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Abstract: Increases in antibiotic usage and antimicrobial resistance occurrence have caused a dramatic
reduction in the effectiveness of many frontline antimicrobial treatments. Topoisomerase inhibitors
including fluoroquinolones are broad-spectrum antibiotics used to treat a range of infections, which
stabilise a topoisomerase-DNA cleavage complex via intercalation of the bound DNA. However,
these are subject to bacterial resistance, predominantly in the form of single-nucleotide polymor-
phisms in the active site. Significant research has been undertaken searching for novel bioactive
molecules capable of inhibiting bacterial topoisomerases at sites distal to the fluoroquinolone binding
site. Notably, researchers have undertaken searches for anti-infective agents that can inhibit topoiso-
merases through alternate mechanisms. This review summarises work looking at the inhibition of
topoisomerases predominantly through non-intercalating agents, including those acting at a novel
allosteric site, ATPase domain inhibitors, and those offering unique binding modes and mechanisms
of action.
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1. Introduction

Infectious disease contributes significantly to worldwide mortality rates, with over
10 million deaths attributed to this class of disease in 2019 [1]. Following the publication
of the O’'Neill report in 2016, it was shown that rising trends in antimicrobial resistance
(AMR) will have profound effects on both mortality rates as well as the global economy [2].
Data from the GRAM report suggested that in 2019, AMR infections were a factor in nearly
5 million deaths, directly causing mortality in 1.2 million cases [3]. As such, there is an
urgent need to curb deaths due to infectious diseases, particularly through the development
of novel antibiotics.

Resistant infections are increasing due to a multitude of reasons, including overpre-
scribing antibiotics, their use in agriculture, and poor public understanding of the causes
and implications of antibiotic resistance [4—6]. Current estimates predict that should these
trends remain on course, by 2050, deaths due to AMR could exceed 10 million, more than
currently die worldwide from all cancers combined [2]. Therefore, one approach to reduc-
ing AMR is the production of new treatments, particularly drugs with new mechanisms of
action, in order to evade pre-existing resistance methods utilised by bacteria.

Broad-spectrum antibiotic activity can be achieved through the inhibition of essential
proteins and enzymes found to be relatively well conserved across bacteria. For example,
topoisomerases are found in all prokaryotes and eukaryotes, and some viruses [7]. Topoiso-
merases are responsible for topological changes in DNA, notably changes in supercoiling,
decatenation, and unknotting, and are heavily involved in the replication and transcription
processes by regulating supercoiling and by decatenating intertwined DNA strands [8].
Without these topological adjustments, DNA would remain unusable, leading to cell death.
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Topoisomerases are divided into classes I and II dependent on whether they act
via a single-strand DNA break (type I) or a double-strand DNA break (type II), with
bacteria generally containing up to four examples [9]. For example, Escherichia coli contains
topoisomerase I and topoisomerase III (type I), both of which are dimeric and reduce
negative supercoiling in DNA [10]. Within type II, E. coli produces topoisomerase 11
(DNA gyrase) and topoisomerase IV (topo IV). DNA gyrase is found to introduce negative
supercoils into DNA, whilst topo IV decatenates DNA and relaxes positive supercoiling.
Whilst type I topoisomerases are, in theory, suitable drug targets, to date, the only clinically
used drugs targeting bacterial topoisomerases are type II inhibitors.

DNA gyrase and topo IV are tetrameric proteins formed from two copies each of two
proteins. DNA gyrase consists of two subunits of GyrA and two subunits of GyrB, with
the protein found in the form A;B, (Figure 1). Likewise, with topo IV, two subunits each
of ParC and ParE form a homologous A;B, tetramer [11]. In DNA gyrase, the enzyme
functions through a complex mechanism, detailed studies of which have been described
elsewhere [12]. Briefly, a segment of DNA (G segment) associates with DNA gyrase at the
interface of the GyrA and GyrB subunits, and is wrapped around the enzyme (Figure 2).
Upon the winding of approximately 130 bp around the enzyme, the conformation allows
for a different segment of the same DNA strand (T segment) to enter the complex through
the N-terminal gate of the GyrB subunits, positioning it above the G segment of DNA
already associated.

