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Abstract: Bruton’s tyrosine kinase (BTK) is a critical component in B-cell receptor (BCR) signaling
and is also expressed in haematogenic and innate immune cells. Inhibition of BTK hyperactivity
is implicated in B-cell malignancies and autoimmune diseases. This review derives the structural
complementarity of the BTK-kinase domain and its inhibitors from recent three-dimensional struc-
tures of inhibitor-bound BTK in the protein data bank (PDB). Additionally, this review analyzes
BTK-mediated effector responses of B-cell development and antibody production. Covalent inhibitors
contain an α, β-unsaturated carbonyl moiety that forms a covalent bond with Cys481, stabilizing
αC-helix in inactive-out conformation which inhibits Tyr551 autophosphorylation. Asn484, located
two carbons far from Cys481, influences the stability of the BTK-transition complex. Non-covalent
inhibitors engage the BTK-kinase domain through an induced-fit mechanism independent of Cys481
interaction and bind to Tyr551 in the activation kink resulting in H3 cleft, determining BTK selectivity.
Covalent and non-covalent binding to the kinase domain of BTK shall induce conformational changes
in other domains; therefore, investigating the whole-length BTK conformation is necessary to com-
prehend BTK’s autophosphorylation inhibition. Knowledge about the structural complementarity of
BTK and its inhibitors supports the optimization of existing drugs and the discovery of drugs for
implication in B-cell malignancies and autoimmune diseases.

Keywords: autoimmune diseases; Bruton’s tyrosine kinase (BTK); B-cell malignancies; kinase domain
conformation; covalent inhibitors; non-covalent inhibitors; protein data bank

1. Introduction

The complementary molecular framework of cells is essential and contributes to bi-
ological mechanisms. Comprehension of the physiological processes necessitates a prior
understanding of complementarity—i.e., a physiological process depends on two biological
components that are mutually exclusive [1]. Structural complementarity between biolog-
ical macromolecules and their small molecule messengers is the impetus for molecular
recognition and efficient binding, which guides several physiological mechanisms [2]. The
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agonist or antagonistic interaction of a small ligand or drug with a receptor exhibits a suc-
cinct lock-and-key-like structural complementarity [3]. The structural complementarity of
biomolecules in shape, size, and functional groups (bonding and charge complementarity)
at the reaction interface drives the intended pharmacological process [2,4].

Bruton’s tyrosine kinase (BTK) is a member of the TEC family of non-receptor tyrosine
kinases and plays a vital role in several receptor-mediated signaling pathways. BTK is a
crucial component in the signal transduction pathway of a transmembrane receptor, B-cell
receptor (BCR), in B lymphocytes. B-cell survival and proliferation are primarily medi-
ated through antigen-induced BCR signaling, initiating the activity of a series of protein
kinases like LYN, Spleen tyrosine kinase (SYK), BTK, and highly expressed isoform p110 of
PI3K, and the downstream signaling cascade mediated through Phosphoinositide-3-kinase,
AKT (Protein kinase B) and mitogen-activated protein kinases (MAPK) [5]. Likewise,
BTK also aids the survival and growth of malignant B-cells [6]. BTK expression is evi-
dent in hematogenic cells and innate immune cells like macrophages, monocytes, mast
cells, and basophils [7]. BTK activation plays a significant role in signaling downstream
mediators of autoimmunity and inflammation. COVID-19 patients with severe lung in-
flammation showed aberrant BTK activity. BTK inhibitors were repurposed to tackle
COVID-19 due to their modulatory effect on autoimmunity and hyperinflammation [8].
Therefore, grasping the structural data about the function of BTK is vital for designing
inhibitors targeting BTK for B-cell malignancy, autoimmune diseases, and COVID-19 ther-
apy. Numerous reviews on BTK’s role in B-cell cancers and the clinical development of
covalent inhibitors of BTK are available. However, literature focusing on molecular-level
interactions of the inhibitors with BTK and alterations of BTK conformation in response
to inhibitor binding is scarce. This review aims to explore the conformational changes
of BTK and its intermolecular interactions with inhibitor drugs to reveal the structural
complementarity, in addition to outlining the signal transduction and BTK’s role in B-cell
malignancies and autoimmune diseases. The review also is a critical insight into the dif-
ferences in molecular interaction mechanisms of covalent and non-covalent inhibitors of
BTK. It is important to address the structural requirements for BTK’s covalent and non-
covalent inhibitors for efficient binding, improved potency, and fewer side effects. This
comprehensive review will guide and foster the successful discovery of BTK inhibitors.
The review consists of eight sections; Sections 2–7 which brief the role of BTK in BCR signal-
ing, its association with different malignancies and autoimmune diseases, and the approval
status and chemistry of covalent and non-covalent inhibitors. For obtaining data related to
the above sections, the literature search included keywords BTK, BTK in BCR signaling,
BTK covalent inhibitors, and BTK non-covalent inhibitors. Appropriate information was
retrieved to represent the advances in the field and to describe basic pharmacology. For
the preparation of Section 8, we examined the 3D structures of BTK with inhibitor ligands
deposited in the Protein Data Bank (PDB) from 2020 to the present date to deduce their
complementary binding structural characteristics.

2. Structure of Bruton’s Tyrosine Kinase and BTK in BCR Signaling

BTK’s structural domain is composed of five different protein interaction sites: an
N-terminal (-NH2 terminal) pleckstrin homology (PH) and TEC homology domain (TH),
a proline-rich region (PRR), two SRC homology domains (SH3 followed by SH2), and a
C-terminal (-COOH terminal) kinase domain (KD) with enzymatic activity [9]. These
domains bind to different cytosolic proteins and transcriptional factors to mediate the
cell signaling pathways. PH-TH and PRR domains contain a zinc-finger motif that is
important for the optimal activity and stability of the protein [10]. BTK presents an inactive
conformation in the cytoplasm in which the SH2 and SH3 domains stabilize the inactive
conformation of the kinase and are only transiently recruited to the membrane upon
activation [11].
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BTK activation requires two crucial steps. First, upon binding of specific cytokines to
its receptor or antigens to the cells, BTK is phosphorylated at position Tyr551 in the kinase
domain by SYK or SRC family kinases. Phosphorylation of BTK occurs by interaction of
the binding site of the PH-TH domain and phosphatidylinositol-3,4,5-triphosphate (PIP3)
membrane lipid. Phosphorylation of BTK at the Tyr551 in the kinase domain results in
autophosphorylation at position Tyr223 in the SH3, stabilizing the active conformation
and fully activating BTK kinase activity [11]. Figure 1 is the 2D representation of domain
arrangement in the whole BTK. Experimental reports or protein data bank depositions
on the 3D structure of BTK containing all its domains are unavailable. A PDB structure
of BTK, 4XI2, with a maximum of three domains and corresponding linkers, is used for
representing the whole structure of BTK. Figure 2 shows the 3D structure of the whole BTK.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 3 of 29 
 

 

domain by SYK or SRC family kinases. Phosphorylation of BTK occurs by interaction of 
the binding site of the PH-TH domain and phosphatidylinositol-3,4,5-triphosphate (PIP3) 
membrane lipid. Phosphorylation of BTK at the Tyr551 in the kinase domain results in 
autophosphorylation at position Tyr223 in the SH3, stabilizing the active conformation 
and fully activating BTK kinase activity [11]. Figure 1 is the 2D representation of domain 
arrangement in the whole BTK. Experimental reports or protein data bank depositions on 
the 3D structure of BTK containing all its domains are unavailable. A PDB structure of 
BTK, 4XI2, with a maximum of three domains and corresponding linkers, is used for rep-
resenting the whole structure of BTK. Figure 2 shows the 3D structure of the whole BTK.  

