensive clinical use
has already led to resistance due to alterations in the membrane lipid composition such
as a significant decrease in the amount of phosphatidylglycerol (PG) or an increase in
cardiolipin (CL), which limits daptomycin’s action against bacteria [99].

Table 1. Examples of natural lipopeptides and their activity.

Lipopeptide Source Chain Length Activity

Daptomycin Streptomyces roseosporus C10 Antibacterial

Surfactin Bacillus subtilis C16 Antibacterial, antiviral

Fengycin Bacillus subtilis C16, Fungicide

Peptidolipins B–F Nocardia sp. C23, C25, C27, olefin
cyclopropane Antibacterial

Friulimicin B Actinoplanes friuliensis C14 Antibacterial

Arylomycin A2 Streptomyces sp. C12 Antibacterial

Globomycin Streptomyces hagronensis C6 Antibacterial

Tsushimycin Streptomyces sp. C14 Antitrypanosomal
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Surfactin is a lipopeptide widely studied due to its antibacterial, antiviral, anti-
adhesiveness, and anti-inflammatory properties. It is a cyclic lipopeptide (ELlVDlL) con-
taining C16-β-hydroxy fatty acid linked through a lactone bond [100]. The main properties
of surfactin are related to its interaction with the lipid components of membranes, which
causes membrane depolarization [101].

Another lipopeptide is fengycin, a decapeptide bearing the C-16-β-hydroxy fatty acid
in the N-terminus, which is produced by several Bacillus subtilis strains [102,103]. Despite
being ineffective against yeast and bacteria, it has excellent antifungal properties and low
hemolytic activity, making it suitable for dermatological applications.

Recently, five lipopeptides, namely peptidolipins B–F, were identified in a marine
Nocardia sp. isolated from the ascidian Trididemnum orbiculatum [104]. Each peptidolipin has
a lipid chain and, in particular, the isoforms B, C, and D have a lipid chain of C-23, C-25, and
C-27, respectively, whereas the peptidolipins E and F contain the olefin and cyclopropyl
moieties, respectively. Regardless of the chain length, peptidolipins B–F all exhibited
moderate activity against methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S.
aureus (MRSA), with an MIC of 64 µg/mL.

Among the peptide-engineering strategies used to improve the antiviral activity of
peptides, the addition of lipid moieties was demonstrated dramatically increase the antiviral
potency. Cholesterol (Chol) tagging has been applied to an antiviral peptide derived from
HIV-1 gp41. The resulting inhibitor is more potent (25- to 100-fold) than the clinical drug
enfuvirtide (50- to 400-fold) [105]. Membrane targeting of antiviral peptides derived from
the gB glycoprotein of Herpes simplex virus type 1 also depends on both the PEG linker
length and cholesterol that determine the enhanced antiviral potency [106].

5. Applications of Glycosylation and Lipidation to Improve Activity through
Enhancing Delivery

Recently, another challenging strategy used to develop antimicrobial therapeutics is
the use of lipopeptides or carbohydrates to develop nanosystems that are decorated on
their surface with AMPs [107].

Several lipopeptides were designed to develop supramolecular delivery systems for
antimicrobial peptides. For example, Chen et al. developed antimicrobial supramolecular
nanofibers with melittin as the AMP on their surface [108]. The delivery of melittin through
this system decreased its cytotoxicity toward mammalian cells since in this nanosystem, the
melittin was structurally constrained and was not entirely available for the interaction and
permeability of the mammalian cell membrane. As a result, the melittin-based nanofibers
exhibited high selectivity toward bacterial cells and demonstrated good antimicrobial potency.

Another example of AMP-based nanofibers was presented by Lombardi and co-
workers [109]. The authors engineered nanofibers using lipopeptide PAs containing an
aliphatic polyalanine sequence and a lipidic tail of C-19 [109,110]. The nanofibers’ surface
decorated with the peptide WMR (derived from Myxinidin) as an AMP exhibited a signifi-
cant ability to deliver WMR, induce a strong inhibition of biofilm formation, and eradicate
the already formed biofilms of P. aeruginosa and C. albicans.

However, another strategy used to improve the efficacy of AMPs involves using carbo-
hydrates as building blocks to develop AMP-based delivery systems. An approach widely
used is the conjugation of chitosan to AMPs or the preparation of chitosan-based nanosys-
tems loaded with AMPs. Chitosan is a natural and biocompatible polymer composed of
β-1,4-linked D-glucosamine and N-acetyl-D-glucosamine, which is obtained through the
deacetylation of the polymer chitin. An example is anoplin–chitosan conjugates, which
were synthesized by Sahariah et al. through the CuAAC reaction to improve the therapeutic
index of anoplin, an AMP isolated from the venom of the solitary wasp [111]. The grafting
of anoplin with chitosan improved its activity against Gram-positive and Gram-negative
bacteria, thereby removing its strong hemolytic effect on red blood cells.

