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Abstract: Colorectal cancer mortality rate and highly altered proteins from the Wnt/β-catenin
pathway increase the scientific community’s interest in finding alternatives for prevention and
treatment. This study aims to determine the biological effect of chlorogenic acid (CGA) on two
colorectal cancer cell lines, HT-29 and SW480, and its interactions with β-catenin and LRP6 to
elucidate a possible modulatory mechanism on the Wnt/β-catenin pathway. These effects were
determined by propidium iodide and DiOC6 for mitochondrial membrane permeability, MitoTracker
Red for mitochondrial ROS production, DNA content for cell distribution on cell cycle phases, and
molecular docking for protein–ligand interactions and binding affinity. Here, it was found that CGA
at 2000 µM significantly affects cell viability and causes DNA fragmentation in SW480 cells rather
than in HT-29 cells, but in both cell lines, it induces ROS production. Additionally, CGA has similar
affinity and interactions for LRP6 as niclosamide but has a higher affinity for both β-catenin sites than
C2 and iCRT14. These results suggest a possible modulatory role of CGA over the Wnt/β-catenin
pathway in colorectal cancer.

Keywords: chlorogenic acid; colorectal cancer; apoptosis; proliferation; β-catenin; LRP6

1. Introduction

Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide
and the fourth with more incidence [1]. Like other types of cancer, the primary treatment for
CRC is surgery; nevertheless, most patients are asymptomatic until the tumor progresses
and must be treated with a combination of chemotherapy, radiotherapy, and biotherapy [2].
Despite advances in prevention, screening, and chemotherapy, the 5-year survival rate in
CRC is about 11% of all cancer [3]. For this reason, developing new treatment regimens for
managing these patients is mandatory [4].

Chlorogenic acid (CGA) is a polyphenol widely distributed in nature. It is an ester
of caffeic acid with quinic acid, whose antiproliferative effect in CRC has been demon-
strated [5]. Previous studies using in vitro colon cancer models have shown that CGA
decreases viability and modulates the proliferative and migratory capabilities of Caco-2 [6],
HT-29, SW480, and SW620 [7,8] cells at EC50 758 uM and IC50 8114 µg/mL, 686.6 µg/mL,
and 828.6 µg/mL, respectively. Likewise, it has been shown that CGA diminishes the
viability of cancer cells derived from liver [9–11], breast [12,13], lung [14,15], blood [16,17],
bone [18], and kidney [19] tissues, suggesting the potential of CGA for the modulation of
biological mechanisms involved in cancer cell survival.

Wnt/β-catenin is a highly conservative signaling pathway that plays a crucial role in
embryonic development and regulates the self-renewal and homeostasis of various adult
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tissues [2]. More than 94% of CRC cases have at least an altered protein from the Wnt/β-
catenin signaling pathway by a genetic and epigenetic mechanism [20]. However, early
APC mutations are acquired in over 80% of colon cancer patients, leading to the cytosolic
accumulation of β-catenin, an intracellular signal transducer in transcriptional regulation
that, in combination with TCF/Lef1, promotes proliferation and inhibits apoptosis [21].
Moreover, recently, we reported the modulatory effect of CGA treatment ong SW480 and
HT-29 cell, by decreasing the transcriptional activation of the Wnt pathway at similar
proportion as the selective pathway inhibitor iCRT14 [8].

In normal physiological conditions, β-catenin degrades in the cytoplasm by the de-
struction complex consisting of axis inhibition protein (AXIN), adenomatosis polyposis coli
(APC), casein kinase 1 (CDK1), and glycogen synthase kinase 3β (GSK3β) (Figure 1A). As a
consequence of Wnt ligands binding to the Frizzled protein receptor at the membrane and
its coreceptor LRP5/6, the destruction complex function becomes displaced, which leads to
the accumulation of β-catenin and its translocation to the nucleus (Figure 1B), consequently
triggering the CRC [22].
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interaction while allowing β-catenin binding with E-cadherin at the cell–cell adherens 
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binding sites (Figure 2), the well-known union site (US) between β-catenin and TCF4 [30] 
and the recently reported allosteric site (AS) [31]. 

