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Abstract: We report two complexes [Cu(LI)2] (1) and [Cu(LII)2] (2) (HLI = N-cyclohexyl-3-methoxysali-
cylideneimine, HLII = N-cyclohexyl-3-ethoxysalicylideneimine). The ligands in both complexes are
trans-1,5-N,O-coordinated, yielding a square planar CuN2O2 coordination core. The molecule of 1
is planar with two cyclohexyl groups oriented to the opposite sites of the planar part of a molecule,
while the molecule of 2 is significantly bent with two cyclohexyl groups oriented to the same convex
site of a molecule. It was established that both complexes in MeOH absorb in the UV region due to
intraligand transitions and LMCT. Furthermore, the UV-vis spectra of both complexes revealed two
low intense shoulders in the visible region at about 460 and 520 nm, which were attributed to d–d
transitions. Both complexes were predicted to belong to a fourth class of toxicity with the negative
BBB property and positive gastrointestinal absorption property. According to the molecular docking
analysis results, both complexes are active against all the applied SARS-CoV-2 proteins with the
best binding affinity with Nsp 14 (N7-MTase), PLpro and Mpro. The obtained docking scores of
complexes are either comparable to or even higher than those of the initial ligands. Complex 1 was
found to be more efficient upon interaction with the applied proteins in comparison to complex 2.
Ligand efficiency scores for the initial ligands, 1 and 2 were also revealed.

Keywords: Schiff base; copper; synthesis; crystal structure; X-ray; ADMET; molecular docking;
molecular dynamics; SARS-CoV-2; COVID-19

1. Introduction

Copper is of great importance for living organisms since it plays a pivotal role in some
biological processes. Particularly, a series of proteins comprise copper ions as prosthetic
groups and are thus known as copper proteins [1,2], of which the metal-containing centers,
in turn, are classified into several types. Of these types, Type II copper centers, abbreviated
as T2Cu, contain a square planar coordination core formed either by the nitrogen- or
mixed nitrogen/oxygen donor ligands [1]. T2Cu centers in the copper proteins are usually
involved in redox processes [2].

Problems of health have plagued mankind throughout history. The most crucial
problems concerning public health are, obviously, caused by diseases turned to pandemic,
leading to hard-to-recover human and economic losses. Furthermore, previously unknown
diseases further exacerbate the situation since neither efficient drugs nor therapies are
known. Thus, the fabrication of novel compounds efficient against diseases is of great
importance to overcome this fierce confrontation. World-wide attention has been focused
during the last three years on one of the most fatal diseases in the modern history of
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mankind, namely severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2),
which is a causative of coronavirus disease 2019 (COVID-19). As a result, a pandemic
was announced in March 2020 by the World Health Organization (WHO). To date, as of
the middle of February 2023, about 755 million infections were confirmed with more than
6.8 million deaths [3]. The situation with COVID-19 remains complicated due to newly
emerging strains. Thus, drugs against COVID-19 are of value.

Recently, researchers have directed their attention to copper to fight against COVID-19 [4–6].
Furthermore, in 1990, Lai et al., reported on substituted salicylaldehyde Schiff bases as new
antiviral agents against coronavirus [7]. Lately, metal complexes of Schiff bases, including
copper-based complexes, have also been in the limelight of studies to treat COVID-19 [8–10].
Thus, fabrication of copper-derived complexes with Schiff bases seems to be one of the
strategies to produce active agents against COVID-19.

Schiff bases obtained from salicylaldehyde and its derivatives are, likely, the most
abundant. These compounds, in the vast majority of cases, form N,O-chelated complexes
with metal cations [11–18]. Thus, copper(II) complexes with such a type of Schiff bases also
mimic prosthetic groups in copper proteins with the T2Cu centers due to the formation
of the CuN2O2 coordination core. Notably, the CuN2O2 core was established for the
oxidized active-site copper center of recombinant bifunctional peptidylglycine α-amidating
enzyme [19]. This enzyme is responsible for the C-terminal peptide amidation, which is
essential for the bioactivity of numerous peptide hormones involved in the regulation and
control of cellular function.

We have also been interested in the chemistry of salicylaldehyde Schiff bases [20–23].
With all this in mind, as well as in continuation of our in silico studies of bioactive com-
pounds [23–25], we have directed our attention to copper(II) complexes [Cu(LI)2] (1) and
[Cu(LII)2] (2) (HLI = N-cyclohexyl-3-methoxysalicylideneimine, HLII = N-cyclohexyl-3-
ethoxysalicylideneimine). It should be noted that a comprehensive search in the Cambridge
Structural Database (CSD) [26] revealed only three hits of HLI-derived complexes with
copper(II) [27], cobalt(II) [28] and nickel(II) [29] of the [M(LI)2] composition. Even more
surprisingly, no crystal structures of metal complexes with HLII have been reported so
far. Although the crystal structure of 1 has already been known, as it was reported about
45 years ago [27]; herein, we have also revisited the crystal structure of 1 to solve it according
to modern requirements and for a better comparison with the structure of 2.

