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Abstract: There is a growing demand for efficient medical therapies without undesired side effects
that limit their application. Targeted therapies such as deliveries of pharmacologically active com-
pounds to a specific site of action in the human body are still a big challenge. Encapsulation is an
effective tool for targeted deliveries of drugs and sensitive compounds. It has been exploited as a
technique that can manage the required distribution, action and metabolism of encapsulated agents.
Food supplements or functional foods containing encapsulated probiotics, vitamins, minerals or
extracts are often part of therapies and currently also a consumption trend. For effective encapsu-
lation, optimal manufacturing has to be ensured. Thus, there is a trend to develop new (or modify
existing) encapsulation methods. The most-used encapsulation approaches are based on barriers
made from (bio)polymers, liposomes, multiple emulsions, etc. In this paper, recent advances in the
use of encapsulation in the fields of medicine, food supplements and functional foods are highlighted,
with emphasis on its benefits within targeted and supportive treatments. We have focused on a com-
prehensive overview of encapsulation options in the field of medicine and functional preparations
that complement them with their positive effects on human health.

Keywords: encapsulation; targeted therapy; targeted distribution of therapeutics; drugs; vaccines;
food supplements; functional foods; immunogenicity

1. Introduction

Considering the increasing age of the population and other factors such as lifestyle
(workload, stress, environmental pollution, etc.), there is a global effort to ensure a certain
standard of living, with an emphasis on the increasing level of medical care as well as
on a healthy and nutritionally balanced diet [1–3]. Many people in developed countries
suffer from obesity, a complex multifactorial disease. For adults, guidelines from the US
Centers for Disease Control and Prevention and the WHO (World Health Organization)
define a normal body mass index (BMI) range as 18.5 to 24.9, whereas a BMI ≥ 25 is
considered to be overweight and a BMI ≥ 30 is classified as obese. Severe obesity is
defined as a BMI ≥ 35. High BMI increases the risk of type 2 diabetes, hypertension,
cardiovascular disease and some cancers [4,5]. In all of these cases, an effective delivery of
therapeutic agents and nutrients plays the most important role. The appropriate method
of administering therapeutic agents ensures their required effect on human health and
minimal side effects [6,7]. Food supplements should also be administered in a way that
guarantees their supportive effects on the human body. Moreover, many consumers are
concerned with the nutritional aspects of food and interested in novel functional food
products containing plant extracts, vitamins, probiotics and prebiotics, etc. Almost all of
these active components are very sensitive compounds, and without protective treatments
they lose their functional properties [8]. An effective tool for delivery of therapeutic
agents and sensitive compounds is encapsulation, which ensures not only protection
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and defined distribution in some organs of the human body but also may change the
metabolization of some agents [9,10]. The changes in metabolization of the agents may be
controlled by the presence of other components in the protective layer [11]. Encapsulation
can be defined as the effective surrounding of an agent that provides its protection. The
encapsulated sensitive agents (pure substances or a mixture of more agents) are known as
coated materials, core materials, payloads, internal phases, etc., while the coating materials
can be called shells, wall materials, capsules, carriers, membranes, films, the outer shell
or packing materials [12]. This technique enables managing the metabolic processes of
encapsulated agents and their delivery to the specific site of action. Thus, encapsulation can
ensure the effective distribution of drugs and nutrients in the human body. In general, the
administration of poorly soluble, toxic or sensitive drugs is improved using encapsulation.
Additionally, side effects can be limited [6]. The most common route of encapsulated agent
administration is oral administration [13,14]. However, other routes of administration
(intravenous, subcutaneous, dermal etc.)—e.g., implantations of encapsulated cells into
tumours—have been published [15]. The summary of encapsulation use is shown in
Figure 1. Generally, the creation of encapsulated cells is a form of cell surface modification
(e.g., an entrapment within a biopolymer structure) and has drawn a large amount of
attention in various research areas, such as cell therapy, cell biosensors, biocatalysts, etc. [16].
Because of growing demand for end products made using encapsulation, new techniques
and methods have been developed. The choice of preparation method for an agent’s
encapsulation depends mostly on its properties, such as state of aggregation, sensitivity,
size of molecules, etc., as well as the method of administration [17]. Here, we review recently
published new encapsulation approaches with high potential for use in the field of advanced
therapies in medicine and targeted functional foods. This review was prepared in line with
the preferred reporting items for systematic reviews and meta-analyses guidelines [18] and
the proposed guidelines for biomedical narrative review [19].
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2. Encapsulated Agents
2.1. Medicine

In medicine, many encapsulation methods have been developed by using new materi-
als and various types of drug–carrier interactions [6]. The use of encapsulation methods in
medicine is very traditional and has been studied intensively. Here, new approaches are
based not only on drug encapsulation but also on advanced cell encapsulation [15].