 
Figure 1. 2D representation of domain arrangement in the whole BTK. 

 
Figure 2. 3D structure of the whole BTK (4XI2). PRR is the proline-rich region. Y551 and Y223 are 
phosphorylation sites. C481 is a covalent inhibitor binding site and the primary site of mutation 
leading to drug resistance. T316 and T474 are mutation sites conferring drug resistance. K430, E475, 
Y476, M477, and D539 are residues of the non-covalent inhibitor binding site. W395 and W251 un-
dergo conformational changes in response to conformational changes in the kinase and SH3 do-
main, respectively. 

The kinase domain of BTK is the target for covalent and non-covalent inhibitors in 
the therapeutic intervention of B-cell malignancies [12]. Kinase domain has two nodes: -
NH2 terminal and -COOH terminal nodes. The active site is located amidst these nodes. 
The -NH2 terminal node comprises five β-sheets running anti-parallelly and two α-helices. 
The -COOH terminal node comprises seven α-helices and six β-sheets. The ATP-binding 
cleft is situated between the two nodes. The two nodes have complementary rotations and 
conformations, exposing the ATP binding cleft when in the active state and vice versa in 
the inactive state [13]. The catalytic site residue Tyr551 is located in the active loop of the 
-COOH node. The two nodes are linked by a short flexible polypeptide fragment that en-
ables their complementary movements.  

Figure 1. 2D representation of domain arrangement in the whole BTK.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 3 of 29 
 

 

domain by SYK or SRC family kinases. Phosphorylation of BTK occurs by interaction of 
the binding site of the PH-TH domain and phosphatidylinositol-3,4,5-triphosphate (PIP3) 
membrane lipid. Phosphorylation of BTK at the Tyr551 in the kinase domain results in 
autophosphorylation at position Tyr223 in the SH3, stabilizing the active conformation 
and fully activating BTK kinase activity [11]. Figure 1 is the 2D representation of domain 
arrangement in the whole BTK. Experimental reports or protein data bank depositions on 
the 3D structure of BTK containing all its domains are unavailable. A PDB structure of 
BTK, 4XI2, with a maximum of three domains and corresponding linkers, is used for rep-
resenting the whole structure of BTK. Figure 2 shows the 3D structure of the whole BTK.  

 
Figure 1. 2D representation of domain arrangement in the whole BTK. 

 
Figure 2. 3D structure of the whole BTK (4XI2). PRR is the proline-rich region. Y551 and Y223 are 
phosphorylation sites. C481 is a covalent inhibitor binding site and the primary site of mutation 
leading to drug resistance. T316 and T474 are mutation sites conferring drug resistance. K430, E475, 
Y476, M477, and D539 are residues of the non-covalent inhibitor binding site. W395 and W251 un-
dergo conformational changes in response to conformational changes in the kinase and SH3 do-
main, respectively. 

The kinase domain of BTK is the target for covalent and non-covalent inhibitors in 
the therapeutic intervention of B-cell malignancies [12]. Kinase domain has two nodes: -
NH2 terminal and -COOH terminal nodes. The active site is located amidst these nodes. 
The -NH2 terminal node comprises five β-sheets running anti-parallelly and two α-helices. 
The -COOH terminal node comprises seven α-helices and six β-sheets. The ATP-binding 
cleft is situated between the two nodes. The two nodes have complementary rotations and 
conformations, exposing the ATP binding cleft when in the active state and vice versa in 
the inactive state [13]. The catalytic site residue Tyr551 is located in the active loop of the 
-COOH node. The two nodes are linked by a short flexible polypeptide fragment that en-
ables their complementary movements.  

Figure 2. 3D structure of the whole BTK (4XI2). PRR is the proline-rich region. Y551 and Y223 are
phosphorylation sites. C481 is a covalent inhibitor binding site and the primary site of mutation
leading to drug resistance. T316 and T474 are mutation sites conferring drug resistance. K430,
E475, Y476, M477, and D539 are residues of the non-covalent inhibitor binding site. W395 and
W251 undergo conformational changes in response to conformational changes in the kinase and SH3
domain, respectively.

The kinase domain of BTK is the target for covalent and non-covalent inhibitors in
the therapeutic intervention of B-cell malignancies [12]. Kinase domain has two nodes:
-NH2 terminal and -COOH terminal nodes. The active site is located amidst these nodes.
The -NH2 terminal node comprises five β-sheets running anti-parallelly and two α-helices.
The -COOH terminal node comprises seven α-helices and six β-sheets. The ATP-binding
cleft is situated between the two nodes. The two nodes have complementary rotations
and conformations, exposing the ATP binding cleft when in the active state and vice versa
in the inactive state [13]. The catalytic site residue Tyr551 is located in the active loop of
the -COOH node. The two nodes are linked by a short flexible polypeptide fragment that
enables their complementary movements.
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The BCR signaling is mediated by multiple cytokine receptors, G-protein coupled
receptors, and antigens. Moreover, the activation of BTK is regulated by several tyrosine
kinases, such as JAK, SYK, LYN, and FAK family kinases [5]. Antigen binding that initiates
immune response requires the presence of membrane-bound immunoglobulins on the
surface of the B-cell. Antigen-bound immunoglobulin undergoes conformational change
leading to the activation of LYN, progressing to the ITAM phosphorylation, thereby gener-
ating the SYK binding site [14]. Activation of LYN initiates recruitment of signalosome, a
complex of tyrosine kinases, and a range of LYN- and SYK-binding proteins, BTK, BLNK,
SHC, Grb2, and BCAP(PI3K) [15]. SYK phosphorylates BLNK linked to CD79a, which
phosphorylates BTK via BTK’s SH2 domain [16]. BTK and SYK are vital in steering the
BCR distal signaling through interaction with BLNK [17]. The involvement of BTK in
BCR activation reflects in various stages of B-cell development, including differentiation,
maturation, proliferation, and apoptosis [18]. Moreover, phosphorylation of the tyrosine
domains of cytoplasmic B-cell co-receptor CD19 by LYN provides a binding site for the
adaptor protein-cell phosphatidylinositol- 3-kinase (PI3K). The docking of PI3K, particu-
larly its p110δ isoform, to CD19, assists its interaction with plasma membrane components,
thereby contributing to BCR signaling downstream transmission [19]. PI3K phosphorylates
PIP2, an essential membrane lipid, to PIP3. PIP3 has the inherent character of interacting
with proteins having pleckstrin homology (PH) domain. Hence, BTK is mobilized to the
plasma membrane, resulting in PLC-γ2 activation. In addition, active PIP3 recruits AKT
to the plasma membrane due to its interaction with AKT’s PH domain. AKT is activated
in the plasma membrane by 3-phosphoinositide-dependent protein kinase 1 (PDK-1) and
protein complex mammalian target of rapamycin (mTORC2) through phosphorylation at
T308 and S473 residues, respectively, leading to utmost BCR activation [20].