Figure 1. (A) Front view of Staphylococcus aureus DNA gyrase (PDB ID 6QX2 [13]), representative of
the structure of type II topoisomerases. (B) Top view of S. aureus DNA gyrase, rotated 90° forwards
from (A). The GyrA /ParC units of topoisomerase (green and red cartoons) are known to be critical to
the actions of DNA strand breakage and covalent linkage of the phosphate backbone (whole DNA
segment in pink spheres) to a conserved tyrosine residue in the active site, whilst the GyrB/ParE
units (yellow and blue cartoons) are required for interactions with ATP. Both of these interactions are
putative targets for topoisomerase inhibitors.

The GyrB subunit contains an ATPase domain, and the binding of ATP to this protein
causes the N gate to shut, trapping the T segment, followed by double strand cleavage of
the G segment and subsequent covalent linkage of the phosphate backbone to a conserved
tyrosine located on the GyrA subunit [14]. The strand break allows the T segment to pass
through the broken G segment, thereby changing the link number by two, and performing
its function to decatenate or alter supercoiling. The T segment leaves the protein through
an exit gate, formed through a conformational change of the GyrA subunits. Religation
of the broken strand, promoted through ATP hydrolysis, reforms the G segment, which
exits via the N gate, reopened through the conversion of ATP to ADP and its subsequent
dissociation from the ATPase domain. Topo IV acts through a similar mechanism, though
with homologous subunits ParC and ParE forming the complex with DNA in place of
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GyrA and GyrB, respectively. Whilst ATP provides the energy required for DNA gyrase
to introduce negative supercoils into DNA, in the absence of ATD, it relaxes negative
supercoiling in DNA.
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Figure 2. A generalised catalytic cycle of a topoisomerase. This figure depicts a cycle increasing
supercoiling in circular DNA, though a similar cycle is used to reduce supercoiling, and decatenate
and unknot DNA; GyrA units in blue; GyrB units in orange; G segment of DNA in red; T segment of
DNA in green; non-interacting DNA in grey. (1) DNA interacts with the topoisomerase, and the G
segment associates at the interface between the GyrA and GyrB subunits. (2) The non-interacting
DNA loops around the topoisomerase and the T segment enters the topoisomerase, positioning itself
above the G segment. The binding of ATP to the ATPase domain of GyrB causes the N-terminal gate
to shut. (3) The G segment is cleaved, creating a change in conformation, enabling strand passage.
(4) The T segment passes through the cleavage complex, altering the link number by two, and leaves
via an exit gate. (5) Religation of the G segment, promoted by ATP hydrolysis, reopens the N-terminal
gate, through which it leaves in its supercoiled form. The release of ADP reverts the conformation of
topoisomerase back to its apo form.

The crucial interaction between the GyrA/ParC unit and DNA is the target for the
fluoroquinolone (FQ) class of drugs [15]. Following DNA strand breakage, the FQs are
able to stabilise the cleavage complex by stacking between DNA base pairs at the site of
cleavage, thus preventing further advancement of the strand passage and religation process.
The FQs are often referred to as being ‘gyrase poisons’. Many FQs are used as frontline
drugs, such as ciprofloxacin and moxifloxacin (1 and 2, Figure 3), in part due to their broad
spectrum of activity across both Gram-positive and Gram-negative bacteria [16].

FQs have been in use since the 1970s, though the precursor drug nalidixic acid
(3, Figure 3), a 1,8-naphthyridinone, was discovered in 1962 [17]. Since then, they have
been increasingly used as frontline drugs to treat a wide range of infections, particularly
urinary tract infections [18]. They do, however, have several adverse side-effects, which
can affect patients significantly. Of note, treatment with FQs has been shown to increase
the risk of tendon disorders, including tendon ruptures and tendinitis [19]. The severity
of these risks led the FDA to introduce a black box warning on many FQ antibiotics [20].
Moreover, FQ use has been shown to increase the bacterial SOS response, causing increased
mutation and antibiotic resistance in persister cells [21,22].
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Figure 3. Examples of DNA intercalating drugs. Ciprofloxacin 1 and moxifloxacin 2 are examples of
fluoroquinolones (FQ), which are readily used as frontline drugs currently. They are both derivatives
of an earlier class of drug, 1,8-naphthyridinones, of which nalidixic acid 3 was the first-in-class.
Gepotidacin 4 is an example of a class of topoisomerase inhibitor, which intercalates DNA at an
alternative site, leading to a different mechanism of action. Zoliflodacin 5 and QPT-1 6 are examples
of spiropyrimidinetriones, found to overlap the FQ site, but act with an alternate mode of inhibition.