2.1.1. Drugs

Encapsulation of drugs is a vital strategy for poorly soluble, fragile or aggressive
compounds and can achieve a stronger therapeutic effect along with minimized side
effects [6]. However, producing formulations with high encapsulation efficiencies of
(bio)active compounds remains a big challenge [20]. Encapsulation into, e.g., liposomes
facilitates drug delivery to a specific site (such as brain parenchyma), enhances the stability
of drug molecules, prolongs pharmacological activity via continuous local release of active
molecules and reduces side effects, improving the effectiveness and safety of therapies [15].
Due to the huge number of drugs with very specific and different properties, many types
of biopolymers (protein-based particles) and artificial polymers (polylactic-co-glycolic acid,
poly-ε-caprolactone, polylactic acid, poly(butyl cyanoacrylate or gelatine) are used for
their encapsulation [21,22]. Additionally, many encapsulated active molecules have been
commercialized in the pharmaceutical market, including anti-cancer (e.g., doxorubicin,
paclitaxel, vincristine), hormonal (leuprolide), antiparasitic/antifungal (amphotericin) or
analgesic therapeutics (morphine) [21]. Not only biopolymers or artificial polymers can be
used for encapsulation of active molecules in the field of pharmacy. New approaches have
been reported—e.g., the use of erythrocytes as ”capsules” for drugs [23]. In the last decade,
encapsulation of drugs for anti-cancer therapies [24] as well as nanoparticles [25,26] have
attracted significant interest.

2.1.2. Cells

Despite consistent increase in the mean life expectancy of the population, healthy
life expectancy has not increased. The replacement and reconstitution of diseased or
damaged tissues has become an immense challenge [27]. Here, cell encapsulation has
become a promising strategy. Essentially, live cells are entrapped within a semipermeable
membrane. There are two basic approaches: encapsulation of a cell mass or of a single
cell. The encapsulation of a cell mass is the covering of a cell group with the appropriate
material in order to evaluate the cellular function as a whole. On the other hand, single-
cell encapsulation entails surface-coating individual cells with some material. Single-cell
encapsulation has become very attractive in recent years and has a great amount of potential
in treatments for serious diseases such as cancers [16]. Encapsulation, where biopolymer
gels are usually used, represents an evolving branch of biotechnology and regenerative
medicine [28]. Different types of encapsulated cells with protein secretions have been
investigated for disease treatments: islet cells (insulin secretion)—diabetes treatment [29],
kidney cells (hepatic lipase secretion)—hyperlipidaemia treatment [30], myoblasts [31] and
fibroblasts [32] (human factor IX secretion)—haemophilia treatment, etc. Cell encapsulation
is also part of regenerative medicine [27]. Encapsulation of mammalian cells has been used
in the regeneration of different tissues: skeletal muscle as engineered tissue—encapsulated
myofibroblasts [33], dermis as engineered tissue—encapsulated fibroblasts [34], bone as
engineered tissue—encapsulated osteosarcoma cells [35], etc. In recent years, the potential
use of encapsulated cells for clinical application in malignant brain tumour treatment has
also been discussed [15].

2.2. Food Supplements and Functional Foods

Nowadays, functional foods and supplements are very popular products. There are a
lot of sensitive compounds that can be encapsulated using different techniques. Products



Pharmaceuticals 2023, 16, 362 4 of 19

so prepared support human health and are an integral part of the modern lifestyle [36].
Here, we present the most-frequently encapsulated sensitive materials.

2.2.1. Vitamins

Generally, vitamins possess important physiological functions, including antioxida-
tive, immunoregulatory, anti-inflammatory, etc. Unfortunately, these chemical structures
are highly sensitive to high temperatures, light, oxygen and extreme pH conditions [37].
Encapsulation enables preserving their bioactive properties and can effectively improve the
administration of sensitive vitamins and their metabolization. Hydrophobic (fat-soluble)
vitamins, namely A, D, E and K, are provided mainly by foods. They can be added in
functional foods, helping to treat skin diseases and several types of cancer or decrease oxida-
tive stress [38]. The encapsulation efficiency of polymers was in the range of 27–45% [39].
Additionally, the prepared capsules with hydrophobic vitamins ensure thermal stability of
these sensitive molecules up to 170 ◦C, which enables further manufacturing of functional
products [40]. Enhanced stabilities and gradual releases of these hydrophilic vitamins have
also been reported. Vitamin B has been encapsulated as a component of plant extracts [41]
and the improved gradual release of vitamin C has been observed when encapsulated
within multiple emulsion [42] or casein gels [43].