Bioavailability, druggability as well as absorption, distribution, metabolism, excretion
and toxicity (ADMET) properties of both complexes were evaluated using a set of online
tools. Using an in silico molecular docking method, we have explored the binding modes
and interactions of 1 and 2 with binding sites of a series of the SARS-CoV-2 proteins. Ligand
efficiency scores for the initial ligands, and complexes 1 and 2 inside the binding sites of
the applied proteins were also revealed.

2. Results and Discussion

A one pot in situ reaction of a solution of Cu(OAc)2 in ethanol with a solution of cyclo-
hexylamine and 3-methoxy- or 3-ethoxysalicylaldehyde in the same solvent has facilitated
the production of mononuclear discrete complexes [Cu(LI)2] (1) and [Cu(LII)2] (2) (HLI = N-
cyclohexyl-3-methoxysalicylideneimine, HLII = N-cyclohexyl-3-ethoxysalicylideneimine),
respectively (Figure 1). The isolated compounds were characterized by the means of the
IR and UV-vis spectroscopy data. Their composition and structure were established by
microanalysis, and single crystal and powder X-ray diffraction.

The IR spectra of both complexes are very similar and contain a set of bands at about
2750–3100 cm−1 (Figure 2), corresponding to CH stretching vibrations of the aromatic and
aliphatic fragments. An intense band at about 1620 cm−1 and a band at about 1600 cm−1

correspond to C=N and C=C bending. Bands at about 1360 and 1470–1480 cm−1 were
attributed to CH stretching vibrations of the aliphatic groups. Vibrations of the C–O–C
functionalities are shown as bands at about 1220–1250 cm−1.
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Figure 1. Synthesis of complexes (R = Me, 1; Et, 2). 
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correspond to C=N and C=C bending. Bands at about 1360 and 1470–1480 cm−1 were at-
tributed to CH stretching vibrations of the aliphatic groups. Vibrations of the C–O–C func-
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Figure 2. The IR spectra of 1 (black) and 2 (red) recorded in a KBr pellet. 

According to single crystal X-ray diffraction, 1 crystallizes in monoclinic space group 
P21/c and the structure is the same as reported before [27]. Complex 2 crystallizes in or-
thorhombic space group Pbcn. The asymmetric unit cell of both complexes contains a half 
of a molecule [Cu(Lig)2] with the copper(II) cation lying on the inversion center. The lig-
ands in both molecules are trans-coordinated through the imine nitrogen atom and phe-
nolic oxygen atom, yielding a square planar CuN2O2 coordination core with two 
Cu1~N1~C1~C2~C7~O1 six-membered chelate rings (Figure 3). All five atoms of the coor-
dination core are perfectly lying on the same least square plane in the structure of 1, while 
in the structure of 2 these atoms are slightly deviated from the least square plane 
(Cu1~0.02 Å, N1~0.04 Å, O1~0.05 Å). The Cu1–N1/O1, C1–N1 and C7–O1 bond lengths 
and bond angles around the metal cation are similar in both structures (Table 1). However, 
a minor deviation from linearity was observed for the O1–Cu1–O1′ bond angle in the 
structure of 2 (Table 1). Notably, the cyclohexyl fragments in both structures adopt a chair 
conformation (Figure 3). 

Figure 1. Synthesis of complexes (R = Me, 1; Et, 2).
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Figure 2. The IR spectra of 1 (black) and 2 (red) recorded in a KBr pellet.

According to single crystal X-ray diffraction, 1 crystallizes in monoclinic space group
P21/c and the structure is the same as reported before [27]. Complex 2 crystallizes in
orthorhombic space group Pbcn. The asymmetric unit cell of both complexes contains
a half of a molecule [Cu(Lig)2] with the copper(II) cation lying on the inversion center.
The ligands in both molecules are trans-coordinated through the imine nitrogen atom
and phenolic oxygen atom, yielding a square planar CuN2O2 coordination core with two
Cu1~N1~C1~C2~C7~O1 six-membered chelate rings (Figure 3). All five atoms of the
coordination core are perfectly lying on the same least square plane in the structure of 1,
while in the structure of 2 these atoms are slightly deviated from the least square plane
(Cu1~0.02 Å, N1~0.04 Å, O1~0.05 Å). The Cu1–N1/O1, C1–N1 and C7–O1 bond lengths
and bond angles around the metal cation are similar in both structures (Table 1). However,
a minor deviation from linearity was observed for the O1–Cu1–O1′ bond angle in the
structure of 2 (Table 1). Notably, the cyclohexyl fragments in both structures adopt a chair
conformation (Figure 3).
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Figure 3. Different views of the molecular structures of 1 (left) and 2 (right). Ellipsoids are drawn
with 50% probability. Color code: H = black, C = gold, N = blue, O = red, Cu = orange.