Although usage in high-income countries has stabilised since the year 2000, overall
usage is increasing steadily worldwide, with findings by Browne et al. suggesting that
global use per capita has approximately doubled since 2000 [23]. With this trend, an
increase in FQ resistance has emerged in pathogens affecting humans, wildlife, farmed
animals, and aquatic environments, with multiple mutations frequently observed in clinical
isolates, notably single-nucleotide polymorphisms (SNP) at sites GyrA%3, GyrA¥, ParC®,
and ParC3 (E. coli numbering).

Whilst plasmid-mediated quinolone resistance does occur, SNP occurrence is the most
common form of FQ resistance. Hamed et al. found that, in their study of 169 cancer
patients suffering infection due to ciprofloxacin-resistant pathogens, all isolates contained
at least one mutation in GyrA, and 93.3% had a further mutation in ParC, thereby in-
hibiting the crucial interaction between ciprofloxacin and the GyrA/ParC subunit [24].
Variations in the FQ core have subsequently been developed, which evade these forms
of resistance, including using a 2-pyridone, quinazolinedione, isothiazoloquinolone, and
oxazoloquinolin-2-one core [25-28].

As FQ resistance poses a significant threat to global healthcare, drugs targeting topoi-
somerases that further differentiate from FQs through distinct binding positions and
mechanisms of inhibition are highly desirable. One area where researchers have made
progress in is the development of Novel Bacterial Topoisomerase Inhibitors (NBTIs), such
as gepotidacin (4, Figure 3). These compounds, similarly to FQs, act as DNA intercalating
agents, though they occupy a different site within the cleavage complex to evade some FQ
resistance mechanisms. Successes in NBTI developments have been thoroughly reviewed
elsewhere [29-31].

One further interesting scaffold which has been developed in recent years is that of
the spiropyrimidinetrione, the most studied example of which is zoliflodacin, also known
as AZD0914 and ETX0914 (5, Figure 3) [32,33]. Initially, this compound was used to target
Neisseria gonorrhoeae, and is currently in Phase III trials (NCT number NCT03959527), but it
shows further strong activity against a range of other bacteria [34,35]. Work by Basarab et al.
showed that zoliflodacin displays a novel mode of inhibition with respect to ciprofloxacin,
and interacts with GyrB more strongly than GyrA [32,36], whilst still intercalating DNA at
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a site overlapping that of FQs, as evidenced by crystallographic data on both zoliflodacin
(PDB ID 8BP2) as well as a related compound QPT-1 (6, Figure 3, PDB ID 5CDM) [37,38].
Advances in DNA intercalating topoisomerase inhibitors including spiropyrimidinetriones
have been reviewed elsewhere [39,40].

In addition to NBTIs and spiropyrimidinetriones, significant work has been produced
studying inhibition of alternative binding sites of topoisomerases, including that of the
second catalytic domain within DNA gyrase and topo IV, the ATPase domain found in
GyrB/ParE, as well as a novel allosteric site identified in the vicinity of the GyrA active
site. Through the targeting of distal sites within topoisomerases, it may be possible to
reduce the current usage of FQs, thereby extending their lifespan and giving potential for
combined-therapeutic treatments targeting DNA gyrase and topo IV. This review aims to
summarise the research to date primarily focussing on non-intercalating inhibitors targeting
alternative sites in bacterial topoisomerases.