Figure 1. Canonical Wnt/β-catenin signaling pathway. (A) Regulated state when the destruction
complex controls β-catenin levels at the cytoplasm. (B) Dysregulated state where the presence of Wnt
ligands and the interaction with membrane receptors displace the destruction complex and β-catenin
accumulates at the cytoplasm, and then translocated to the nucleus.

LRP6 possesses extracellular and intracellular domains. The extracellular domain is
necessary for the interaction with Wnt ligands and also with Dickkopf-related protein 1
(DKK1) [23], a protein that antagonizes the P3E3P4E4 domain by competitive binding,
disrupting the initiatory complex Frizzled–LRP6 [24]. For this reason, inhibiting LRP6 can
be a potential solution for diseases such as osteoporosis, Alzheimer, cancer, and neurode-
generation [23]. It has been found that niclosamide is a potent Wnt/β-catenin inhibitor by
inducing LRP6 degradation in HEK293 cells [25]. Furthermore, it has been observed that
niclosamide suppresses the growth of HCT116, LoVo, SW620, and HT-29 cell lines [26], and
additionally induces cell apoptosis [27].

The WNT pathway inhibition could also be assessed by blocking the most downstream
component, the interaction between β-catenin and T-cell factor 4 (TCF4) at the nucleus.
This inhibition can be effectively achieved regardless of the mutations in the upstream
components [28]. iCRT3, iCRT5, and iCRT14 effectively inhibit β-catenin–TCF4 interaction
while allowing β-catenin binding with E-cadherin at the cell–cell adherens junctions, which
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is essential for the prevention of metastasis [29]. β-catenin has two binding sites (Figure 2),
the well-known union site (US) between β-catenin and TCF4 [30] and the recently reported
allosteric site (AS) [31].
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Figure 2. β-catenin surface with the position of the allosteric site (AS) and the TCF4 binding site (US)
highlighted.

The CRC model selected for this research consists of two cell lines with different
truncating mutations in the APC gene. In SW480, the mutation at the 1338 residue changes
the APC domain that interacts with β-catenin for ubiquitination and degradation, while in
HT-29, the truncating mutation in the 1555 residue maintains the regulatory effect of the
APC protein over β-catenin [32–34].

Proliferation and apoptosis are processes highly involved in cancer development and
important to cancer therapy [35,36]. Despite the multiple studies evaluating the prolif-
eration and apoptosis in colorectal cell lines, to the best of our knowledge, there are no
available reports comparing the effects of CGA on SW480 and HT-29 cell lines, in which
differences in the Wnt/β-catenin pathway have been reported. Although there are studies
describing that CGA regulates Wnt/β-catenin signaling [37,38], none of them discriminate
which targets are involved in the mechanism.

This study aims to determine the effect of CGA in proliferation and apoptosis on
two colorectal cancer cell lines and its interactions with β-catenin and LRP6 to elucidate a
possible modulatory mechanism of CGA on CRC in the context of Wnt/β-catenin pathway.