2.2.2. Probiotics

In recent years, encapsulation of probiotics and their use in functional supplements
and foods have been studied intensively. According to the definition provided by the WHO,
probiotics are live organisms, such as bacteria and yeasts, which furnish health benefits to
the host [44]. The systems with encapsulated probiotics are very specific and the viability
of microorganisms is influenced by many factors: the encapsulation method itself, the
materials used for encapsulation, exposure to oxygen, low pH, digestive enzymes, heat
treatment and microbial strains [45,46]. The viability of probiotics may be greatly improved
by co-encapsulation with prebiotics (materials which support the growth of probiotics) [47].
Products containing probiotics and prebiotics, representing a synergistic effect, are called
synbiotics [48]. The most common probiotics are Gram-positive genera such as strains
of Lactobacillus, Bifidobacterium, Leuconostoc, Pediococcus, Enterococcus, Streptococcus and
Bacillus [49]. Products with encapsulated probiotics may contain either a single strain or a
mixture of two or more strains. The health effects of probiotics are strain-specific. A single
strain may offer different benefits when used individually (e.g., specific action against a
certain bacterium) and in combination with other strains (general support of digestion) [50].
Consumption of functional products with probiotic contents have been associated with
stimulation of the immune system (better resistance to infections of the respiratory and
gastrointestinal tracts [51] and prevention of colorectal cancer and improvement of inflam-
matory bowel disease, among others [52]. These benefits of a probiotic formulation also
differ with the patient group (age, general condition of the patient, etc.) [50]. However, con-
flicting clinical studies on the undesired effects of probiotics have also been published [53].
The use of probiotics has been associated with a higher risk of infection and/or morbidity
in young infants and postoperative, hospitalized or immuno-compromised patients, in
part due to bacteraemia and fungaemia [54]. Nevertheless, most probiotics are recognized
as food-grade and are recommended for human consumption by regulatory authorities;
encapsulation is an effective tool and a great way to improve their efficient delivery in
target sections of the gastrointestinal tract [52,53].

2.2.3. Extracts

Many plants are a natural source of various compounds with diverse biological ac-
tivities that can improve treatment of some diseases. Extracts are complex mixtures with
high contents of antioxidant, antibiotic, antiviral, anticancer, antiparasitic, antifungal, hy-
poglycaemic, anti-hypertensive and insecticidal properties. The extraction of the extracts
is usually provided by organic solvents and the resulting extracts are sensitive and un-
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stable [55]. Encapsulation is a way to overcome this problem. The enhanced stabilities
of encapsulated active substances from plant extracts have been described by many au-
thors: elderberry extract [56], agro-industrial by-product extracts [57], Mediterranean plant
extracts [58], etc. Some plant extracts rich in polyphenols, alkaloids and terpenoids have
been found as efficient materials for the preparation of food supplements with beneficial
anti-obesity effects [59].

3. Encapsulation Methods and Techniques

Many methods can be used for the preparation of encapsulated agents, according
to the application intent. The spray-drying and freeze-drying techniques are the most
frequently used techniques for the encapsulation of sensitive drugs (pharmaceutics), sensi-
tive food supplements, etc. The main advantages are the low thermal stress and a liquid
feed becoming powder in one step. For drug delivery, the solubility of powders with
encapsulated sensitive compounds prepared using spray-drying is too low. This is the
main reason why the technique is mainly used for manufacturing inhaled drugs [60,61].
Recently, a new unique technique of coating capsules with a powder layer has been used.
The additional powder coating enables the advanced adjustment of the controlled release
of the encapsulated agent [62].

For many of these preparations (drugs, food supplements), spray-drying and (spray)
freeze-drying techniques are the final steps in the manufacturing process. However, the
manufacturing of functional foods can involve other steps, such as mixing with other
components (fats, liquid matrices, etc.), heat treatment, etc. The main areas of functional
food application are dairy products, juices, bakery products, etc. [63].

An overview of the most common systems and methods used for encapsulation is
provided in Figure 2. Recently published preparations of some promising systems with
encapsulated agents using different techniques are given in Table 1.
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Table 1. Recently published preparations of systems with encapsulated agents using different
techniques.