Table 1. Selected bond lengths (Å), and bond and dihedral angles (◦) in the crystal structures of 1 and 2.

1 2 1 2

Bond length
Cu1–N1 2.036(5) 2.0008(17) C1–N1 1.292(7) 1.287(3)
Cu1–O1 1.875(4) 1.8970(13) C1–O1 1.311(7) 1.304(2)

Bond angle
N1–Cu1–O1 91.55(19) 91.19(6) N1–Cu1–N1′ 180.00 179.00(6)
N1–Cu1–O1′ 88.45(19) 88.85(6) O1–Cu1–O1′ 180.00 175.27(6)

Dihedral angle

N1–Cu1–O1–C1 8.3(5) 25.20(16) O1–Cu1–
N1′–C1′ −170.4(5) −153.51(15)

O1–Cu1–N1–C1 −9.6(5) −21.76(15) C6H3···C6H3 0.00 44.35
N1–Cu1–O1′–C′1 171.7(5) 155.80(16)

Interestingly, the most crucial difference between the molecular structures of the de-
scribed complexes was observed for the overall geometry of the molecules. Particularly, the
molecule of 1 is essentially planar with two cyclohexyl groups oriented to the opposite sites
of the planar part of a molecule (Figure 3). However, the molecule of 2 is significantly bent
with two cyclohexyl groups oriented to the same convex site of a molecule (Figure 3). This
is also clearly reflected from the corresponding dihedral angles (Table 1). From one side,
such a dramatic difference in the molecular structures of complexes can be explained by a
repulsion of the bulky cyclohexyl fragment and the methyl group of the ethoxy fragment in
the structure. However, from the other side, closer inspection and comparison of the molec-
ular structures of 1 and 2 has allowed us to reveal that the cyclohexyl fragments tend to
form C–H···H–C homopolar dihydrogen bonding with the imine hydrogen atoms, methyl
hydrogen atoms and oxygen atoms of the methoxy fragment in 1 and ethoxy fragment
in 2. Recently, we have reported on the influence of C–H···H–C homopolar dihydrogen
bonding on the overall stabilization of the molecular structure of coordination compounds
and even on the crucial influence of this interaction on coordination geometry [30]. In-
depth studies of intramolecular interactions in the molecular structures of complexes 1
and 2 will be performed using computational approaches and the obtained results will be
published elsewhere.
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The bulk samples of 1 and 2 were examined by means of powder X-ray diffraction
analysis (Figure 4). The experimental X-ray powder pattern is in full agreement with the
calculated powder pattern obtained from single crystal X-ray diffraction, showing that the
bulk material is free from phase impurities.
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1200 mg/kg (Figure 6). As evidenced from the SwissADME [33] bioavailability radar, the 
discussed compounds are preferred in the three parameters, namely polarity, insaturation 
and flexibility, and less preferred in lipophilicity, size and insolubility (Figure 6). 

The BOILED-Egg method was found to be efficient to predict the human blood-brain 
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Points located in the yellow region (BOILED-Egg’s yolk) are molecules predicted to 

Figure 4. Calculated (black) and experimental (red) powder X-ray diffraction patterns of 1 (bottom)
and 2 (top).