2. Results
2.1. CGA Treatment Affects Cell Viability

Mitochondrial polarization changes and loss of cell membrane integrity are common
indicators of cell death. SW480 and HT-29 colon cancer cells were treated with different con-
centrations of CGA to determine the cytotoxic effect. Flow cytometry was used to quantify
the DiOC6 retention and PI uptake. In SW480 cells, 2000 µM of CGA induced a significant
decrease in DiOC6 high population with a related increase in PI uptake (Figure 3A). These
results indicate a reduction in cell viability because mitochondrial dysfunction is directly
involved in the intrinsic apoptotic pathway. Under the same conditions, HT-29 cells do not
exhibit a significant difference (Figure 3B).
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PI+: dead cells. The figure shows a representative histogram of flow cytometry analysis and bar 
graphs for quantification for each cell line. Two-way ANOVA for DiOC high, DiOC low, and PI+ 
populations shows the difference concerning untreated cells, where ** p ≤ 0.01, *** p ≤ 0.001. 
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ROS production was assessed to investigate the mode of action of CGA on colon 
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Figure 3. Cytotoxic effect of CGA in colon cancer cells. (A) SW480 and (B) HT-29 cells were treated
with CGA at indicated concentrations. Mitochondrial membrane potential was measured with DiOC6
and cell membrane by PI intake and analyzed using flow cytometry. DiOC6 high: live cells with high
membrane polarization; DiOC6 low and PI negative: cells with membrane depolarization; PI+: dead
cells. The figure shows a representative histogram of flow cytometry analysis and bar graphs for
quantification for each cell line. Two-way ANOVA for DiOC high, DiOC low, and PI+ populations
shows the difference concerning untreated cells, where ** p ≤ 0.01, *** p ≤ 0.001.
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2.2. CGA Induces Mitochondrial Reactive Oxygen Species (ROS) Production

ROS production was assessed to investigate the mode of action of CGA on colon cancer
cells. Figure 4 shows the quantification of the mean fluorescence intensity of MitoTracker
Red CMXRos in SW480 and HT-29 cells, with a dose-dependent increase in ROS detection.
SW480 cells showed higher ROS production after CGA treatment. Mitochondrial ROS
increase can depolarize the mitochondrial membrane, as was observed in the previous
results for SW480, which could result in increased activation of proapoptotic molecules,
such as Caspase-3 [39].
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Figure 4. Effects of CGA on mitochondrial ROS production in colorectal cancer cells. (A) SW480 and
(B) HT-29 cells were treated with CGA as indicated concentrations. MitoTracker Red CMXRos, a
red fluorescent dye that stains mitochondria in live cells and fluoresces upon oxidation, was used to
examine mitochondrial changes in ROS levels. One-way ANOVA for concentration effect, differences
with respect to untreated cells, where * p ≤ 0.05, ** p ≤ 0.01, **** p ≤ 0.0001.

2.3. CGA Produces DNA Fragmentation Preferentially in SW480 Cells

An analysis of the cell cycle distribution was used to describe the antiproliferative
effect of CGA in colorectal cancer cells (Figure 5). Each cell line had a typical cell cycle
distribution, with most cells in the G1 phase. At 500 µM and higher doses, CGA-treated
cells showed a significant drop in the G1 phase percentage compared with untreated cells.
This decrease in G1 cells occurred with an increased percentage of cells in the sub-G1 phase.
The characteristic sub-G1 peak could be fragmented DNA marked with low-level DNA
fluorescence, suggesting apoptotic cell death, as has been reported by other authors [40–42].
DNA fragmentation is more significant in SW480 (p < 0.001, Figure 5A) than in HT-29 cells
(p < 0.01, Figure 5B).
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Figure 5. Cell cycle distribution after CGA treatment (24 h) in colorectal cancer cell lines SW480
(A) and HT-29 (B). The figure shows a representative histogram and bar graphs of flow cytometry
analysis of the cell cycle distribution in the different phases. Two-way ANOVA for sub-G1, G1, S,
and G2/M populations, displaying the difference with respect to untreated cells, where * p ≤ 0.05,
** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001.

2.4. Molecular Docking

Molecular docking studies were performed between CGA and two crucial proteins
in the WNT/β-catenin pathway, and known inhibitors were used for validation. CGA
showed a higher affinity for both sites of β-catenin than C2 and iCRT14 (Table 1) and a
similar affinity for LRP6 E3 as niclosamide (Table 2). In the allosteric site of β-catenin, C2
showed an affinity of −4.6 kcal/mol, while CGA was −5.5 kcal/mol. Particularly, CGA
presented more hydrogen bonds with the β-catenin sites than the validation compounds,
as shown in Figures 6 and 7.