Technique(s)
Used

Encapsulated
Agents Coating Materials for Encapsulation Application Areas References

spray drying

resveratrol polysaccharide—chitosan intranasal drugs [64]

budesonide or
rifampicin oligosaccharide—lactose intranasal drugs [65]

Lactobacillus Acidophilus milk proteins, polysaccharides—pectin
and maltodextrin functional food [66]

Lactobacillus plantarum polysaccharides (extract from Aloe vera) functional food [67]

oleoresin from paprika polysaccharides—gum arabic, starch food supplement [68]

(spray)
freeze-drying

paclitaxel and
doxorubicin liposome anticancer treatment [69]

ciprofloxacin liposome intranasal drugs [70]

turmeric oleoresin protein-gelatine food supplement [71]

emulsion
techniques

norcantharidin liposome-emulsion hybrid delivery
system anticancer treatment [72]

Doxorubicin
(Adriamycin) polysaccharides—nanocellulose anticancer treatment [73]

Zanamivir polysaccharides—cellulose, gum arabic intranasal drugs [74]

chlortetracycline polysaccharides—starch, xanthan gum model drug
preparation [75]

magnesium plant oil, lentil flour functional food [76]

Bifidobacterium lactis plant oil, beeswax functional food [77]

3.1. Capsules

Capsules are probably the most common system for encapsulation. Their composition
must ensure the protection of the encapsulated sensitive compound as well as the ability
to release the encapsulated compound in the appropriate sites in the intestine [78]. En-
capsulation in capsules—within single or multiple biopolymer coatings—was published
as an effective tool for the protection of potential probiotic strains against the undesired
effects of stomach acid and bile acid during digestion [79], as well as for the protection of
cells [80]. The most commonly used materials for capsules include hydrocolloids, proteins,
starches, dextrins, lipids, various emulsifiers and fibres, alone or associated with other
compounds. The choice of the most appropriate encapsulation technique depends on the
material to be encapsulated and the purpose of use, and is limited by the availability of
equipment and intended capsule sizes [81]. Capsules with sensitive bioactive compounds
are often prepared using spray-drying techniques. In this type of technique, a bioactive
compound mixture is atomized into a wall material under a hot-air current. After instant
drying and spraying of the mixture, the resulting product, in powder form, consists of the
bioactive compound covered by wall material [82]. A modification with a cool air flow is
also possible. This type of technique is then called spray cooling or chilling and is often
used when the barrier material consists of lipids [83]. Some examples of capsule encapsula-
tion published in the past five years are shown in Table 2. Cell encapsulation remains a
big challenge for bioengineers. The main concept of these capsules is a preparation based
on hydrocolloids (usually alginate) with specific surface properties to interact with target
tissues in the human body. However, as intensive as the studies are, there are still no
licensed therapies [80].
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Table 2. Overview of the published use of capsules for encapsulation.

Encapsulated Agent Intended Use Reference

Plant essential oils (rich in terpenes and terpenoids),
extracted from thyme, oregano, lemongrass) Antibacterial and antioxidant agents [84]

Phenolic compounds extracted from onion Antioxidant agent [85]
Phenolic compounds extracted from bilberry Antioxidant agent [86]

Pea protein Food (encapsulation due to taste masking) [87]
Lactobacillus fermentum strain UCO-979C Inhibition of Helicobacter pylori [88]

Lactobacillus plantarum F1, Lactobacillus reuteri 182,
Lactobacillus helveticus 305

Alginate capsules with reduced mortality of the
cells during gelation [89]

Vitamin D3 Food (enhanced D3 stability) [90]
Essential oil encapsulated in yeast cells Improved stability of essential oil [91]

3.2. Emulsions

Emulsions are widely used in the fields of medicine, pharmacology and food sys-
tems. Many emulsion-based delivery systems for polyphenols have been well established,
including single and multiple emulsions. Both types of emulsions (according to their
complexity) can be additionally considered as macro-, micro- (less than 100 or 200 nm) and
nano-emulsions (typically 20–200 nm) [92–94]. Emulsions can be stabilized by emulsifiers
or Pickering particles (Pickering emulsions) or by a combination of both these stabilization
agents (co-stabilized emulsions) [95,96]. Emulsions can also be used as the basic mixture
for preparations of different types of encapsulation systems—e.g., capsules manufactured
using spray-drying methods [40].

3.2.1. Simple Emulsions

Commonly used simple emulsions are water-in-oil (w/o) and oil-in-water (o/w).
Hydrophobic emulsifiers are used for preparations of w/o emulsions and hydrophilic
emulsifiers for preparations of o/w emulsions. They are mostly further manufactured
during preparations of advanced systems for encapsulation [97].