The absorption spectra of 1 and 2 in MeOH are very similar and contain bands up to
about 650 nm with four clearly defined maxima at about 205, 240, 280 and 375 nm (Figure 5).
The former high-energy bands correspond to intraligand π→ π* and n→ π* transitions
arising from the benzene and imine fragments, while the latter band was assigned to
ligand-to-metal charge transfer (LMCT). Furthermore, a closer inspection of the UV-vis
spectra of both complexes revealed two low intense shoulders in the visible region at about
460 and 520 nm, which were attributed to d–d transitions (Figure 5).
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According to ProTox-II, a virtual lab for the prediction of toxicities of small molecules [31,32],
both complexes belong to a fourth class of toxicity with the predicted LD50 of about
1200 mg/kg (Figure 6). As evidenced from the SwissADME [33] bioavailability radar, the
discussed compounds are preferred in the three parameters, namely polarity, insaturation
and flexibility, and less preferred in lipophilicity, size and insolubility (Figure 6).
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The BOILED-Egg method was found to be efficient to predict the human blood-brain
barrier (BBB) penetration and gastrointestinal absorption [34]. This approach is based on
lipophilicity (WLOGP) and polarity (topological polar surface area, TPSA) (Figure 6). Points
located in the yellow region (BOILED-Egg’s yolk) are molecules predicted to passively
permeate through the BBB, while points located in the white region (BOILED Egg’s white)
are molecules predicted to be passively absorbed by the gastrointestinal tract. Blue (PGP+)
and red (PGP−) dots are for molecules predicted to be effluated and not to be effluated
from the central nervous system by the P-glycoprotein, respectively. As evidenced from
the blue dots’ positions for both complexes, the BBB penetration property is negative and
gastrointestinal absorption property is positive with the positive PGP effect on the molecule
(Figure 6).

We have further applied a molecular docking approach for both complexes with a
series of the SARS-CoV-2 proteins. Furthermore, initial ligands were also redocked for a
proper comparison of the obtained results. The target structures were primarily selected in
accordance with the structural features of the virus [35,36] as well as based on biological
mechanisms and functions that can be utilized to reduce, prevent or treat the virus [37]
(Table 2).

Table 2. Ligand efficiency scores for the initial ligands, and complexes 1 and 2 inside the binding
sites of the listed proteins.

Ligand Efficiency Score Initial Ligand * 1 2

Main protease (Mpro) (PDB code 6LU7)
Binding energy (BE, kcal/mol) −7.4(1) −8.6(0) −7.5(1)

Inhibition constant (Ki = e(−BE/RT), µM) ** 3.76 0.50 3.18
miLogP 2.32 5.37 6.13

Ligand efficiency (LE = −BE/(Heavy atoms), kcal/(mol HA) 0.151 0.246 0.203
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Table 2. Cont.

Ligand Efficiency Score Initial Ligand * 1 2

LE_Scale (0.0715 + 7.5328/(HA) + 25.7079/(HA2) − 361.4722/(HA3)) 0.233 0.299 0.287
Fit quality (FQ = LE/LE_Scale) 0.649 0.821 0.707

Ligand-efficiency-dependent lipophilicity (LELP = miLogP/LE) 15.362 21.855 30.241
Papain-like protease (PLpro) (PDB code 6WUU)

Binding energy (BE, kcal/mol) −8.6(1) −8.7(0) −7.9(0)
Inhibition constant (Ki = e(−BE/RT), µM) ** 0.50 0.42 1.62

miLogP −1.61 5.37 6.13
Ligand efficiency (LE = −BE/(Heavy atoms), kcal/(mol HA) 0.239 0.249 0.214

LE_Scale (0.0715 + 7.5328/(HA) + 25.7079/(HA2) − 361.4722/(HA3)) 0.293 0.299 0.287
Fit quality (FQ = LE/LE_Scale) 0.816 0.831 0.745

Ligand-efficiency-dependent lipophilicity (LELP = miLogP/LE) −6.740 21.603 28.710
Nonstructural protein 3 (Nsp3_range 207–379-AMP) (PDB code 6W6Y)

Binding energy (BE, kcal/mol) −7.2(0) −7.4(1) −7.5(1)
Inhibition constant (Ki = e(−BE/RT), µM) ** 5.28 3.76 3.18

miLogP −1.52 5.37 6.13
Ligand efficiency (LE = −BE/(Heavy atoms), kcal/(mol HA) 0.313 0.211 0.203

LE_Scale (0.0715 + 7.5328/(HA) + 25.7079/(HA2) − 361.4722/(HA3)) 0.418 0.299 0.287
Fit quality (FQ = LE/LE_Scale) 0.749 0.706 0.707

Ligand-efficiency-dependent lipophilicity (LELP = miLogP/LE) −4.856 25.399 30.241
Nonstructural protein 3 (Nsp3_range 207–379-MES) (PDB code 6W6Y)

Binding energy (BE, kcal/mol) −5.8(0) −7.7(0) −7.4(0)
Inhibition constant (Ki = e(−BE/RT), µM) ** 56.05 2.27 3.76

miLogP −4.08 5.37 6.13
Ligand efficiency (LE = −BE/(Heavy atoms), kcal/(mol HA) 0.483 0.220 0.200

LE_Scale (0.0715 + 7.5328/(HA) + 25.7079/(HA2) − 361.4722/(HA3)) 0.669 0.299 0.287
Fit quality (FQ = LE/LE_Scale) 0.723 0.735 0.698