Table 1. Affinity and interactions of CGA and validation compounds (iCRT14 and C2) with β-catenin
at the biding (US) and allosteric (AS) sites.

Protein Compound Vina Score
(Kcal/mol)

Protein-Ligand Interactions

Hydrogen Bonds π Interactions Hydrophobic
Interactions

β-catenin AS CGA −5.5

ARG587
ASP583
HIS585
PRO521
HIS524
ALA525
GLN623

C2 −4.6
ARG587
ASP583
VAL584

β-catenin US CGA −6.5

ASN430

HIS470 ARG469
LYS435
ARG474
ASN516
SER473

iCRT14 −5.3
ARG469

ARG474
ARG515

HIS470
LYS508
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Table 2. Affinity and interactions of CGA and Niclosamide with LRP6.

Protein Compound Vina Score
(Kcal/mol)

Protein–Ligand Interactions

Hydrogen Bonds π Interactions Hydrophobic
Interactions

LRP6 CGA −6.3 SER665
GLU708

GLU708
ARG751
TRP767
LEU810
PHE836

Niclosamide −6.3 ASP811
HIS834

HIS834
TRP767
LEU810
PHE836
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3. Discussion

Although different studies have reported several biological properties of CGA [43,44],
there still needs to be clear evidence about the role of this natural compound in CRC.
In the present study, we showed that CGA induced ROS production and mitochondrial
hyperpolarization, which results in the DNA fragmentation and reduced cell viability of
colon cancer cells, which harbors alterations in the Wnt/β-catenin pathway. Additionally,
we explore the interaction of CGA with β-catenin and LRP6 by in silico approaches to
rationalize if the in vitro biological results could be potentially related to the possible
modulation of the Wnt/β-catenin pathway.

According to our results, the concentrations of CGA required to achieve the desired
biological effect in colorectal cancer cells are higher than the concentrations absorbed from
food, and also in other reports that use CGA in lower doses [45,46]. However, generally,
they do not determine the IC50 to select the working doses [11,14,17]. The advantage of
using the concentrations suggested by the IC50 curves is that the sensitivity of every model
is considered.

Limitations of CGA, such as low absorption and variable bioavailability, could affect
scale-up to the in vivo study phase. Strategies to improve its pharmacokinetic profile
could be a perspective of this work. For instance, some studies have shown that structural
modifications of polyphenols, such as resveratrol and curcumin, increased their cytotoxic,
antiproliferative, and proapoptotic effect [47,48]. Particularly, we have initiated a new
project where we synthesize derivatives of CGA that showed a lower IC50 than CGA.
However, it is still unknown if it could be due to a better pharmacokinetic profile or a
higher derivative activity [49].

In this work, we observed an incremented ROS production in both the SW480 and
the HT-29 cell lines (Figure 4) in the treatment with CGA, which results in mitochondrial
hyperpolarization and an increase in sub-G1 cell population (Figure 5), suggesting DNA
fragmentation (a hallmark of apoptotic cell death). Even though physiological levels of ROS
play important roles in promoting normal cellular processes [50], ROS overproduction has
been related to the oxidation of molecules, such as nucleic acids, lipids, carbohydrates, and
proteins [51], which results in the alteration of the vital process, including cell-death-related
mechanisms [52,53].
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The results showed that CGA reduces the cell viability of the SW480 cells while not
exhibiting a significant effect on the HT-29 cells (Figure 3); this behavior could be related
to the enhancement in ROS production that could cause an alteration in the antioxidant
balance of the cells. Although ROS production is observed at 1000 µM in both cell lines,
the cell viability was not affected, probably because no damage was still involved in the
macromolecules. Meanwhile, at 2000 µM, there is already a loss of cell homeostasis and
induction of cell death [54].