2. Allosteric Inhibitors of GyrA

Researchers at GSK identified an allosteric site in DNA gyrase in 2017, providing
a potential route to novel alternatives to FQs. A high-throughput screen by Chan et al.
identified a thiophene-bearing compound, which was subsequently shown to bind to
DNA gyrase in a previously unidentified pocket, dubbed the allosteric site, at the interface
between GyrA and GyrB in the vicinity of the active site of the enzyme (Figure 4) [41].
Optimisation of the structure from 7 to 8 (Figure 5) improved activity across a range of
bacterial species, including both Gram-positive bacteria (S. aureus, Streptococcus pneumoniae)
and Gram-negative bacteria (Acinetobacter baumannii, Pseudomonas aeruginosa, E. coli, Kleb-
siella pneumoniae). Efflux of both compounds was proposed, with inhibition in efflux pump
mutants of E. coli, P. aeruginosa, and A. baumannii improving efficacy by up to 64-fold.
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Figure 4. (A) Front view of superimposed DNA gyrase crystal structures highlighting the primary
active site of ciprofloxacin (cyan spheres, PDB ID 2XCT [42]), and a novel allosteric site recently
identified (green spheres, PDB ID 5NPP [41]). A further natural product, evybactin, was found to
occupy the same allosteric site in Mycobacterium tuberculosis (magenta spheres, PDB ID 7UGW [43]).
(B) Top view of the above-listed superimposed DNA gyrase crystal structures, rotated 90° forwards
from (A).

Importantly, 8 was found be unaffected by mutations to key residues in GyrA, ParC,
and ParE, with potent inhibition observed in FQ-resistant strains. However, one alternate
mutation in GyrB-Glu’®® (E. coli numbering, Glu®* in S. aureus) was identified which
reduced inhibition caused by 8. Further studies confirmed that the mechanism of action
was different to that of FQs, as single- and double-strand DNA cleavage complexes were
formed in equal quantities, as opposed to the entirely double-strand cleavage caused by
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the actions of ciprofloxacin. Although compound 8 showed promise due to its novel mode
of action, this particular series was discontinued due to in vivo toxicity issues [41].
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Figure 5. Inhibitors of bacterial DNA gyrase’s allosteric pocket, with ICsy values against Escherichia
coli DNA gyrase in brackets unless stated otherwise. Thiophene compounds 7 and 8 were the basis
for further developments into a fused ring system as well as a biphenyl system, whereas evybactin
was identified as an antimycobacterial compound before the target was elucidated. A different assay
was used to test the ICs5g of 9 and 10 compared to all other compounds noted here [44], which utilised
fluorescence spectroscopy in comparison to an agarose-gel-based assay used to test compounds 7,
8, 11-13. As a result, they appear to be comparatively better, but are noted as being less potent
than thiophene 8, which was found to have an IC5; value of 0.04 uM when tested in the same assay
conditions as 9 and 10.

The series was altered to incorporate fused ring systems in place of the thiophene-
amide motif, with the authors hypothesising that constraining the core would improve
activity in biochemical assays. Moderate effects were observed in some analogues in the
series [13]. Of note, benzisoxazole 9 (Figure 5) showed weak activity against P. aeruginosa
and K. pneumoniae, whilst the primary amine analogue 10 (Figure 5) showed modest
improvements against hERG and Nay1.5 channels when compared to 8. However, the
reduction in cytotoxic properties was not significant, with 10 still showing hERG and Na, 1.5
ICsg values of 23 pM and 22 pM, respectively. Two crystal structures were generated of
compound 9 in the allosteric site of topoisomerase with slight variations in the binding
modes (PDB IDs 6QX1 and 6QX2). Of note, the chiral phenyl ring was found to adopt a
rotated conformation within the pocket compared to parent structure 8.