3.2.2. Multiple Emulsions

Encapsulation of drugs and other bioactive compounds in multiple emulsions provides
more complex solutions than encapsulation in simple emulsions. Multiple emulsions
(MEs) are complex structures composed of multiple water and oil phases. Because of
their high complexity, these systems are thermodynamically unstable systems and have
a strong tendency for phase separation. The osmotic pressure of internal and external
phases must be balanced to avoid any instabilities such as internal droplet shrinkage
or growth [98,99]. The stabilization of multiple emulsion systems with proper agents,
such as emulsifiers, Pickering particles and other compounds, is also crucial to avoid
coalescence [100]. Generally, double systems of emulsions have been prepared: water-
in-oil-in-water (w/o/w), oil-in-water-in-oil (o/w/o) and less often solid-in-oil-in-water
(s/o/w) [98]. W/o/w multiple emulsions are usually used for the encapsulation of sensitive
hydrophilic compounds and o/w/o multiple emulsions for the encapsulation of sensitive
hydrophobic compounds [101]. Multiple emulsions can be prepared by various methods.
The most frequent methods are two-step emulsifications, where simple (internal) emulsions
are created first and are consequently emulsified into an external water or oil phase (based
on emulsion type). Many techniques such as rotor–stator homogenizers, high-pressure
homogenizers, membrane units, colloid mills, sonicators, microfluidic devices, etc. are
used for emulsification processes [101,102]. Some applications of multiple emulsion as
encapsulation system can be found in Table 3. Moreover, w/o/w multiple emulsions are
used not only as encapsulation tools, but also as masking agents of undesired taste and as
systems which enable the decrease of fat content in foods. Because of these advantages,
they have great potential in the field of functional food preparations [99].
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Table 3. Some published uses of multiple emulsions for encapsulation.

Encapsulated Agent Intended Use Reference

Polyphenols Prevention of ageing, cancer, inflammation and
neurodegenerative diseases [93,103,104]

Phenolic compounds Antioxidants [105]
Diclofenac sodium Anti-inflammatory agent [106,107]

Living cells Cell therapy for regenerative, reproductive and
transfusion medicine [108]

Insulin Diabetes treatment [109]
Bioactive proteins Functional food [102]

Andrographolide (diterpenoid lactone) Formulation with hepatoprotective activity [110]
Bifonazole [1-[[1,1′-biphenyl)-4-
phenylmethyl]-1H-imidazole) Topical delivery of bifonazole to maximize its efficacy [111]

3.3. Particles

Encapsulation of bioactive compounds (mostly drugs) in particles has advanced
significantly in recent years. Microparticles (1 to 1000 µm) can be formulated for con-
trolled administration by almost all routes, with some limitations for intravenous injection.
Nanoparticles (1 to 100 nm) can be administered with no limits. Nanoparticles can be much
smaller than human cells.

Particles, both micro- and nano-sized, are a promising system for delivery of highly
effective drugs to target cells. These particles could be then used, e.g., for modern cancer
therapies [112]. Sometimes, particles are considered capsules and vice versa. Particles with
required sizes between 1 and 5 µm for inhalation delivery, between 0.1 and 0.3 µm for
intravenous delivery and between 0.1 and 100 µm for oral delivery can be prepared by
the supercritical antisolvent method [113]. A more common method for manufacturing
particles with encapsulated drugs is spray drying or freeze drying (drying of frozen material
by sublimation of water under vacuum). It can be preceded by the formation of a matrix,
which is consequently sprayed after drying, forming microparticles [81,83]. All these
methods can be used for the preparation of either micro- or nano-particles based on the
materials used. Some indicative uses are specified in Table 4.

3.3.1. Janus Particles

In recent years, researchers have focused on the potential use of Janus particles for
encapsulation. Janus particles have surfaces that have two or more distinct physical
properties. The unique surface of Janus particles offers two different types of chemical
composition occurring on the same particle. They can contain a magnetic part that permits
driving them by means of a magnetic field toward different places in the human body
where they can interact [114]. These particles present versatility for a myriad of future
applications [115] because of their asymmetry and characteristics suitable for drug delivery,
controlled release, diagnostics and even in self-assembly systems [116]. Janus materials
can be produced in various anisotropic shapes and chemical compositions [117] using
several synthetizing techniques: selective surface modification, seeded crystallization,
microfluidics, self-assembly of block copolymers and electrochemical deposition [118].

Table 4. Some indicative uses of particles for encapsulation.