Hydrolysis of PIP2, mediated by the phosphorylation of PLC-γ2, leads to the gen-
eration of inositol-3,4,5-triphosphate (IP3) and diacylglycerol (DAG). Together with IP3
and DAG, calcium activates NFAT and β isoform of protein kinase-C (PKCβ), respec-
tively [21,22]. PKCβ activation results in the activation of mitogen-activated protein kinase
(MAPK), Jun N-terminal kinase (JNK), and extracellular signal-regulated kinases 1 and
2 (ERK1 and ERK2) pathways contributing to B-cell growth, survival, and apoptosis [23].
PKCβ, through its effect on constituents of NF-κB signaling and p38, influences cell pro-
liferation and apoptosis [24]. The generation of NFAT and NF-κB through downstream
signaling of PLC-γ2 affirms BTK’s involvement in post-BCR ligation [25]. To add on, MAPK
can also be triggered by another PLC-γ2 mediated signal, RAS oncoprotein, which is in-
volved in RAS stimulation. RAS generation in the signal transduction revolves around the
growth factor receptor-bound protein2 (Grb2) alongside VAV, which escorts SOS protein
complex formation. RAS-GTP, an active form of RAS observed after its association with
signalosome, leads to activation of RAF kinases and induction of ERK1/2 phosphorylation,
resulting in transcription of c-fos and c-jun genes that are vital for cell viability [26]. Figure 3
illustrates the cascade of events showing BTK’s participation in BCR signaling influencing
B-cell development, endurance, and proliferation.
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3. Association of BTK with B-Cell Malignancies

BCR expression is evident in most B-cell lymphoma cells that propagate BCR signaling
in the intact B-cell for malignant cell growth [27]. BTK activity in B-cell differentiation,
proliferation, and survival also applies to the microenvironment of B-cell lymphomas [28].
Dysregulation of the BCR signal transduction in a normal cell may trigger B-cell malignancies
due to alterations in the gene arrangement and translocation of chromosomes [27]. Failure
of BTK function leading to BCR malfunction results in poor B-cell tolerance [29]. Activation-
induced cytidine deaminase (AID) instigation is essential for improved B-cell tolerance. AID
is found in the germinal center of B-cells and regulates mature B-cell apoptosis [29]. AID
activation leads to somatic hypermutations of DNA, resulting in alterations in Ig specificity.
AID-led DNA mutations and chromosomal translocations are eventually accompanied by
the rearrangement of heavy chain immunoglobulin gene (IgH) by proto-oncogenes, namely
BCL2 and cYMC that make cancer cells resistant to apoptosis. AID overexpression is also
observed in B-cell lymphomas [30]. BTK overexpression increases germinal center generation,
leading to dysregulated homeostasis of T-cells, thus explaining the pathological role of BTK in
influencing BCR signaling in B-cell lymphomas. The association of BTK with different B-cell
malignancies is discussed below.

3.1. Chronic Lymphocytic Leukemia (CLL)

The presence of aggregated CD5+ B-mature cells in the systemic circulation characterizes
CLL. CLL B-cells are manifested by a decrease in immune response towards BCR ligation,
suggesting prolonged BCR localization inside the cell and signaling, along with less expression
of IgM on the cell surface [31]. The presence of active BCR cell gene expression in CLL isolated
from lymphatic cells indicated the existence of active BCR signaling. The defective IGHV
gene with ‘stereotyped BCR receptors’ was also identified in CLL [32]. CLL pathogenesis
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is initiated by pressure from antigens of cell apoptosis or pathogens and is associated with
high BTK activity, leading to an aberrant increase in BCR signal [33,34]. It was surprising to
find ibrutinib-treated CLL cells have the efficacy to inhibit CXCL13- and CXCL12- induced
migration, which proves BTK signaling in cell migration to lymph nodes’ proliferation centers
in CLL [35,36]. Various findings show the significant role of BTK-aided signaling in the
commencement and maintenance of CLL. The existence of phosphorylated BTK in a fraction
of CLL samples also ascertains the overexpression of BTK in CLL B-cells [37]. Tumor cessation
in mouse models that lack BTK complement these observations [18,38].

3.2. Mantle Cell Lymphoma (MCL)

MCL is a lymphoproliferative disease confining to post-germinal center in origin,
and has its mantle zone differentiated by the presence of malignant B-cells. A remarkable
feature alongside CLL was the appearance of a restricted BCR gene repertoire, which paved
the way to assume the role of BCR signaling in the progression of MCL [39]. Overexpression
and activation of BTK by Tyr223-phosphorylation also led to the onset of SYK stimulation,
a resultant effect of BCR cross-linking. These effects expedited the survival of malignant
cells by releasing autocrine factors and adherence to human bone marrow stromal cells,
which also correlated well with the deregulation of the kinases in the BCR signaling [40].

3.3. Diffuse Large B-Cell Lymphoma (DLBCL)

The presence of fast-growing malignant B-cells in the nodal and extranodal sites with
single or multiple focal points identifies DLBCL. This B-cell non-Hodgkin’s lymphoma has
been categorized as activated-B-cell-like (ABC-DLBCL), GC B-cell-like (GCB-DLBCL), and
primary mediastinal B-cell lymphoma (PMBL), based on gene expression profiling. Investi-
gations reveal that the former two lymphomas weigh more in clinical cases, with the latter
to be accounted for the least. BCR signaling in ABC- DLBCL highly depends on the NF-κB
pathway-mediated anti-apoptotic events that are conciliated by CARMA1 mutations and
loss of function mutations of modulators turning down NF-κB [41]. Findings suggest that
there is BCR amplification and protracted triggering of AKT due to the enhancement of
BCR expression in ABC-DLBCL [42]. Survival of DLBCL cells largely relies on upregulated
BCR signaling [17]. Amplification of malignant cells is mediated through BCR downstream
signaling activation involving NF-κB and PI3K pathways. The association of DLBCL with
components of BCR channels can be either antigen-dependent or via mutation of downstream
components in the pathway, like CARMA1 and NF-κB negative regulators [5]. Gene ex-
pression in ABC-DLBCL was found to be influenced by IgM+. The impact of antigens in
pathogenesis points to the existence of stereotyped BCR receptors, and the role of autoantigens
can be matched with various BCR specificities. This auto-antigenic mediated response to BCR
in ABC-DLBCL ascertains the BCR activation hinged with antigen [35].

3.4. Burkitt’s Lymphoma (BL)

BL is an aggressive malignancy caused by unregulated expression of MYC due to
abnormal translocation of the MYC gene into the loci of immunoglobulin on the cell,
resulting in the selection of the cell for expressing BCR. Blocking of PI3K-generated post-
BCR ligation on BL, either directly or selecting its substrate during the activated state as
mTORC1, can lead to cell death. When these facts are combined, it is evident that Burkitt’s
lymphoma phenotype resulted from an activated PI3K and MYC combination [43]. BL cells
were found to be receptive towards SYK expression and depletion of CD79a, contrary to
its resistive behavior observed with the knockdown of BTK and CARMA1 [44,45]. The
mutated form of transcription factor TCF3 in BL leads to elevated expression of BCR
mediated through PI3K stimulation [26].