Interestingly, different phytochemicals have been shown to possess pro-oxidant prop-
erties in the context of cancer through the induction of ROS accumulation in cancer cells and
the subsequent activation of apoptotic cell death [51]. This is the case of complex mixtures
of phytochemicals, such as Mangifera indica L. peel extracts [55], Passiflora edulis f. flavicarpa
leaf extracts [56], Vaccinium meridionale Swartz juice [57], fermented nondigestible fraction
from spent Coffea arabica grounds [58], fermented nondigestible fraction from Moringa
oleifera leaves [59], Persea americana pulp extracts [60], and independent natural compounds,
including quercetin [61], procyanidins [62], cannabidiol [63], resveratrol [64], curcumin [65],
catechins [66], p-coumaric acid [67], kahweol [68], and CGA [6,69,70], among others.

To retain their malignant phenotypes, cancer cells contain higher levels of ROS and a
different redox state from their normal counterparts. Because of this, cancer cells are more
susceptible than normal cells to an increase in ROS generation brought on by different
agents, including polyphenols [71]. Polyphenols have been shown to affect the redox status
in varying ways, depending on the dose of polyphenols and the physiologic context of the
interaction [72]. In cancer cells, a different mechanism of ROS induction by polyphenols
has been explored, including pro-oxidant properties in systems containing redox-active
metals [73–75], inhibition of endogenous antioxidants, and alteration in the electron trans-
port chain [76,77]. In all cases, the mechanism through which polyphenols induce ROS
production depends on concentration, structure, cell type, and experimental design.

The differences observed in the cell lines in response to CGA treatment, being SW480
more susceptible than HT-29 cells (Figures 3–5), could be explained by its genetic and
epigenetic backgrounds, which have a direct impact on the constitutive activation of
signaling pathways involved in colon cancer onset and progression, such as TP53, KRAS,
BRAF, Wnt/β-catenin, among others [78,79]. Both HT-29 and SW480 have microsatellite
stable (MSS) phenotypes but differ in CpG island methylator phenotype (CIMP) and
consensus molecular subtypes (CMS), being HT-29 CIMP+ and CMS3 (metabolic) with a
moderately active Wnt/β-catenin pathway and, SW480 CIMP- and CMS4 (mesenchymal)
with an upregulation of molecules involved in epithelial to mesenchymal transition and
matrix remodeling [79,80]. Interestingly, both cell lines harbor truncating mutations in
the APC gene that are tightly related to their CMS status but have a different impact
on Wnt/β-catenin pathway activation. On the one hand, SW480 cells have a truncating
mutation at residue 1338 in one allele of the APC gene, where the catenin inhibitory
domain is located for β-catenin ubiquitination and degradation. It has been suggested
as a requirement to drive high basal levels of Wnt/β-catenin pathway activity; on the
other hand, HT-29 cells have a truncating mutation at residue 1555 of the APC gene, but
retain the catenin inhibitory domain and the β-catenin binding sites (15RA–15RD and
20R1–20R3), which allows maintaining the regulatory effect of the APC protein over β-
catenin in this cell line [32–34]. This is important, considering that APC mutations have
been shown to cooperate with BRAF [81] and KRAS mutations [82,83] for the development
of colon cancer, which are also genetic alterations present in HT-29 and SW480 cells,
respectively [79]. Additionally, differences in the levels and activity of proteins of the
detoxification machinery of the cells have been reported, including the ATP-binding cassette
subfamily members ABCB1 and ABCG2, which are involved in the efflux of xenobiotics
from cells, such as polyphenols [84], as well as the expression and activity of enzymes
involved in the glucuronidation of free hydroxyl groups present in the chemical structures
of polyphenolic compounds [85–87], increasing their polarity and water solubility for their
excretion [88]. All these dissimilarities between SW480 and HT-29 could explain that despite
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ROS production being equivalent between both cell lines, the biological effect, including
cell cycle distribution, presents significant differences.