Ligand-efficiency-dependent lipophilicity (LELP = miLogP/LE) −8.441 24.409 30.650
RdRp-RNA (PDB code 7BV2)

Binding energy (BE, kcal/mol) −6.6(0) −7.2(0) −6.6(0)
Inhibition constant (Ki = e(−BE/RT), µM) ** 14.53 5.28 14.53

miLogP −1.55 5.37 6.13
Ligand efficiency (LE = −BE/(Heavy atoms), kcal/(mol HA) 0.264 0.206 0.178

LE_Scale (0.0715 + 7.5328/(HA) + 25.7079/(HA2) − 361.4722/(HA3)) 0.391 0.299 0.287
Fit quality (FQ = LE/LE_Scale) 0.676 0.687 0.622

Ligand-efficiency-dependent lipophilicity (LELP = miLogP/LE) 5.871 26.104 34.365
Nonstructural protein 14 (N7-MTase) (PDB code 5C8S)

Binding energy (BE, kcal/mol) −10.7(0) −10.4(0) −9.6(0)
Inhibition constant (Ki = e(−BE/RT), µM) ** 0.01 0.02 0.09

miLogP −4.67 5.37 6.13
Ligand efficiency (LE = −BE/(Heavy atoms), kcal/(mol HA) 0.214 0.297 0.259

LE_Scale (0.0715 + 7.5328/(HA) + 25.7079/(HA2) − 361.4722/(HA3)) 0.230 0.299 0.287
Fit quality (FQ = LE/LE_Scale) 0.932 0.993 0.905

Ligand-efficiency-dependent lipophilicity (LELP = miLogP/LE) −21.822 18.072 23.626
Nonstructural protein 15 (endoribonuclease) (PDB code 6WLC)

Binding energy (BE, kcal/mol) −7.5(1) −7.8(0) −7.6(0)
Inhibition constant (Ki = e(−BE/RT), µM) ** 3.18 1.92 2.69

miLogP −2.76 5.37 6.13
Ligand efficiency (LE = −BE/(Heavy atoms), kcal/(mol HA) 0.357 0.223 0.205

LE_Scale (0.0715 + 7.5328/(HA) + 25.7079/(HA2) − 361.4722/(HA3)) 0.449 0.299 0.287
Fit quality (FQ = LE/LE_Scale) 0.795 0.745 0.716

Ligand-efficiency-dependent lipophilicity (LELP = miLogP/LE) −7.728 24.096 29.843
Nonstructural protein 16 (GTA site) (PDB code 6WVN)

Binding energy (BE, kcal/mol) −8.7(1) −7.7(0) −6.9(0)
Inhibition constant (Ki = e(−BE/RT), µM) ** 0.42 2.27 8.75

miLogP −5.69 5.37 6.13
Ligand efficiency (LE = −BE/(Heavy atoms), kcal/(mol HA) 0.171 0.220 0.186

LE_Scale (0.0715 + 7.5328/(HA) + 25.7079/(HA2) − 361.4722/(HA3)) 0.226 0.299 0.287
Fit quality (FQ = LE/LE_Scale) 0.754 0.735 0.650
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Table 2. Cont.

Ligand Efficiency Score Initial Ligand * 1 2

Ligand-efficiency-dependent lipophilicity (LELP = miLogP/LE) −33.355 24.409 32.871
Nonstructural protein 16 (MGP site) (PDB code 6WVN)

Binding energy (BE, kcal/mol) −6.7(0) −6.3(0) −6.3(1)
Inhibition constant (Ki = e(−BE/RT), µM) ** 12.27 24.10 24.10

miLogP −4.22 5.37 6.13
Ligand efficiency (LE = −BE/(Heavy atoms), kcal/(mol HA) 0.203 0.180 0.170

LE_Scale (0.0715 + 7.5328/(HA) + 25.7079/(HA2) − 361.4722/(HA3)) 0.313 0.299 0.287
Fit quality (FQ = LE/LE_Scale) 0.648 0.601 0.594

Ligand-efficiency-dependent lipophilicity (LELP = miLogP/LE) −20.785 29.833 36.002
Nonstructural protein 16 (SAM site) (PDB code 6WVN)

Binding energy (BE, kcal/mol) −7.3(1) −7.2(1) −7.3(1)
Inhibition constant (Ki = e(−BE/RT), µM) ** 4.46 5.28 4.46

miLogP −5.01 5.37 6.13
Ligand efficiency (LE = −BE/(Heavy atoms), kcal/(mol HA) 0.270 0.206 0.197

LE_Scale (0.0715 + 7.5328/(HA) + 25.7079/(HA2) − 361.4722/(HA3)) 0.367 0.299 0.287
Fit quality (FQ = LE/LE_Scale) 0.736 0.687 0.688