4. Association of BTK with Other Cancers

In addition to its dominating space in signal transduction mediated through BCRs,
increasing evidence shows the impact of BTK in other subtypes of cancers. B-cell and
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macrophage-mediated T-cell suppression conciliate the role of BTK in pancreatic adenocar-
cinomas. Association of BTK was evident in a study using the BTK inhibitor ibrutinib on
pancreatic ductal adenocarcinoma (PDAC)-bearing mice, which resulted in the termination
of PDAC growth by deviating macrophages to target T(H)1 phenotype involved in CD8(+)
T-cell cytotoxicity paralleled with a boost in chemotherapy responsiveness [46]. Studies
unveiled that CD1dhiCD5+ regulatory B-cells (Breg) differentiation in the pancreatic tumor
was regulated by BTK activation through CD40 and IL-6 receptors aside from Myd88 and
IRAK-1, effectors in the downstream signaling of cytokine molecule IL-1 that leads to
NFκB-mediated pro- and anti-inflammatory cytokine expression [47,48]. BTK inhibition
results in the inhibition of differentiation of Breg and secretion of IL-10 and IL-35, which
mediates Breg’s immunosuppressive action [48]. Studies suggest an upregulation of BTK
protein with activated mTOR signaling in CD133+-SP Bladder cancer (BLCA) cells [49].
BTK inhibition is crucial to inhibit breast cancer metastasis. BTK regulates breast cancer
metastasis by activating PLC γ2/PKC signaling. Activated PKC mediates MAPK and
NFκB signaling. The TPA, 12-O-tetradecanoylphorbol-13-acetate is pivotal for generating
and releasing matrix metalloproteinases (MMP-9) through activation of PKC, and MAPK
controls TPA’s action. MAPK also regulates activator protein-1 (AP-1) and NFκB, strongly
influencing TPA-led MMP-9 activation. MMP-9 promotes the cell invasion property of
breast cancer cells. Hence, BTK inhibition shall inhibit the expression of MMP-9 initiated
by TPA, thereby suppressing breast cancer metastasis [14].

5. Association of BTK with Autoimmune Diseases

BCR signaling also activates BTK in cells like mast cells, basophils, monocytes,
macrophages, and osteoblasts involved in hematogenesis and autoimmunity [7]. FCγ
and FCε receptors in macrophages and mast cells are modulated by BTK signaling, shown
in Figure 3. Antigen binding to these receptors activates LYN and SYK, which activates
BTK, resulting in the activation of the MAPK pathway and leading to the release of inflam-
matory cytokines [50]. Toll-like receptors (TLR), on recognizing disease-specific, damage,
and pathogen-associated structural patterns (DAMP and PAMP), activate host immunity.
BTK is essential for the TLR-mediated release of inflammatory cytokines [51]. Thus, the
depletion of BTK activity shall be helpful in the prognosis of autoimmune diseases.

6. BTK Inhibitors

Having discussed the role of BTK in BCR signaling and the development of B-cell malig-
nancies, it is implied that BTK inhibition is vital for treating B-cell malignancies. Knowledge
of BTK domain arrangements and their complementarity for small molecule binding has
steered the design and development of BTK inhibitors (BTKi). Two classes of BTKi are avail-
able: covalent inhibitors and non-covalent inhibitors. Covalent inhibitors of BTK (BTK-Covi),
chemically, are Michael acceptors establishing a covalent bond with catalytic Cys481 in the
ATP binding site of the kinase domain. BTK-Covi are known as irreversible BTK inhibitors.
Non-covalent inhibitors (BTK-Ncovi) occupy the kinase domain of BTK, establishing weak,
reversible inter-molecular interactions like hydrophobic and electrostatic interactions with its
residues, and are also known as reversible BTK inhibitors [52].

6.1. Covalent Inhibitors of BTK

The binding of BTK-Covi with the active site of BTK blocks the binding of ATP,
thereby hindering the BTK autophosphorylation and inhibiting BTK. Inhibition of BTK
also prevents the phosphorylation of the kinases acting downstream in the B-cell signal
transduction [53]. Ibrutinib, the prototype BTK-Covi, suffers from side effects because of
non-specific blockade of other targets like EGFR, ErbB2, ITK, and TEC, as these proteins
harbor a conserved cysteine residue that aligns with Cys481of BTK [6,54–56]. Table 1 has
information on a few of the approved BTK-Covi. Concern about the side effects of ibrutinib
set the investigation for more selective BTK inhibitors with minimal toxicity. Acalabrutinib
and zanubrutinib, comprising the second generation of BTK inhibitors, offer more selective
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BTK inhibition. The inhibitory effects on TEC were less with an absence of ITK or EGFR
blockade that was regarded as their advantage, although these inhibitors’ binding occurred
at Cys481. Acalabrutinib lacks adverse effects like severe diarrhea and rashes that were
assumed to be linked with EGFR inhibition, and platelet dysfunction associated with
blocking TEC [57–59]. Compared to ibrutinib, zanubrutinib owes good pharmacokinetic
data and the absence of the inhibition of non-BTK targets (ITK or EGFR) [58].

Table 1. Approved covalent inhibitors of BTK.

Name Heterocyclic Scaffold Use
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Table 1. Cont.
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6.2. Resistance to Covalent Inhibitors of BTK

Like other anti-cancer drugs, adverse effects and resistance to the covalent BTK in-
hibitors were observed. Nearly one-third of the patients treated with ibrutinib developed
primary resistance, and a few others have shown secondary (acquired) resistance [60].
Acquired resistance to ibrutinib was seen in multiple B-cell lymphomas. Among the CLL
patients treated with ibrutinib, mutations in the Cys481Ser (ibrutinib-binding), Thr474Ile,
Met, Ser (gatekeeper), and Thr316Ser (SH) were observed, positions shown in Figure 2 [61].

The Waldenström’s macroglobulinemia (WM) patients on ibrutinib therapy commonly
showed Cys481 mutation. Due to these mutations, there is an interference in the binding of the
drug to the protein, leading to the development of resistance [62,63]. Other types of mutations
that were observed in the WM patients were the PLCY2 and CARD 11. Mutations in the
IGHV in patients suffering from WM and mutations in the MYD88 in patients with diffuse
large B-cell lymphoma were also associated with the development of primary resistance [61].
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According to a study that evaluated patients with relapsed CLL, it was found that
patients who were treated with ibrutinib experienced a relapse due to resistance. Whole
exome sequencing (WES) performed on the blood samples of patients revealed a mutation
of cysteine to serine at position 481. These alterations of the Cys481 residue impaired the
binding of the inhibitor drug to BTK. Another type of mutation observed in a few patients
was due to the change of arginine to tryptophan in PLCY2 at position 665. One patient
showed both BTK and PLCY2 mutations. However, the resistance observed was mainly
due to mutations in Cys481 and less commonly due to mutations in the PLCY2 [61,64]. CLL
patients treated with other covalent BTK inhibitors also showed disease progression due to
the development of resistance [65,66].

WES revealed Cys481 mutation as the primary mechanism for developing ibrutinib
resistance in the relapse of MCL tumors [67,68]. It was revealed that one-third of the
MCL patients are ibrutinib-resistant, and the other patients who were sensitive to the drug
developed resistance [69]. MCL patients experienced primary and secondary resistance
to ibrutinib [70]. Multiple resistance mechanisms in MCL include recurrent mutation of
Cys481Ser or PLCY2 [71].