Finally, to explore whether the in vitro biological results could be potentially related
to Wnt/β-catenin pathway modulation, considering that the negative regulation of the
pathway by natural products has been associated with the activation of cell-death-related
mechanisms [89–108], molecular docking approaches were performed to analyze the inter-
action of CGA with crucial proteins in the Wnt/β-catenin pathway, named β-catenin and
LRP6. In this manner, it was observed that CGA could interact with an allosteric site on the
surface of β-catenin and with the binding surfaces of β-catenin involved in the interaction
with the transcription factor TCF (Figure 6), and also with ectodomain 3 of LRP6 (Figure 7).
It is important to note that all these interactions showed similar affinities, and in some cases
even higher affinities, when compared with the validation compounds we used for the
analysis (Tables 1 and 2).

At the well-known β-catenin binding site, it has been reported that the residues Lys435
and Arg469 form a salt bridge. Additionally, it has been predicted that the compound
UU-T01 binding to β-catenin around the residues Lys436, Arg469, and Lys508 and UU-
T02 forms cation-π interactions with Arg474 and Arg515 [30]. Besides, docking studies
predicted GB1874 binding to the β-catenin residues Arg469, Lys508, Asn426, Arg515,
Arg474, and Arg435 [28]. Our study confirmed the salt bridge between Arg469 and CGA
and the π interactions between Arg474 and Arg515 with iCRT14.

The binding pocket of DKK1 involves the Glu663, Ser665, Tyr706, Asp748, Lys770,
Leu810, His834, Trp850, and Tyr875 residues of LRP6 as hot spot regions of this protein.
Specifically, it formed hydrophobic bonds with Leu810, Asp811, Pro833, Tyr706, and Arg639,
while it formed hydrogen bonds with Glu663, Glu708, Arg792, Asp811, Thr812, Asn813,
Asp830, Leu832, and Arg1184 [24]. Our study observed the hydrophobic interactions
between Leu810 from LRP6 with niclosamide and CGA, the hydrogen bonds between
Glu708 and CGA, and Asp811 with niclosamide.

Previous studies have shown the potential of small molecule inhibitors, including
C2 [31] and iCRT14 [29], and other molecules, to negatively regulate the Wnt/β-catenin
pathway by the interaction with β-catenin and LRP6 proteins. Recently, the discovery
of a small-molecule inhibitor (C2) has been reported. C2 targets an allosteric site on the
surface of β-catenin in armadillo domain 8–10 and induces the proteasomal degradation
of the protein. This results in the downregulation of Axin1, CyclinD1, and TCF4 proteins
expression and the subsequent reduction in cell viability and tumor growth, even in the
context of APC mutations [31]. Likewise, iCRT14 inhibits the direct interaction of β-catenin
with TCF at the nucleus, interfering with its activity as a transcriptional activator, causing
a downregulation of AXIN2, CCND1, and C-MYC gene expression and the inhibition of
cell proliferation and invasion [29]. On the other hand, niclosamide suppressed the LRP6
expression in TNBC MDA-MB-231 cells and ER-positive breast cancer T-47D cells and
inhibited breast cancer cell proliferation with IC50 values less than 1 mM [25]. Altogether,
these observations support our hypothesis regarding the possible modulation of the Wnt/β-
catenin pathway by CGA, even in the context of APC truncating mutations, considering
the interaction of this molecule (Table 2) with β-catenin (Figure 6) and LRP6 (Figure 7),
similarly as C2, iCRT14, and niclosamide. These findings are of great significance in the
context of CRC, considering that APC mutations are an early and critical driver in the
stepwise progression from adenoma to carcinoma [109], and also because the intestinal stem
cell niche provides large amounts of Wnt ligands and amplifiers, which cooperates with
intrinsic alterations of Wnt pathway members for the onset and progression of CRC [110].