A further chemical series derived from thiophene 8 by Orritt et al. replaced the
5-arylthiophene with a biphenyl moiety, and explored changes to the chiral phenyl ring [45].
Although these compounds were not as potent as compound 8 on DNA gyrase (activity for
lead compound 11 was 17 uM, cf. 0.3 uM for 8), compound 11 (Figure 5) was found to have
dual activity, targeting both DNA gyrase and topo IV (64 uM, cf. >540 uM for 8). Current
allosteric inhibitors of topoisomerases are designed around knowledge of the DNA gyrase
crystal structures (PDB IDs 5NPK, 5NPP), but less is understood about the structure of
the equivalent allosteric pocket in topo IV, other than a high degree of amino acid identity.
Therefore, SAR data around allosteric inhibition of topo IV could prove beneficial in the
development of dual-targeting topoisomerase inhibitors.
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It was also observed that whilst the R-enantiomers of this series were more potent than
the S- or racemic counterparts, enantiomeric S- and racemic compounds tested showed
reasonable activity, with some activities of S-enantiomers in the same order of magnitude
as their R-counterparts. Moreover, functionalising the chiral phenyl ring with a phenol
moiety did not give any benefit in either the meta- or para-position (12 and 13, Figure 5).
It was predicted that a phenol group would create an additional interaction with Arg®3°
through an intermediary water, but activity was found to drop, though 12 still retained
micromolar activity [45].

Imai et al. utilised a different method to identify a novel natural product capable
of inhibiting Mycobacterium tuberculosis (Mtb) DNA gyrase [43]. By screening extracts
taken from bacterial strains symbiotic with a nematode host, the researchers were able
to identify and characterise the depsipeptide evybactin (14, Figure 5), a cyclic peptide of
12 amino acids, which was shown to have good activity against Mtb (ICsy =1 uM Mtb DNA
gyrase, MIC = 0.0625 pg mL~!), but not eukaryotic cell lines. Subsequent analysis and X-ray
crystallography showed evybactin to inhibit DNA synthesis by binding to Mtb DNA gyrase
at a site overlapping with the allosteric pocket identified by Chan et al. (PDB ID 7UGW)
and showed no cross-resistance with known FQ sites. Interestingly, evybactin was found to
target Mtb specifically due to its transport into the cell. The transport protein BacA, capable
of moving highly hydrophilic molecules across the outer membrane [46], was able to move
evybactin into the cytoplasm. In cells lacking BacA or its homolog SbmA, antibacterial and
antimycobacterial activities were weak. Even in other organisms bearing SbmA, such as E.
coli, the presence of other efflux mechanisms such as TolC nullifies the activity of evybactin,
making it specific to mycobacteria (MIC E. coli ATCC 25922 = 8 ug mL~!, MIC E. coli
AtolC =025 pg mL~1). Given the complex structure of evybactin, small molecules which
can mimic its binding interactions would be highly desirable to combat Mtb.

3. Inhibitors of the ATPase Site of GyrB

Inhibition of the ATPase activity of the GyrB subunit was identified as a potential
route to new antibiotics as early as the 1950s. The discovery of the aminocoumarin group
of natural product-derived antibiotics led to the approval of novobiocin (15, Figure 6),
which reversibly inhibits DNA gyrase and, to a lesser extent, topo 1V, through blocking
of the ATPase site. This prevents the binding of ATP, metabolism and release of ADP,
and the actions associated with this in the catalytic cycle. To date, novobiocin is the only
aminocoumarin approved for clinical use, although it has now been withdrawn due to
safer, more potent alternatives being developed, particularly later-generation penicillins.
Interestingly, novobiocin has recently been studied for its anti-tumour effects as a result
of its strong binding to the ATPase domain in DNA polymerase 0, with specific activity
over other eukaryotic proteins bearing homologous ATPase domains including HSP90,
suggesting a potential repurposing route for the drug [47].

Novobiocin’s validation as a topoisomerase inhibitor has, however, enabled the devel-
opment of numerous subsequent GyrB/ParE inhibitors, many of which were based upon
conserved motifs. The historic development of coumarins and other GyrB/ParE inhibitors
has been reviewed by Bisacchi et al., which highlights the level of work which has gone
into inhibiting this target [48].