7. Non-Covalent Inhibitors of BTK

Resistance to BTK-Covi and the adverse effects of BTK-Covi led to the development of
non-covalent inhibitors. BTK-Ncovi does not bind to Cys481 of BTK and helps overcome
ibrutinib resistance due to mutation in Cys481. Given the role of BTK in autoimmunity,
BTK-Ncovi are under preclinical trials against autoimmune disorders. Vercabrutinib and
fenebrutininb are typical examples of BTK-Ncovi which are under clinical trials. These
drugs are reported to possess fewer off-target adverse effects [72]. None of the BTK-Ncovi
are approved for clinical use. Table 2 provides information about BTK-Ncovi under clinical
trials [73]. Recently, resistance to BTK-Ncovi has been reported. Resistant mutations oc-
curred at residues in the BTK kinase domain Val416Leu, Ala428Asp, Met437Arg, Thr474Ile,
Leu528Trp, and on the BCR signal mediator PLC-γ2 [74].

Table 2. Non-covalent inhibitors of BTK under clinical trials.

Name Heterocyclic Scaffold Use

Vecabrutinib (SNS062)
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Table 2. Cont.

Name Heterocyclic Scaffold Use

Pirtobrutinib (LOXO305)
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Table 2. Cont.

Name Heterocyclic Scaffold Use

Rilzabrutinib (covalent reversible inhibitor)
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8. Structural Complementarity of BTK and Its Inhibitors

We examined the 3D structures of BTK with its inhibitors recently deposited in the
protein data bank (PDB) to update the knowledge about structural attributes of small
inhibitory ligands complementary to BTK inhibition.

The PDB search was directed towards the ligand-bound kinase domain of BTK wild-
type structures obtained from Homo sapiens. Structures that the same research groups
deposited were examined for the presence of the most active compound reported, and
only such structures were used for the analysis. Structures of the kinase domain were
only considered for the study. Thirty X-ray crystal-derived structures of BTK bound to
small molecule inhibitors were retrieved. Thirteen structures were removed from the
study because of similarity in structure due to the presence of similar scaffolds in ligands
reported from the same research group. Eight structures were omitted because the ligands
interacted with the PH domain of BTK mutants. One structure was not utilized as it was
BTK apo form. Thus, eight recently deposited PDB structures of Homo sapiens BTK-kinase
domain-bound inhibitors made up the final analysis stage. Table 3 contains the information
on 3D structures analyzed for structural characteristics of ligands for binding to BTK.

Table 3. PDB data of recent 3D structures of BTK-kinase domain with its complementary ligands.

PDB ID Ligand ID/Scaffold Under Clinical/Preclinical Trials Nature of Ligand Binding

7N5Y TAK020/Pyrrolidinyl-isoquinolinyl-triazole Rheumatoid arthritis Covalent
7KXQ X9Y/Imidazopyridine B-cell malignancies Non-covalent
6W07 BIIB068/Pyrazolyl-pyrimidinyl-azetidine Systemic lupus erythematosus Non-covalent
7R60 2IE/Piperidinylpyridine Autoimmune disorders Covalent
7LTZ BIIB091/Pyrazolyl-pyrimidinyl-azetidinylltriazole Multiple sclerosis Non-covalent
6XE4 V1G/Pthalazinyl-bipyridine Rheumatoid arthritis Non-covalent
6X3P L-005298385/Imidazopyrazine Rheumatoid arthritis Non-covalent
6TFP LOU064/Pyrimidine Chronic urticaria, Sjogren’s syndrome Covalent

8.1. Structural Complementarity of Covalent Binding to BTK

Though no new BTK structures bound to ibrutinib were retrieved from PDB, assessing
the ibrutinib binding reported in recent studies is inevitable. As a prototype molecule,
ibrutinib, a covalent irreversible BTK inhibitor, has undergone rigorous scrutiny to unveil
possible inhibitory binding mechanisms [75]. Ibrutinib binds to the ATP binding site
located in the kinase domain. Ibrutinib establishes a covalent bond with the Cys481 residue
of the ATP binding site. The BTK kinase domain undergoes conformational changes on
the covalent binding of inhibitors. Conformations of αC-helix and activation kink in the
BTK kinase domain are important indicators to conclude the stabilized apo or ligand-
bound conformations. The αC-helix equilibrates between inactive (αC-helix-out) or active
(αC-helix-in) spatial arrangements that are controlled by a structural plug in the helix,
which regulates the existence of a salt bridge between glutamic acid-lysine residues in
the kinase domain [76]. It has been proved that Trp395 (W395), in Figure 2, undergoes
a conformational change in response to the spatial orientation of the αC-helix. A recent
study that utilized NMR and mass spectrometry to track the spatial orientations of the
kinase domain and the whole BTK structure on ibrutinib binding concluded that αC-helix
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was stabilized in an inactive-out conformation disrupting the catalytic activity of BTK.
Figure 4 illustrates the stabilized conformation of the kinase domain of BTK bound to
ibrutinib. In addition, ibrutinib induced a change in the conformation of Trp251 (W251) in
the SH3 domain, altering its conformational preference far from the autoinhibitory BTK
conformation. Alteration in SH3 conformation indicates that ibrutinib binding causes
stereochemical changes in the whole structure of BTK apart from the catalytic kinase
domain. Comparing the covalent binding of ibrutinib with other covalent inhibitors like
dasatinib and CC292 indicated that the final stabilized conformation of the kinase domain
of BTK was different with different inhibitors [77]. Although ibrutinib and dasatinib were
found to bind to Cys481 through a covalent bond, the activation kink conformation was
different. The dasatinib-bound BTK kinase domain did not display the activation kink
close to the αC-helix, whereas the he ibrutinib bound-BTK kinase domain did display
the activation kink close to the helix. Despite stabilizing αC-helix-in state, dasatinib is
capable of BTK inhibition because it does not affect the regulatory domain orientations;
hence, BTK is in its autoinhibitory inactive conformation. Ibrutinib and dasatinib occupied
the posterior cleft, while CC292 occupied the anterior cleft in the catalytic binding site of
the kinase domain. Ibrutinib and dasatinib existed in an extended conformation inside
the binding site, while CC292 acquired a U-shape during binding. Figure 5 displays the
overlay of the BTK kinase domain bound to ibrutinib, dasatinib, and CC292. CC292 did
not produce any conformational change in the whole length of BTK, except the kinase
domain, while ibrutinib and dasatinib did. All of the above observations indicate that there
exists a structural complementarity between inhibitors and BTK, resulting in characteristic
selectivity and adverse effect profiles.
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To further support the structural complementarity of BTK and its covalent inhibitors in
terms of the functionalization of chemical moieties, we consider the results of a mechanistic
study reported. The mechanistic analysis of the low energy reaction between Cys481 of the
kinase domain of BTK and ibrutinib confirms that the reaction mechanism is a nucleophilic
addition of S-alkyl of CYs481 to the double-bonded carbons in ibrutinib. Negatively ionized
Cys481 attacks positively charged ibrutinib that results in an enol ibrutinib-BTK complex
which then undergoes tautomerization to produce the stable keto form of ibrutinib-BTK
complex. An α, β-unsaturated ketone (or aldehyde moiety) functioning as the chemical
fuse is essential for initiating a covalent Michael addition reaction. First, Cys481 transfers
H+ to the keto oxygen of ibrutinib, producing an ionic pair of S-Cys and HO+ibrutinib,
followed by the nucleophilic attack of this ionized ibrutinib by Cys481. The mechanistic
study also indicated that the presence of Asn484 adjacent (maximum 2 residues apart) to
Cys481 is essential to stabilize the intermediates of the nucleophilic reaction. It is suggested
that Asn484 interacts with Cys481 throughout the reaction, without which the reaction
intermediates are not stable [78]. Based on the structures of the available covalent inhibitors
and the proposed mechanism of their interaction with Cys481, the pharmacophoric features
that complement the binding of covalent inhibitors of the kinase domain of BTK are
provided in Figure 6A. Lipophilic rings are required to increase the bulk that facilitates
binding site occupancy and establishes hydrophobic interactions with other residues in the
catalytic site.
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(B) structures of novel covalent BTK inhibitors deposited in PDB.