As mentioned before, the Wnt/β-catenin pathway is implicated in the development
of CRC [21]; hence improving targeted therapies against this pathway is mandatory for its
translation to clinical practice [111–113]. In this regard, natural products showed the poten-
tial to modulate several signaling pathways involved in cancer development, including
Wnt/β-catenin, through the downregulation of β-catenin and Wnt-target genes expression;
the modulation of β-catenin phosphorylation, ubiquitination, and proteasomal degradation;
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and the inhibition of its nuclear translocation, among other mechanism [114,115], which
results in the activation of cell-death-related mechanisms [89–97,99,100,104,108,115], sup-
porting our hypothesis regarding the possible modulation of the Wnt/β-catenin pathway
by CGA.

4. Materials and Methods
4.1. Materials

SW480 and HT-29 cells were commercially obtained from ATCC (Manassas, VA, USA).
Cell culture reagents, including Dulbecco’s Modified Eagle Medium (DMEM), fetal bovine
serum (FBS), antibiotics, and trypsin-EDTA, were purchased from Gibco (Grand Island, NY,
USA). Chlorogenic acid was purchased from Sigma-Aldrich (St. Louis, MO, USA).

4.2. Cell Culture

The colon cancer cell lines SW480 and HT-29 were grown in DMEM supplemented
with 5% FBS and RPMI media supplemented with 10% FBS, respectively. To complete the
medium, 100 g/mL penicillin and 100 g/mL streptomycin were added. The cell cultures
were kept at 37 ◦C in a humidified incubator with 5% CO2 and 95% air. Cells were evaluated
regularly under a microscope for proper morphology and adhesion and were subcultured
before the confluence.

4.3. Treatment Outline

Colon cancer cell lines were plated in 6-well plates at a concentration of 2.5 × 105 cells/mL.
Cells were cultured under standard conditions, and after 24 h, to ensure adhesion and
exponential growth, cells were treated for 24 h with doses of 250, 500, 1000, and 2000 µM of
CGA [7]. Cells were trypsinized, pelleted, and analyzed by flow cytometry for different
tests to evaluate the biological effect after treatments. Data reported included at least three
separate experiments per treatment group.

4.4. Cell Viability

As a measure of cell viability, the cytoplasmic membrane’s integrity and mitochondrial
membrane permeability changes were examined using propidium iodide (Sigma, P4170)
and DiOC6 (Molecular Probes D273), respectively. Cells were pelleted and stained with
1 mg/mL PI and 50 nM DiOC6 and incubated for 30 min at room temperature to assess
the incorporation of the dyes after CGA treatments. Flow cytometry was used to analyze
10,000 events with BD LSRFortessa. FlowJo was used to calculate the mean fluorescence
intensity (MFI).

4.5. Mitochondrial ROS Production

Mitochondrial ROS production was evaluated to delimit the mechanism of cell death
induction. Treated colon cancer cells were dyed with 3 µM MitoTracker Red (Invitrogen,
M7512) and stored at room temperature for 20 min. After that, cells were washed twice in
phosphate-buffered saline and analyzed by flow cytometry (BD LSRFortessa). The mean
fluorescence intensity (MFI) of MitoTracker was calculated using FlowJo.

4.6. DNA Content

DNA content was analyzed to determine the cell distribution in cell cycle phases.
CGA-treated cells were collected and centrifuged. Afterward, the cell pellet was fixed in
70% cold ethanol for 1 h. Permeabilized cells were incubated with 100 µg/mL of RNase
(Sigma, R5000), labeled with 100 µg/mL of propidium iodide (Sigma, P4170), for 30 min and
analyzed by flow cytometry (BD LSRFortessa). FlowJo was used to analyze the distribution
of cell cycle phases.
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4.7. Molecular Docking
4.7.1. Ligand Selection and Preparation

Chlorogenic acid anion and validation ligands (C2, iCRT14, and niclosamide) were
built and prepared using GaussView 5 [116] and Gaussian 09 [117] with B3LYP-6-31++G**
approximation. All ligands were prepared using AutoDock Tools (ADT) [118].