Encapsulated Agent Micro/Nano Intended Use Reference

Resveratrol Micro/Nano (less than 1 µm) Prevention of ageing, cancer, inflammation,
neurodegenerative, and cardiac diseases [119]

Green tea extract Micro Prevention of ageing [120]
Quercetin Micro/Nano (less than 1 µm) Therapeutic agent and a food component [121]

Alpha-tocopherol (active form
of vitamin E) Micro/Nano (less than 1 µm) Foods, improvement of light, heat and

oxygen stability [122]
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3.3.2. Liposomes

Liposomes are special kinds of particles. More than half a century after the discovery
of liposomes, targeted liposomes or formulations able to deliver a drug after a stimulus. Li-
posomes have been approved by regulatory agencies [123], however, only a few hydrophilic
small-molecule drugs loaded in liposomes with high encapsulation efficiency are available
on the market [124]. In general, liposomes are promising systems because they have low
toxicity and can encapsulate both hydrophobic and hydrophilic types of compounds [125].
They are therefore supposed to be an effective tool for specific deliveries of antibiotics [123]
or essential oils [126]. Liposomal structure is composed of one or more phospholipid
bilayers in an aqueous environment [127] and can be produced in the micro and nano
ranges [128]. Phospholipids, the major components in liposome structures, contain both hy-
drophilic (polar head) and hydrophobic (fatty acid chain) groups; however, the mechanism
of liposome formation is not yet well known in detail [129]. Conventionally, liposomes are
produced using the Bangham method or thin-film hydration, solvent injection, reverse-
phase evaporation or detergent removal. New approaches include spray drying, heating,
supercritical reverse-phase evaporation, freeze drying and modified ethanol injection [127].
Table 5 summarizes recent published encapsulation using liposomes.

Table 5. Overview of the recent published uses of liposomes.

Encapsulated Agent Intended Use Reference

Catalase (EC 1.11.1.6) Cancer therapy [130]
Herbal phytochemicals (quercetin,

vinblastine, hesperidin etc.) Food supplements [131]

Vincristine Cancer therapy [132]
Non-steroidal anti-inflammatory treatment Drugs [133]

Lipid nanoparticles (LNPs), also called solid lipid nanoparticles, commonly consist
of the neutral phospholipids (such as 1,2-distearoyl-sn-glycero-3-phosphocholine, l-α-
phosphatidylcholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine) that are essential compo-
nents of lipid bilayer and cholesterol-enhancing membrane stability. Critical components
of LNPs include the ionizable cationic and PEG lipids; both allow high encapsulation
efficacy and the steric barrier effect. The charge of ionizable cationic lipids is pH-dependent:
they have a positive charge at acidic pH and acquire a neutral charge at physiological pH.
Lipid formulations can be prepared by various methods including thin film hydration,
detergent depletion, solvent injection, reverse-phase evaporation and emulsion [134]. The
size of nanoparticles ranges from 10 to 1000 nm. Incorporated components are located
between fatty acid chains, lipid layers or crystal imperfections [135]. LNPs can be engulfed
by various mechanisms such as macropinocytosis and clathrin- and caveolae-mediated
endocytosis. The form of endocytosis depends on the properties of the nanoparticle and
the cell type. LNPs are usually captured in an endosomal compartment system. Endosomal
release is a crucial step for effective drug delivery. Essentially, positively charged lipids
facilitate fusion with negatively charged endosomal membranes [136]. LNPs thus have the
potential to deliver hydrophilic drugs such as chemotherapeutic, antiparasitic or antifungal
drugs into the cells or brain through the haematoencephalic barrier. Targeted delivery
reduces toxicity and increases drug efficacy [137].

4. Behaviour and Distributions of Dispersions in the Human Body

Generally, all encapsulated compounds are supposed to be safely transported to the
site of action (for both oral and non-oral methods of administration). Therefore, encapsula-
tion may protect sensitive compounds (e.g., different types of drugs, various substances
for functional foods and food supplements, such as polyphenols or probiotics) as well
as the surrounding organs, tissues and cells against aggressive substances (e.g., cancer
therapies) [24,45,93].
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4.1. Gastrointestinal Tract