The PDB structures 7N5Y, 7R60, and 6TFP were analyzed for ligand binding interac-
tions and protein conformation to check for updates on the structural complementarity of
covalent ligand binding to Cys481 of the kinase domain of BTK. Overlay of protein struc-
tures for conformational analysis and interaction analysis were performed using Chimera
and Discovery Studio, respectively. Chemical structures of the novel BTK-Covi fall into the
classic model of essential structural features in Figure 6A. The two-dimensional structures
of these novel BTK-Covi are provided in Figure 6B. These novel BTK inhibitors have acry-
loyl amide as the chemical fuse or a Michael acceptor that initiates the nucleophilic reaction
with Cys481, resulting in a covalent bond [79–81]. TAK020 oriented itself exclusively into
the anterior cleft of the binding site in a ‘U’-form, while LOU064 and 2IE were bound
to the anterior and posterior clefts in an extended conformation. LOU064 was shown to
bind to the inactive BTK conformation and stabilize it in αC-helix-out conformation [79].
Superimposing the ligand-bound BTKs onto ibrutinib-bound BTK suggested that the novel
ligands induced similar conformational changes in the BTK kinase domain, like ibrutinib,
as shown in Figure 7. Matching the αC-helix conformation of all examined BTK structures
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shows that these compounds stabilize BTK in its inactive αC-helix-out conformation and
also display the activation kink. The orientation of Asn484 in all BTK structures was also
indistinguishable from that of ibrutinib-binding, implying that Asn484 shall play a crucial
role in stabilizing the interaction of ligands with Cys481.
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Figure 7. Superimposed 3D structures of novel covalent inhibitors bound to BTK-kinase domain.
Protein: grey-ibrutinib-bound (5P9J), blue-LOU064-bound (6TFP), purple-2IE-bound (7R60), pink-
TAK020-bound (7N5Y). Ligands: red-ibrutinib, green-LOU064, blue-2IE, orange-TAK020. αC-helix
inactive out conformation and activation kink is visible in the other inhibitor-bound BTK conforma-
tion, similar to the ibrutinib-bound conformation.

The three recently reported covalent inhibitors discussed here exhibited improved
potency and reduced off-target effects compared to ibrutinib. Modifying the chemical fuse
moiety was impossible as changes led to decreased potency. The heterocyclic spacer can
be modified, as seen in remibrutinib; it is aromatic pyrimidine, while in the other two
compounds, it is pyrrolidine and piperidine (Figure 6B). Variations in core moieties are
also possible, and it varies from bicyclic isoquinoline to monocyclic pyridine or a simple
phenyl ring. The terminal hydrophobic rings may be heterocyclic triazole or alkyl/fluoro
substituted phenyl rings, which can make the compounds selective to BTK [79–81].

Together, a structural complementarity exists between the kinase domain of BTK and
its covalent inhibitors. Binding site complementarity that involves charges of Cys481 and
Asn484 is indispensable when a structurally complementary inhibitor possessing an α,
β-unsaturated carbonyl moiety approaches the binding site. The inhibitor chemistry must
be complementary to BTK in shape and size and is accomplished by the bulky heterocyclic
core adjoining lipophilic rings and a saturated heterocyclic spacer [79–81].
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8.2. Structural Complementarity of Non-Covalent Binding to BTK

Before analyzing the recent depositions in PDB, it is essential to revise the existing
knowledge about non-covalent binding to BTK. Non-covalent binding to BTK can be
explained by taking fenebrutinib as an example. BTK-Ncovi binds to the kinase domain, and
their interactions are not restricted to Cys481 [82]. A detailed structure-activity relationship
investigation on BTK-Ncovi revealed the complementary functional groups for enhanced
potency, selectivity, and favorable metabolic and safety profile. In addition, the binding site
engagement by fenebrutinib was charted out. Fenebrutinib resulted in an induced fit to the
kinase domain producing a conformational change in the activation kink that stabilizes
BTK in its inactive conformation, shown in Figure 8. The lipophilic tricyclic ring exhibits
shape complementarity to the H3 cleft and interacts with Tyr551 in the activation kink, thus
inhibiting the autophosphorylation. Fenebrutinib possesses hydrophobic groups filling the
H2 cleft and H1 hinge region in an extended ‘U’ conformation. The terminal oxetane-linked
piperazine in fenebrutinib is prone to solvent exposure and engaged H2 cleft. The core
pyridone ring engaged the H1 hinge [83].
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Figure 8. Non-covalent inhibitor fenebrutinib bound to BTK kinase domain (5VFI). Chiefly, the
lipophilic moiety occupying the H3 cleft interacts with Tyr551 in the activation kink and inhibits the
autophosphorylation of BTK.

We focused on recent BTK-Ncovi optimized for better potency, selectivity, and metabolic
stability than the current clinical candidates. Therefore, the inhibitor effect on BTK mutations
was not considered. Development in non-covalent inhibitors’ chemistry and BTK binding
was ascertained from PDB structures deposited recently. PDB IDs 7KXQ, 6W07, 7LTZ, 6XE4,
and 6X3P were investigated for the structural complementarity between BTK-NCovis [84–88].
Overlay of the fenebrutinib-bound BTK-kinase domain on BTKbound to the recent non-covalent
inhibitors in Figure 9, shows that the currently developed BTK-Ncovi occupy and interact with
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the kinase domain of BTK. The catalytic site engagement is also similar to that of fenebrutinib.
All novel BTK-NCovi filled the kinase domain’s H3, H2 clefts, and the H1 hinge area. Their
primary interaction was with Tyr551 in the activation kink, altering its conformation. Almost all
BTK-Ncovi interact with BTK’s inactive autoinhibited conformation stabilizing the αC-helix-out
conformation, resulting in extended docking of ligands leading to prolonged inhibition [83,84].
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Figure 9. Overlay of 3D structures of novel non-covalent inhibitors bound to BTK-kinase domain.
Protein: grey-fenebrutinib-bound (5VFI), blue-X9Y-bound (7KXQ), purple-BIIB068-bound (6W07),
cyan-BIIB091-bound (7LTZ), pink-V1G-bound (6XE4), white-L-005298385-bound (6X3P). Ligands:
red-fenebrutinib, magenta-X9Y, blue-IIB068, yellow-BIIB091, green-V1G, orange-L-005298385.