Ligand-efficiency-dependent lipophilicity (LELP = miLogP/LE) −18.530 26.104 31.070

* (from top to bottom) Initial ligand = N-[(5-methylisoxazol-3-yl)carbonyl]alanyl-L-valyl-N~1~-((1R,2Z)-4-
(benzyloxy)-4-oxo-1-{[(3R)-2-oxopyrrolidin-3-yl]methyl}but-2-enyl)-L-leucinamide; methyl 4-[2-[[(2~{S})-2-
[[(2~{S})-2-acetamido-4-(1,3-benzothiazol-2-yl)butanoyl]amino]-3-azanyl-propanoyl]amino]ethanoylamino]buta-
noate; adenosine monophosphate; 2-morpholin-4-ium-4-ylethanesulfonate; [(2~{R},3~{S},4~{R},5~{R})-5-(4-
azanylpyrrolo [2,1-f][1,2,4]triazin-7-yl)-5-cyano-3,4-bis(oxidanyl)oxolan-2-yl]methyl dihydrogen phosphate;
[(2R,3S,4R,5R)-5-(2-amino-6-oxo-1H-purin-9-yl)-3,4-dihydroxy-oxolan-2-yl]methyl [[[(2R,3S,4R,5R)-5-(6-aminopurin-
9-yl)-3,4-dihydroxy-oxolan-2-yl]methoxy-hydroxy-phosphoryl]oxy-hydroxy-phosphoryl] hydrogen phosphate;
uridine-5′-monophosphate; [(2R,3S,4R,5R)-5-(2-amino-7-methyl-6-oxo-1H-purin-7-ium-9-yl)-3,4-dihydroxy-oxolan-
2-yl]methyl [[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxy-oxolan-2-yl]methoxy-hydroxy-phosphoryl]oxy-
hydroxy-phosphoryl] hydrogen phosphate; 7-methyl-guanosine-5′-triphosphate; S-adenosylmethionine.
** R = 1.9872 × 10−3 kcal/(mol K), T = 298.15 K.

According to the docking analysis results, both complexes were found to be active
against all the applied SARS-CoV-2 proteins with the best binding affinity with Non-
structural protein 14 (N7-MTase), Papain-like protease (PLpro) and Main protease (Mpro)
(Figure 7, Table 3). Furthermore, the obtained docking scores of complexes are either
comparable to or even higher of those of the initial ligands (Table 3). Moreover, complex 1
was found to be more efficient upon interaction with the applied proteins in comparison
to complex 2 (Table 3). Interactions responsible for binding of 1 and 2 with Nonstructural
protein 14 (N7-MTase), Papain-like protease (PLpro) and Main protease (Mpro) are shown
in Figure 7 and collected in Table 2. According to the obtained results, hydrophobic inter-
actions of the alkyl and π···alkyl types are main contributors for binding the ligands to
proteins (Table 3).

Table 3. The best types of interactions and distances of complexes 1 and 2 with Nonstructural protein
14 (N7-MTase), Papain-like protease (PLpro) and Main protease (Mpro).

Interaction Distance (Å) Bonding Bonding Type

Nonstructural protein 14 (N7-MTase)–1
D:CYS309–A:1 4.55383 Hydrophobic Alkyl

D:ARG310–A:1:C11 5.03726 Hydrophobic Alkyl
D:TRP292–A:1:C13 5.40534 Hydrophobic π···Alkyl
D:TYR420–A:1:C4′ 5.06410 Hydrophobic π···Alkyl

D:PHE426–A:1 3.96141 Hydrophobic π···Alkyl
Papain-like protease (PLpro)–1

A:PRO248–A:1:C4 3.78832 Hydrophobic Alkyl
C:PRO248–A:1:C5′ 4.73701 Hydrophobic Alkyl
C:TYR264–A:1:C5′ 4.72694 Hydrophobic π···Alkyl
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Table 3. Cont.