The most common method for administrating encapsulated compounds is oral ad-
ministration [138]. Essentially, products with encapsulated agents are drunk (drugs are
usually swallowed with water or any drink, solid foods are divided into digestible por-
tions in the mouth and swallowed) and are transported to the stomach [139]. Here, the
critical point is to ensure the integrity of systems loaded with sensitive compounds in the
stomach [10]. The stomach is an integral organ of the gastrointestinal tract that provides
size reduction and enzymatic hydrolysis of solid food as well as gastric emptying [140].
The proximal stomach is mostly responsible for the emptying of liquids and works as a
reservoir for solid and liquid foods. The distal stomach (antrum) is then the propeller,
grinder and siever of solid food [141]. The disintegration rate of foods in the human
stomach is strongly influenced by the composition and physicochemical properties of
foods as well as by physical forces and chemical reactants (acidic) present in the stomach.
This is the crucial step for formulations with encapsulated sensitive compounds that must
remain intact [142]. Subsequently, the foods or drugs enter the duodenum. Pancreatic juices
containing powerful digestive enzymes are delivered and digestion is finally completed in
the small intestine, where many sensitive encapsulated compounds and drugs are released.
Here, absorption of nutrients from food takes place. The large bowel ensures dehydra-
tion of the gastrointestinal contents [139]. Over the past decades, there have been many
in vitro models reported for the whole gastrointestinal tract simulation—models from static
bioreactors to multi-compartmental and dynamic systems that can track the structural and
physicochemical changes during digestion within the human gastrointestinal tract [143].
In vitro digestion models offer a more technically, ethically and financially available way to
study the digestion process than in vivo models [144]. In vivo experiments on humans are
usually provided as an end-point measurement with products that are directly applicable
to human food consumption and approved by the relevant authorities [140]. In general,
almost all studies published previously have been focused on an effective (or managed)
release of bioactive encapsulated compounds in the intestine [45,52,88]. Thus, the basic
prerequisite for the appropriate function of products with loaded bioactive agents is their
stability in an acidic environment and against the proteolytic enzyme protease. Then, they
are supposed to ensure the leakage of the encapsulated agent in the intestine, where it
is attacked by lipases and pancreatic juices [145]. This process is shown schematically in
Figure 3.
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4.2. Other Methods of Administration

Other methods of non-oral administration of encapsulated compounds may be adapted
according to the required treatment and target organs or tissues [146]. Here, we have fo-
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cused on the most commonly used non-oral means of administration for systems with
encapsulated agents or cells (Figure 4). Generally, biomaterial strategies such as the ad-
ministration of encapsulated sensitive compounds (biological factors, anti-inflammatory
drugs, stem cells, etc.) through nanoparticles and capsules (hydrogels) can more effec-
tively treat damaged tissues when injected directly to the site of action [147]. This fact
represents a clinical advantage, since therapy with encapsulated agents or cells can reach
even difficult targets such as the brain or the eye [148]. For regenerative medicine, the
main goal is to deliver encapsulated cells to the damaged area so that they promote the
progress in tissue regeneration [149]. Encapsulation of cells also exerts multiple benefits
in bone regeneration therapy: the retention of cells on the target site, protecting the cells
from mixing and injection forces and conformal filling of the defect shape [150]. For the
correct functionality of the system, the selection of the biomaterial used for encapsulation
is crucial [151]. One of the most commonly used biomaterials is alginate. However, the
average molecular weights of commercially available alginates are high and therefore their
modification is often mandatory before their use for regenerative purposes [152]. Another
option for administration of encapsulated agents is the subcutaneous route, a relatively
easy and clinically applicable administration procedure, which offers slower absorption
compared to other parenteral routes and has been successfully studied for the treatment
of chronic anaemia with implantation of encapsulated cells that have been able to release
erythropoietin [153] or encapsulated cells that have delivered therapeutic antibodies [154].
Intravitreal administration of encapsulated cells for ocular disease treatments have been
studied to enable the local treatment of multiple retinal diseases, including age-related
macular degeneration or diabetic macular oedema [155]. Encapsulation has also been
intensively investigated as a tool for systematic therapies in the intracranial area. A major
obstacle for drug delivery in the diseased brain is the passage of molecules between the
blood and the brain parenchyma that is regulated by the blood–brain barrier. Implantation
of encapsulated therapeutically active cells directly into the brain offers local long-term
delivery of therapeutics de novo with reduced side effects [15]. For the implantation of
cell microcapsules, the peritoneal cavity also represents an optimal site because of relative
safety and good accessibility [156].
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4.3. Immunogenic Properties

Various delivery systems and materials that have been used for encapsulation also
possess immunogenic properties. Particles such as alum-stabilized Pickerings or squalene-
based emulsions, liposomes or lipid nanoparticles can be recognized by the immune
system and trigger an immune response. These features allow their use as the adjuvants in
vaccines [157–159]. Alu-stabilized Pickering emulsions (ASPE) consist of alum microgel and
a squalene/water interphase. In ASPE, alum tends to adsorb on the interphase, reducing
surface tension and improving the stability of the emulsion. Additionally, ASPE showed a
higher affinity for dendritic cells (DCs), resulting in a higher humoral and T cell immune
response compared to the conventional adjuvants (80). In vaccines, the target antigen
(Ag) adsorbs to alum. Alum prolongs retention of Ag at the site of injection and mediates
its slow release. Alum also facilitates Ag uptake by DCs that further promote immune
response toward antibody-mediated protection directed by T helper (Th) cells [160]. These
features assume the use of ASPE as a potent vaccine adjuvant.