Research on BTK-Ncovi is progressing toward optimizing selectivity, potency, metabolic
stability, and reducing side effects [52,89]. Non-covalent inhibitors with the complementary
structural features provided in Figure 10A portray excellent BTK inhibition and fewer side
effects [84,90]. In-vitro and in-vivo side effects of non-covalent inhibitors decreased when
functional groups engaging H3 and H2 clefts were optimized, such that H3 binders are
highly lipophilic bicyclic/tricyclic planar rings and H2 binders are less lipophilic medium-size
rings [91]. The H3 cleft of BTK is versatile in accommodating binders like bulky, lipophilic
t-butyl-oxadiazole, t-butyl-triazole, isopropyl-oxo-azetanyl, trifluoromethyl pyridyl, and
t-butyl-pthalazinyl moieties (Figure 10B). These moieties also maintained hydrophobic or
polar interactions with Tyr551, increasing the potency [83,90]. Moreover, H3 binding groups
afford selectivity to BTK, thereby reducing the off-target effects [84]. H2 cleft is a hydrophobic
flat binding region, and its interaction with specific chemical moieties may also provide
selectivity. It has been proved that the H2 cleft can hold a maximum of three rings adjoined by
single- or double-atom linkages. H2 binders, if less lipophilic than H3 binders, can offer maxi-
mum selectivity and metabolic stability [90,91]. Examples of H2 binders in novel inhibitors
include isopropyl pyrazole, methyl pyrazole, bicyclic-fused piperidyl pyrazolidine, and fluoro
cyclopropyl groups. H1 binders construct the structure’s core, which usually is an aromatic
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heterocyclic scaffold or alicyclic core that occupies the hinge region. Novel BTK-Ncovi have
cycloheptyl benzene, azepinyl benzene, imidazopyrazine, phenyl pyrimidine, and dipyridine
as core functional scaffolds. Appropriate H3, H2, and H1 binders shall improve potency by
enhancing the duration of residence of inhibitors inside the binding clefts [85–89,91]. Thus, the
BTK-kinase domain provides a complementary binding region for induced-fit docking of non-
covalent inhibitors with complementary structures that determines the pharmacodynamic
and pharmacokinetic profiles of inhibitors.
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8.3. Comparison of Binding Interactions of Covalent and Non-Covalent Inhibitors of BTK

Representative molecules from BTK-Covi (TAK-020-bound BTK, 7N5Y) and BTK-
Ncovi (BIIB068-bound BTK, 6W07) were considered for comparing the binding interactions.
TAK-020, a poly heteroaromatic compound, contains isoquinoline and triazole motifs and
produces irreversible covalent inhibition of the BTK-kinase domain implicated in rheuma-
toid arthritis. It also possesses a pyrrolidine ring, the nitrogen of which is linked to the
α, β-unsaturated ketone resembling the acryloyl amide group. TAK-020 shows improved
efficacy, potency, and selectivity when compared to ibrutinib. Figure 11A illustrates the
covalent binding of the chemical fuse, an unsaturated ketone of TAK-020, to sulfur of
Cys481 of BTK within a distance of 1.635 Å. TAK-020 adopts a U-conformation, occupying
the ATP-binding site in the kinase domain of BTK. Figure 11B displays the complementary
shape and binding groups of TAK-020 capable of establishing hydrogen bonds and van der
Waal’s interactions with the BTK-kinase domain. Thr474, the gatekeeper, forms a hydrogen
bond with the keto oxygen of triazolone, and Met477 interacts through a hydrogen bond
with the N-atom of triazole. This suggests that triazole is complementary in size, shape,
and binding groups to fill the hydrophobic binding site, in addition to facilitating binding
interactions. The aromatic isoquinoline ring is the core nucleus essential for hydrophobicity
and places the compound inside the hydrophobic binding site, complementing the posi-
tioning of triazole and pyrrolidine. In addition, isoquinoline also establishes hydrophobic
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-sigma bonds with Leu408. The pyrrolidine ring
functions as a spacer group and is critical in positioning the chemical fuse group close to
Cys481 for charge complementarity, initiating the hydrogen ion transfer from Cys481 to
the keto group of acryloyl moiety in TAK-020. Pyrrolidine also forms alkyl interactions
with Val416. TAK-020 was designed to have a smaller size than ibrutinib with the aim
of selective binding to BTK. The heterocyclic spacer in ibrutinib is hexahydro pyridine,
which is bulkier than pyrrolidine in TAK-020. The significant difference lies in the lipophilic
terminal scaffold; TAK-020 has a medium-size triazolone ring, while ibrutinib has a bulky
phenoxyphenyl moiety. TAK-020 does not bind to non-BTK targets like Tec and Src kinases,
hence having a better safety profile than ibrutinib. Thus, the complementarity in shape,
size, functional groups, and charges on functional groups influence drug efficacy, potency,
selectivity, and safety.

The binding of BTK-Ncovi occurs through an induced-fit mechanism; preliminary inter-
action with Tyr551 or any adjacent residue like Lys430 in the activation kink induces conforma-
tional changes generating H3 cleft specific for BTK [84,90]. For example, Figure 11C,D shows
the hydrogen bonding and hydrophobic interactions of the non-covalent inhibitor BIIB068
with BTK. BIIB068 is an orally effective, BTK-selective inhibitor. The side chain isopropyl
group attached to the azetidine ring forms complementary

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 22 of 29 
 

 

8.3. Comparison of Binding Interactions of Covalent and Non-Covalent Inhibitors of BTK 
Representative molecules from BTK-Covi (TAK-020-bound BTK, 7N5Y) and BTK-

Ncovi (BIIB068-bound BTK, 6W07) were considered for comparing the binding interac-
tions. TAK-020, a poly heteroaromatic compound, contains isoquinoline and triazole mo-
tifs and produces irreversible covalent inhibition of the BTK-kinase domain implicated in 
rheumatoid arthritis. It also possesses a pyrrolidine ring, the nitrogen of which is linked 
to the α, β-unsaturated ketone resembling the acryloyl amide group. TAK-020 shows im-
proved efficacy, potency, and selectivity when compared to ibrutinib. Figure 11A illus-
trates the covalent binding of the chemical fuse, an unsaturated ketone of TAK-020, to 
sulfur of Cys481 of BTK within a distance of 1.635Å. TAK-020 adopts a U-conformation, 
occupying the ATP-binding site in the kinase domain of BTK. Figure 11B displays the 
complementary shape and binding groups of TAK-020 capable of establishing hydrogen 
bonds and van der Waal’s interactions with the BTK-kinase domain. Thr474, the gate-
keeper, forms a hydrogen bond with the keto oxygen of triazolone, and Met477 interacts 
through a hydrogen bond with the N-atom of triazole. This suggests that triazole is com-
plementary in size, shape, and binding groups to fill the hydrophobic binding site, in ad-
dition to facilitating binding interactions. The aromatic isoquinoline ring is the core nu-
cleus essential for hydrophobicity and places the compound inside the hydrophobic bind-
ing site, complementing the positioning of triazole and pyrrolidine. In addition, isoquin-
oline also establishes hydrophobic ℼ-alkyl bonds with Val416, Leu528, and ℼ-sigma bonds 
with Leu408. The pyrrolidine ring functions as a spacer group and is critical in positioning 
the chemical fuse group close to Cys481 for charge complementarity, initiating the hydro-
gen ion transfer from Cys481 to the keto group of acryloyl moiety in TAK-020. Pyrrolidine 
also forms alkyl interactions with Val416. TAK-020 was designed to have a smaller size 
than ibrutinib with the aim of selective binding to BTK. The heterocyclic spacer in ibru-
tinib is hexahydro pyridine, which is bulkier than pyrrolidine in TAK-020. The significant 
difference lies in the lipophilic terminal scaffold; TAK-020 has a medium-size triazolone 
ring, while ibrutinib has a bulky phenoxyphenyl moiety. TAK-020 does not bind to non-
BTK targets like Tec and Src kinases, hence having a better safety profile than ibrutinib. 
Thus, the complementarity in shape, size, functional groups, and charges on functional 
groups influence drug efficacy, potency, selectivity, and safety.  