Interaction Distance (Å) Bonding Bonding Type

Main protease (Mpro)–1
A:1:C4′–A:HIS41 3.74205 Hydrophobic π···Sigma

A:CYS145–A:1 4.99879 Hydrophobic Alkyl
A:1:C2–A:MET165 4.58696 Hydrophobic Alkyl

Nonstructural protein 14 (N7-MTase)–2

A:2:C15–D:ASN334 3.58506 Hydrogen Bond Carbon Hydrogen
Bond

A:2:C15–D:TRP385:O 3.55155 Hydrogen Bond Carbon Hydrogen
Bond

D:PRO335–A:2:C12 5.22535 Hydrophobic Alkyl
A:2:C15′–D:LYS423 4.53131 Hydrophobic Alkyl
D:TYR420–A:2:C5 5.24129 Hydrophobic π···Alkyl
D:PHE426–A:2:C3 5.37133 Hydrophobic π···Alkyl

A:2:C15–D:ASN334 4.03087 Hydrophobic π···Alkyl
A:2:C15–D:TRP385:O 5.14456 Hydrophobic π···Alkyl

Papain-like protease (PLpro)–2
A:PRO247–A:2:C13 5.16136 Hydrophobic Alkyl

A:PRO247–A:2 5.14188 Hydrophobic Alkyl
A:PRO248–A:2 4.46827 Hydrophobic Alkyl
C:PRO248–A:2 4.76755 Hydrophobic Alkyl

A:2:C14–A:MET208 4.24574 Hydrophobic Alkyl
C:TYR264–A:2:C4 4.56104 Hydrophobic π···Alkyl

Main protease (Mpro)–2
A:CYS145–A:2:O2 5.13188 Hydrophobic Alkyl
A:MET165–A:2:C1′ 5.06805 Hydrophobic Alkyl
A:PRO168–A:2:C15 5.23131 Hydrophobic Alkyl
A:2:C15′–A:PRO168 4.16653 Hydrophobic Alkyl

A:2–A:MET49 5.08585 Hydrophobic Alkyl
A:2–A:CYS145 4.80241 Hydrophobic Alkyl

A:HIS41–A:2:C2 4.63051 Hydrophobic π···Alkyl
A:HIS41–A:2:C15 3.89620 Hydrophobic π···Alkyl
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We have also established additional ligand efficiency scores to shed more light on
the bioactivity of 1 and 2 towards the applied SARS-CoV-2 proteins. As such, for all
complexes of 1 and 2 with the studied proteins, we have calculated inhibition constant
(Ki), miLogP, ligand efficiency (LE), ligand efficiency_scale (LE_Scale), fit quality (FQ)
and ligand-efficiency-dependent lipophilicity (LELP) [38–43] (Table 2). Furthermore, for
comparison we have also calculated the same ligand efficiency scores for complexes of
the studied proteins with initial ligands (Table 2). Notably, the Ki value must be as low as
possible for a more efficient inhibition and should fall in the µM range for a compound to
be considered as a Hit, and >10 nM for a drug [42]. Furthermore, for a compound to be
considered as a Hit the LE, FQ and LELP parameters are recommended as ≥0.3, ≥0.8 and
from −10 to 10, respectively [42].

Of all the complexes of the applied proteins with 1 and 2, the ligand efficiency scores
for complexes with Nonstructural protein 14 (N7-MTase) are close to be within the recom-
mended ranges for a Hit and even close to values for a drug, although the LELP values are
clearly out of the recommended range (Table 2). These results are preferable for complex
of Nonstructural protein 14 (N7-MTase) with 1 in comparison to 2 and even to the initial
ligand, although the Ki value for a latter ligand is about two times lower but with a less
preferable LELP value (Table 2). For complexes of 1 with Papain-like protease (PLpro) and
Main protease (Mpro), the ligand efficiency scores are also within the recommended ranges
and even superior to those of the initial ligand except for the LELP values (Table 2).

3. Materials and Methods
3.1. Physical Measurements

The IR spectra in KBr pellets were recorded with a FT-IR FSM 1201 spectrometer in the
range 400–4000 cm−1. UV–vis spectra from the 10−4 M freshly prepared solutions in freshly
distilled MeOH were recorded on an Agilent 8453 instrument. Powder X-ray diffraction
was carried out using a Rigaku Ultima IV X-ray powder diffractometer. The parallel beam
mode was used to collect the data (λ = 1.54184 Å). Elemental analyses were performed with
a Thermo Scientific FLASH 2000 CHNS analyzer (Waltham, MA USA).

3.2. Synthesis

A hot solution of Cu(OAc)2 (1 mmol, 0.182 g) in ethanol (10 mL) was added dropwise
to a hot solution of cyclohexylamine (2 mmol, 0.198 g) and 3-methoxysalicylaldehyde or
3-ethoxysalicylaldehyde (2 mmol, 0.304 and 0.332 g) in the same solvent (20 mL) under
vigorous stirring. The resulting mixture was left undisturbed under ambient conditions for
slow evaporation of the solvent to give green prism-like crystals suitable for single crystal
X-ray diffraction.

Complex 1. Yield: 0.481 g (91%). Anal. Calc. for C28H36CuN2O4 (528.15): C 63.68,
H 6.87 and N 5.30; found: C 63.77, H 6.92 and N 5.24%.