4.7.2. Protein Preparation

The structures of the studied proteins β-catenin (PDB code 2GL7) and LRP6 (PDB code
3S2K) were prepared using UCSF Chimera 8 [119] and ADT, and they were used without
water molecules. Polar hydrogen atoms were automatically added to the protein, also AD4
type of atoms and Gasteiger charges.

Molecular docking was carried out using AutoDock Vina [120] with the parameters
shown in Table 3. The pose with the best affinity for each site was chosen, and a visual
inspection of the interactions was performed using a Discovery Studio Visualizer (BIOVIA),
PLIP [121], and UCSF Chimera.

Table 3. Docking parameters.

Protein Subsite Center of the Grid Size Exhaustiveness

β-catenin US x = 11.527, y = 22.308, z = 62.347 17 Å3 20
β-catenin AS x = 2.805, y = 14.864, z = 79.543 17 Å3 20

LRP6 E3 x = 26.038, y = 5.167, z = −15.270 24 Å3 20

The parameters described in Table 3 were established according to the literature. β-
catenin has two binding sites; the well-known union site (β-catenin US) is located in the
most crucial interaction between the residue Asp16 from TCF4 and Lys435 and His470 of
β-catenin [30]. For this reason, the NZ atom from Lys435 was chosen as the center of the
grid for β-catenin US. On the other hand, an allosteric site of β-catenin (β-catenin AS) was
recently reported, which included the residues Pro521, Arg528, and Asp583 [31], and the
atom ND1 from His524, located near the center between the three reported residues, was
chosen. On LRP6, the grid’s center was chosen from the coordinates of Gly227 from DKK1.

4.8. Statistical Analysis

ANOVA, followed by Fisher’s protected least significant difference (LSD) tests, was
carried out to calculate statistical differences among nontreated cells and different doses of
the treatments with CGA. p ≤ 0.05 was considered statistically significant. Data represent
the results of a minimum of three independent experiments. Results are expressed as
mean ± standard error of the mean (SEM). For graphs and analysis, the GraphPad Prism
software was employed.

5. Conclusions

Despite the significant advances in the diagnosis of CRC, current treatments confer
limited benefit, which makes this disease the third leading cause of cancer death. CRC
development and progression involve altering regulatory mechanisms in one or more
members of the Wnt/β-catenin signaling pathway. For this reason, identifying substances
capable of modulating the Wnt/β-catenin signaling has been a significant effort for the
scientific community. It is worth noting that some new compounds have recently been
described as inhibitors of different components of this signaling pathway. Particular
attention has been given to polyphenols. However, a long way still must be paved to
achieve treatment success for CRC. CGA could be a potential coadjuvant in CRC therapy. In
the present study, the induction of mitochondrial hyperpolarization, DNA fragmentation by
CGA, and interactions between CGA with β-catenin and LRP6 suggest possible modulation
of the Wnt/β-catenin pathway. Differences in sensitivity between SW480 and HT-29 would
be related to the basal transcriptional activity of this signaling pathway in two lines. Our
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results provide an exciting starting point on the effect of CGA in the context of CRC and
the possible modulation of the Wnt pathway.

Additional research is needed for a more in-depth understanding of this mechanism.
For instance, future research regarding Wnt/β-catenin signaling in CRC should focus on
(1) achieving a deeper understanding of crosstalk among the AKT/PI3K, NOTCH, mTOR,
and Wnt/β-catenin pathways; (2) optimizing and evaluating other natural compounds
as Wnt/β-catenin inhibitors while also being highly selective to avoid unnecessary side
effects; (3) identifying additional inhibitors downstream of the Wnt/β-catenin signaling
pathway; and (4) considering CGA structural modifications to improve the pharmacological
profile and/or the affinity for β-catenin and LRP6. (5) In order to elucidate the relationship
between ROS production and cell death in CGA-treated cells, other experiments should be
performed. Treatments with antioxidants that block or mitigate ROS production would
allow us to determine whether ROS is a mediator of this biological effect.
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