-alkyl interaction with Tyr551,
the phosphorylation site in the BTK kinase domain. This hydrophobic interaction alters
the conformation of BTK, generating an H3 cleft and placing the azetidine ring deep into
the pocket. Furthermore, it favors the angular orientations of the aromatic benzyl reverse
amide group into the hinge region and the H2 binder, pyrazolyl pyrimidine, submerged into
the H2 cleft. Several other favorable
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oline also establishes hydrophobic ℼ-alkyl bonds with Val416, Leu528, and ℼ-sigma bonds 
with Leu408. The pyrrolidine ring functions as a spacer group and is critical in positioning 
the chemical fuse group close to Cys481 for charge complementarity, initiating the hydro-
gen ion transfer from Cys481 to the keto group of acryloyl moiety in TAK-020. Pyrrolidine 
also forms alkyl interactions with Val416. TAK-020 was designed to have a smaller size 
than ibrutinib with the aim of selective binding to BTK. The heterocyclic spacer in ibru-
tinib is hexahydro pyridine, which is bulkier than pyrrolidine in TAK-020. The significant 
difference lies in the lipophilic terminal scaffold; TAK-020 has a medium-size triazolone 
ring, while ibrutinib has a bulky phenoxyphenyl moiety. TAK-020 does not bind to non-
BTK targets like Tec and Src kinases, hence having a better safety profile than ibrutinib. 
Thus, the complementarity in shape, size, functional groups, and charges on functional 
groups influence drug efficacy, potency, selectivity, and safety.  
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Ala428, Leu528, and Val546 residues stabilize the active conformation of BIIB068. Unique
hydrogen bonds with H1, H2, and H3 residues also stabilize BIIB068 active conformation.
Hydrogen bonding happened with the crucial Met477 hinge residue. It is further interesting
to note the involvement of water molecules in facilitating the hydrogen bond network with
Phe413, Gly414, Lys430, and Arg525 within an interatomic distance of 4 Å. The amide and
secondary amine linkers play a significant role in hydrogen bonding, along with pyrimidine
nitrogen. Consequently, complementary angular conformational orientation and electrostatic
and hydrophobic moieties of non-covalent inhibitors are key features driving non-covalent
BTK inhibition.
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domain. (A) TAK-020 interacts through a covalent bond with Cys481 of BTK (7N5Y). (B) TAK-020
positioned inside the hydrophobic binding pocket of BTK establishing hydrogen bonds and hy-
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ment with Tyr551 creates the H3 hydrophobic cleft for the selectivity of the kinase. Hydrophobic
interactions with nearby residues of H1 and H2 sites are also present.



Pharmaceuticals 2023, 16, 400 22 of 26

9. Conclusion and Recommendations

Aberrant BTK expression is evident in B-cell malignancies and autoimmune diseases.
BTK has a complex structure, and the elucidation of the whole BTK structure needs atten-
tion. BTK inhibition is vital to halt B-cell malignancies and autoimmune diseases. Critical
insights into the structure and function of the kinase domain of BTK have boosted the
design and development of BTK inhibitors targeting its kinase domain. The foremost
requisite for a successful inhibitor is its complementary shape, size, functional groups,
and charges that initiate efficient binding to critical binding site residues like Cys481 and
Tyr551. Covalent inhibitors of BTK, like ibrutinib and acalabrutinib, are approved for use
in B-cell malignancies and autoimmune diseases. Approved covalent inhibitors were ap-
pealingly repurposed against severe acute respiratory syndrome coronavirus-2 to improve
the hyperinflammatory responses associated with COVID-19. Covalent inhibitors of BTK
require an α, β-unsaturated carbonyl moiety functioning as the chemical fuse kicking off
the nucleophilic attack by BTK Cys481 residue, ultimately forming a covalent bond. The
updated scenario of covalent BTK inhibition has revealed the essentiality of Asn484 at a
two-carbon distance to Cys481 for stabilizing the transition state with covalent inhibitors.
Covalent binding of inhibitors to Cys481 alters the αC-helix conformation and stabilizes it
in an αC-out inactive conformation resulting in the inhibition of phosphorylation of Tyr551
in the activation kink. The covalent binding of inhibitors also induced conformational
changes in the SH3 domain, thus inhibiting the autophosphorylation of Tyr223 in the SH3
domain. A functional, structural model for a covalent inhibitor of the BTK kinase domain
must possess four distinct chemical moieties: α, β-unsaturated carbonyl fuse, saturated
heterocyclic spacer, aromatic heterocyclic core, and lipophilic rings that provide binding
site complementarity. Moreover, different covalent inhibitors have different structural
features and stabilize the kinase domain in different conformations. Therefore, the binding
of covalent inhibitors to BTK needs extensive investigation for further understanding of
conformational modifications of kinase and other domains.

Resistance to covalent inhibitors, their adverse effects, and the void in approved
BTK inhibitors for autoimmune diseases paved the way for the discovery of non-covalent
inhibitors of BTK. Non-covalent inhibitors are tested against B-cell malignancies and au-
toimmune diseases, and are established to exhibit safe in-vitro and in-vivo pharmacokinetic
properties. Non-covalent inhibitors bind to the kinase domain of BTK through an induced-
fit mechanism but not essentially through the covalent bond with Cys481. Structural
complementarity of non-covalent inhibitors to BTK includes bulky lipophilic rings as H3
binders for kinase selectivity, heterocyclic core for hinge binding, and lipophilic rings as H2
binders exposed to solvent. Binding to Tyr551 in the activation kink is essential to favor the
induced fit of non-covalent inhibitors to H3 and H2 clefts of BTK. This binding to Tyr551
shall occur through electrostatic hydrogen bonds or hydrophobic interactions. Novel non-
covalent inhibitors exhibited binding to the PH domain and are effective against primary
Cys481 and Thr474 mutations of BTK. Structural features of ligands influencing binding
to mutant BTK is not yet clear and studies focusing on conformational alterations in the
kinase domain of mutant BTK on ligand binding to the PH domain are unavailable. Hence,
BTK mutant structures were not included in the review. Investigations are underway for
improving the pharmacokinetic profile of non-covalent inhibitors. Studies on the structural
complementarity of non-covalent inhibitors of BTK are scarce; hence, focus on the effect
of binding of non-covalent inhibitors on conformations of the kinase domain and whole-
length BTK is needed. Therefore, detailed studies on covalent and non-covalent inhibitors
of the BTK kinase domain revealing the complementary conformational alterations in the
whole structure of BTK are required to enhance the successful design and development of
clinically effective drugs for implication in B-cell malignancies and autoimmune diseases.
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