In addition, carbohydrates can be used to develop nanosystems with AMPs loaded
into their core. Chitosan-based nanoparticles (CS-NPs) are widely used for AMP delivery
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as they have an encapsulation efficacy of up to 98%, have high cytocompatibility, and can
achieve the sustained release of AMPs. For instance, the encapsulation of temporin B, a
natural AMP isolated from amphibian skin secretions, into CS-NPs, resulted in enhanced
and sustained antimicrobial activity against several strains of S. epidermidis for 4 days,
demonstrating a long-lasting antibacterial effect [112]. A similar study was performed on
the synthetic peptide Octominin derived from the defense protein of Octopus minor (Fish
Shellfish Immunol. 2021, 110, [23–34]). As in the case of temporin B, the encapsulation of
Octominin into the core-shell of CS-NPs resulted in the sustained release of Octominin over
96 h, causing higher biofilm inhibition and the eradication of C. albicans and Acinetobacter
baumanii [113]. In addition, CS-NPs loaded with Octominin showed reduced toxicity in
comparison to free Octominin both in vitro using human embryonic kidney 293 (HEK 293)
cells and in an in vivo Zebrafish model.

Interestingly, glycans play a crucial role in targeting infections of the CNS [114]. For
instance, O-glycosylation by conjugating sialic acid allows for the production of BBB-
penetrating molecules that are able to bypass the BBB and eliminate persistent infections.
In addition, O-linked glycosylation has been shown to be effective in improving BBB
penetration of opioid peptides, thereby increasing their serum and brain stability [115].

6. Conclusions Remarks

The rapid increase in antibiotic resistance has generated huge interest in AMPs as
potential alternatives to combat multidrug-resistant bacteria due to their broad effectiveness
at low concentrations against many species. Unfortunately, their use is clinically limited by
their reduced bioavailability and serum stability in vivo.

Here, we emphasized that glycosylation and lipidation can be considered potent
strategies for improving AMP efficacy and overcoming many of their limitations.

One issue with AMPs is their broad-spectrum activity, which can lead to a reduction
in selectivity between mammalian and bacterial membranes and an increase in cytotoxi-
city. Another drawback is their immunogenicity, which can be addressed by decorating
them with glycans derived from bacteria such as polysialic acid to decrease their im-
munoreactivity within the host. In this context, the glycosylation strategy could mask the
immunogenicity of AMPs, for instance, the conjugation of sialic acid residues could reduce
the recognition of AMPs by T cell and B cell receptors.

Moreover, as described, the glycosylation of both natural and synthetic AMPs influ-
ences their antimicrobial activity, cytotoxicity, and target specificity. The various glycosy-
lation strategies, including O-, N-, C-, and S-glycosylation, involve conjugating a sugar
moiety such as glucose to an AMP, with GalNAc bearing the specific functional group
depending on the chosen strategy. Glycosylation can induce an increase in the rigidity
and proteolytic stability of AMPs, as well as cause secondary structure changes. N- and
O-glycosylation are similar to PEGylation as they protect AMPs from rapid renal clearance,
but glycosylation is preferable because it is safer compared to the introduction of a synthetic
polymer. In addition, the conjugation of a carbohydrate to AMPs or its encapsulation in
carbohydrate-based nanosystems is a strategy that is used to ensure the delivery of AMPs
and improve their pharmacokinetic and pharmacodynamic properties. One of the most
widely used vectors is chitosan-based nanoparticles, which exhibit a high encapsulation
efficacy and a strong capacity to both improve antibacterial activity through sustained
release and reduce selectivity against mammalian cells.

Likewise, lipidation influences the physicochemical properties of AMPs, including
their hydrophobicity and self-assembling ability, because the incorporation of long lipid
tails can induce peptide aggregation in solution, thereby drastically influencing the an-
timicrobial activity of AMPs. Indeed, it is crucial to maintain the right balance between
hydrophilic and hydrophobic domains in peptide sequences to ensure interactions with the
bacterial membrane while maintaining poor selectivity toward eukaryotic cells. Moreover,
the long lipid tails linked to the N- or C- terminus of AMPs increase their affinity with
bacterial membranes, facilitating their insertion into lipid bilayers and subsequent mem-
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brane curvature and disruption. Additionally, lipopeptides are used as building blocks
to develop supramolecular nanosystems such as nanofibers or nanotubes for delivering
AMPs. Generally, these nanostructures are engineered specifically for the AMP because
they are modifiable and can be customized for specific bacterial infections.

Overall, the de novo design of lipidated and glycosylated peptides represents a
valuable strategy for developing meaningful alternatives to antibiotics, offering many
advantages over current strategies. The significant benefits provided by glycosylation and
lipidation of therapeutic peptides highlight the potential to enhance the therapeutic index
of traditional AMPs.
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