Heterocycles bearing a N-ethylurea moiety were identified by Vertex in 2002 as a
potent motif for binding to Asp”® in the adenine-binding region of DNA gyrase [49].
Gradual optimisation of the Vertex scaffold produced compound 16, referred to as SPR719
(Figure 6), which displayed strong antibacterial properties (MICgg = 0.032 pg mL~! of
S. aureus) [50], particularly against mycobacteria including Mtb (MICgg = 0.125 ptg mL ™!
of extensively drug-resistant Mtb strain XDR 5) [51], though poor solubility limited its
application. Development of prodrug 17 (SPR720, Figure 6), however, overcame these
solubility issues, and a promising phase I trial showed minimal side-effects and good
tolerability in healthy subjects, with the results indicating that 17 shows potential as an oral
treatment of Mtb subject to further trials [52]. Compound 17 progressed to Phase II trials,
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and is currently being tested for treatment in mycobacterium avium complex pulmonary
disease (NCT number NCT05496374).
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Figure 6. Examples of topoisomerase ATPase domain inhibitors with ICsy values against E. coli DNA
gyrase unless stated otherwise. An ethyl urea moiety (red) was identified as an important motif
capable of forming two key interactions with a conserved aspartate residue, and was subsequently
used by multiple researchers in the development of novel topoisomerase inhibitors.

Since this first application of the N-ethylurea motif, it has been used frequently in
a range of gyrase ATPase inhibitors. A fragment-to-lead program by Basarab et al. in-
corporated this motif into a thiazole-bearing compound 18a (Figure 6), which showed
nanomolar activity against both Gram-positive and Gram-negative bacteria in a protein-
based assay (IC5p <10 nM S. aureus and E. coli GyrB), though was only able to kill E. coli in
an efflux pump mutant (MIC = 0.15 pg mL~! of E. coli AtolC, MIC >64 pg mL~! of E. coli
wildtype) [53]. Significantly though, 18a showed high potency against a range of S. aureus
strains, including one methicillin- and quinolone-resistant (MIC = 0.06 pg mL ™).

Yule et al. further utilised the N-ethylurea motif to design and optimise a series
of potent GyrB inhibitors. Using an in silico de novo design, the authors produced a
pyridine-carboxamide (19, Figure 6), which showed nanomolar activity against GyrB
(ICs50 =24 nM S. aureus GyrB and 28 nM E. coli GyrB in a protein-based assay) and ParE
(ICs0 = 86 nM S. aureus ParE and 940 nM E. coli ParE) [54]. In all cases listed above, bio-
engineered mutants confirmed GyrB/ParE activity, with GyrB mutation T173N (S. aureus
numbering) frequently found to reduce potency across the described series. GyrA /ParC
mutations did not compromise activity, confirming the target to be the GyrB/ParE sub-
unit. Moreover, an assay monitoring the frequency of spontaneous mutation of 18a in S.
aureus found mutation T173N to spontaneously occur in two of the three experimental
conditions [53].

In another fragment-based approach, Panchaud et al. varied the scaffold by replac-
ing the key pyridine group of compounds 18a, 18b and 19 with an isoquinoline, whilst
maintaining the N-ethylurea moiety (20a, Figure 6) [55]. Although the project direction saw
optimisation geared towards gyrase inhibition, topo IV was further inhibited significantly
(20a ICsg E. coli DNA gyrase = 0.03 uM, ICsq E. coli topo IV = 8 uM). In both Basarab
and Panchaud’s work, X-ray crystal structures were obtained of key compounds in the
target active site. In the case of Basarab, compounds 18a and 18b were crystallised in the
ParE subunit (PDB IDs 4LPB, 4LP0, Figure 6), whilst in that of Panchaud, compounds
20b, 20d and 20e were visualised in the GyrB subunit, allowing for key structural data to
be observed in topo IV and DNA gyrase, respectively (PDB IDs 5MMO, SMMN, 5MMP,
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Figure 6). In both cases, key interactions were observed between the pyridyl nitrogen and a
water molecule, whilst the N-ethylurea moiety formed two interactions with a conserved
GyrB aspartate residue.