MF59 and AS03 represent adjuvant systems based on oil-in-water squalene-based
emulsions. MF59 was approved as a component of human influenza vaccine in 1997.
The MF59 emulsion is stabilized by Tween 80 and Span 85 [161]. AS03 is an adjuvant
system containing squalene, polysorbate 80 and alpha-tocopherol that further enhances
immunogenic properties. Similar to MF59, AS03 has also been predominantly used in
human influenza vaccines [162]. MF59/AS03 adjuvant systems containing antigens are
engulfed by neutrophils and monocytes, which further differentiate into monocyte-derived
DCs (Mo-DCs) [163,164]. Mo-DCs initiate an antigen-specific T follicular helper cell re-
sponse that is essential for B cell isotype switching and production of IgA/IgG-specific
antibodies [165].

Liposomes as self-assembling phospholipid bilayer-enclosed spherical particles have
shown to have immunostimulatory properties. As a potent adjuvant system, liposomes may
deliver multiple Ags or may be combined with other adjuvants or functional molecules to
enhance vaccine reactogenicity [166]. For instance, AS01B or QS21 adjuvant systems consist
of the triterpenoid saponin and monophosphoryl-lipid A (MPLA). Both adjuvants have
been approved for use in malaria (Mosquirix, GlaxoSmithKline Biologicals, Rixensart, Bel-
gium) and shingles vaccine (Shingrix, GlaxoSmithKline Biologicals, Belgium) [167]. MPLA
activates DCs via the Toll-like receptor 4-dependent pathway and facilitates generation of
TFH, consequently enhancing B cell maturation and production of specific antibodies [168].

The mechanisms of action of saponins as an immunogenic substance have not yet
been entirely revealed. Saponins seem to be potent stimulators of cytotoxic T cells and elicit
both Th1 and Th2 responses [169,170]. Although the immunogenicity of lipid nanoparti-
cle (LNP)-based mRNA vaccines are boosted by PRRs such as Toll-like receptors (TLR7
and TLR8), RIG-I and cytosolic sensors recognizing mRNA [171–173], and LNPs mainly
protect and enhance mRNA delivery into the host cell cytoplasm, several studies suggest
potential adjuvant activity of LNPs [174–176]. The mechanism of action of LNPs is not well
described. Recent findings show LNP formulation induces IL-6 secretion and elicits robust
Tfh response along with durable humoral response [177]. So far, mRNA vaccines have been
tested for influenza and rabies and as anti-cancer vaccines [178]. The largest expansion of
mRNA vaccines and LNP-based adjuvant platforms has occurred during the COVID-19
pandemic. A number of the other aforementioned delivery systems are being tested or
have been approved for clinical use [179] and may serve as safe and effective adjuvants in
anti-SARS-CoV-2 vaccines.

5. Conclusions and Future Prospects

Studies on encapsulation and delivery of (bio)active agents or cells reflect the in-
creasing demand for therapeutics with higher efficiency and specificity without undesired
effects as well as possible targeted approaches. Encapsulation methods are still being
developed and contribute to the new progression of clinical procedures in key areas such
as cancer treatment, regenerative medicine, etc. Additionally, many novel approaches in
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encapsulation technologies for functional food preparations have been reported. Capsules,
particles, emulsions, multiple emulsions, liposomes or lipid nanoparticles are further being
studied as innovative systems for the administration of sensitive agents such as drugs,
probiotics, antioxidants, cells, etc. They have also shown to be potential delivery systems
for different vaccines; their immunogenic properties also allow their use as potent and safe
adjuvant platforms. Prepared products can thus contribute to the targeted treatment of
diseases and prevention of many diseases and be part of a healthy lifestyle. In the future,
we expect further development of systems and products with encapsulated agents or cells
applied toward tailored therapies and diets. There are still challenges to the wider clinical
application of systems with encapsulated agents in personalised therapies.
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