Complex 2. Yield: 0.462 g (83%). Anal. Calc. for C30H40CuN2O4 (556.20): C 64.78,
H 7.25 and N 5.04; found: C 64.70, H 7.33 and N 4.99%.

3.3. Single Crystal X-ray Diffraction

The X-ray diffraction data for 1 and 2 were collected on Bruker SMART Apex-II and
Bruker D8 Venture diffractometers, respectively, equipped with a CCD detector (Mo-Kα,
λ = 0.71073 Å, graphite monochromator). Semi-empirical absorption correction was applied
by the SADABS program [44]. The structures were solved by direct methods and refined
by the full-matrix least squares in the anisotropic approximation for non-hydrogen atoms.
The structure of 1 was refined as a two-component twin. The calculations were carried out
by the SHELX-2014 program package [45] using Olex2 1.2 [46]. CCDC 2235309 and 2235310
contain the crystallographic data for 1 and 2, respectively. These data can be obtained free
of charge via https://www.ccdc.cam.ac.uk/structures (accessed on 7 February 2023) or
from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ,
UK; fax: (+44)-1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.

https://www.ccdc.cam.ac.uk/structures
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Crystal data of 1. C28H36CuN2O4, Mr = 528.13 g mol−1, T = 150(2) K, monoclinic, space
group P21/c, a = 11.0369(16), b = 17.743(4), c = 6.3402(13) Å, β = 99.839(9)◦, V = 1223.3(4) Å3,
Z = 2, ρ = 1.434 g cm−3, µ(Mo-Kα) = 0.931 mm−1, reflections: 2397 collected, 2397 unique,
Rint = 0.000, R1(all) = 0.1132, wR2(all) = 0.2136, S = 1.021.

Crystal data of 2. C30H40CuN2O4, Mr = 556.18 g mol−1, T = 100(2) K, orthorhombic,
space group Pbcn, a = 26.5364(13), b = 9.1654(4), c = 11.0988(7) Å, V = 2699.4(2) Å3, Z = 4,
ρ = 1.369 g cm−3, µ(Mo-Kα) = 0.847 mm−1, reflections: 26,069 collected, 3597 unique,
Rint = 0.077, R1(all) = 0.0693, wR2(all) = 0.0963, S = 1.035.

3.4. Molecular Docking

Molecular docking simulations of complexes 1 and 2 with a series of the SARS-CoV-2
proteins were carried using the CB-Dock2 server [47,48], which reveals protein cavities
to guide blind docking by the algorithm of AutoDock Vina [49]. The targeted protein
structures were subtracted from the RCSB PDB database [50] and were pretreated before
the docking, including water removing and inserting hydrogen atoms and missing residues
and charges.

3.5. In Silico Drug-Likeness Analysis

Bioavailability, druggability as well as absorption, distribution, metabolism, excretion
and toxicity properties were evaluated using the SwissADME [33], BOILED-Egg [34] and
ProTox-II [31,32] tools.

4. Conclusions

We have synthesized complexes [Cu(LI)2] (1) and [Cu(LII)2] (2) (HLI = N-cyclohexyl-3-
methoxysalicylideneimine, HLII = N-cyclohexyl-3-ethoxysalicylideneimine), which were
confirmed by IR spectroscopy, single crystal and powder X-ray diffraction, and elemental
analysis. The ligands in both complexes are trans-1,5-N,O-coordinated, yielding a square
planar CuN2O2 coordination core. The molecule of 1 is essentially planar with two cy-
clohexyl groups oriented to the opposite sites of the planar part of a molecule, while the
molecule of 2 is significantly bent with two cyclohexyl groups oriented to the same convex
site of a molecule. Complexes in MeOH absorb in the UV region due to intraligand tran-
sitions and LMCT. Furthermore, the UV-vis spectra of 1 and 2 revealed two low intense
shoulders in the visible region at about 460 and 520 nm due to d–d transitions.

Both complexes were predicted to belong to a fourth class of toxicity with the negative
BBB property and positive gastrointestinal absorption property and the positive PGP effect
on the molecule. Complexes were also found to be active against all the applied SARS-CoV-
2 proteins with the best binding affinity with Nsp 14 (N7-MTase), PLpro and Mpro. The
obtained docking scores of complexes are either comparable to or even higher of those of
the initial ligands. Finally, complex 1 was found to be more efficient upon interaction with
the applied proteins in comparison to complex 2. Ligand efficiency scores for complexes of
1 and 2 with Nsp 14 (N7-MTase) are close to being within the recommended ranges for a
Hit and even close to the values required for a drug.
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