The solubility of many of these ATPase inhibitors was found to be a hurdle in the
development of the series. Hit compound 18a showed an aqueous solubility of approx-
imately 9 pg mL~!, and whilst replacement of the oxadiazolone head with a carboxylic
acid (18b) improved the solubility 40-fold, the solubility was still below 1 mg mL~! [53].
Panchaud et al. similarly found that their hit compound 20a had a solubility of 20 ug
mL~! in a phosphate buffer, but development of the compound into a prodrug through
the introduction of a phosphoryl group improved the solubility to 12.7 mg mL~! (20c,
Figure 6) [55]. Although similar to the method of optimising SPR719, these two prodrugs
were developed independently, suggesting that this could be a promising approach to
improving the physicochemical properties of GyrB ATPase inhibitors.

Further developments moved away from the previously prominent N-ethylurea moi-
ety, with other researchers looking towards tricyclic cores. A fragment-based drug dis-
covery program by Trius Therapeutics produced two potent pyrimido-indoles bearing a
methylamine functionality, capable of mimicking the interaction between the N-ethylurea
motif previously utilised (21a and 21b, Figure 7) [56]. These were found to be highly
potent against Gram-positive bacteria, as well as additionally retaining good activity
against a range of Gram-negative bacteria. This included strong potency against S. aureus
(MICgy 21a = 0.06 pg mL~!, MICg 21b = 0.008 pug mL~') and E. coli (MICyg
2la=1.0pg mL~1, MICqy 21b = 0.5 ug mL™1). Compound 21a was crystallised in the GyrB
subunit of E. coli and Enterococcus faecalis (PDB IDs 4KFG, 4K40) and the ParE subunit of
Francisella tularensis (PDB ID 4KQV), whilst 21b was crystallised in the GyrB subunit of E.
faecalis (PDB ID 4KSG).

Hu et al. developed a N-ethylurea-containing scaffold into a pyrido-indole scaf-
fold, which displayed dual activity against both GyrB and ParE [57]. This led to the
generation of 22 (Figure 7), which had excellent potency against Gram-negative strains
(MIC = 0.31 ug mL~! of E. coli), and showed promise in a neutropenic mouse thigh infection
model. A further effort to dual-target GyrB and ParE by Durcik et al. stemmed from a
benzothiazole core identified previously [58,59]. The lead compound 23a (Figure 7) showed
excellent activity against both DNA gyrase and topo IV across a range of Gram-positive
and Gram-negative bacteria (ICsy <10 nM E. coli and S. aureus DNA gyrase, IC5y = 54 nM
E. coli topo IV and 84 nM S. aureus topo IV), whilst also showing an excellent cytotoxic-
ity profile. Further development of this series yielded compound 23b (Figure 7), which
showed excellent activity against Gram-negative bacteria [60]. The lead compound was
highly active against both DNA gyrase and topo IV in a range of Gram-negative bacteria
and performed excellently against wildtype Gram-negatives in addition to efflux-deficient
strains in killing assays (MIC = 1.0 ug mL~" of E. coli, K. pneumoniae, and P. aeruginosa
wildtypes, MIC = 0.5 ug mL~"! of A. baumannii wildtype). The authors note, however, that
attempts to optimise physicochemical and ADME properties proved difficult, meaning
properties such as solubility and plasma-free fraction were not suitable for in vivo testing.
Crystal structures were obtained, though, for compound 23b in the GyrB subunit of A.
baumannii (PDB IDs 7PQL [racemate] and 7PQM [(S)-enantiomer]), as well as P. aeruginosa
(PDB ID 7PTG [(S)-enantiomer]).

McGarry et al. developed a tricyclic GyrB inhibitor, which instead featured a
pyrimido[4,5-b]indol-8-amine core [61], derived from previous work into GyrB inhibitors
(PDB ID 4K40) [62]. Mimicking the interactions between the urea moiety and GyrB-Asp”?
of compounds 16-20, the authors utilised the 8-methylamino group and N-indole func-
tionalities of 24a and 24b (Figure 7) to create two hydrogen bonds, as well as creating the
hydrogen bond between the previously identified water molecule and pyrimidyl moiety.
In addition to identifying a novel GyrB inhibitor scaffold, the authors showed strong ac-
tivity against Mtb (MIC 24b = 0.06 ug mL~!), and improved activity within the series by
extending into a previously unexplored pocket in the direction of Asp'®. The SAR series
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showed that a carboxamide-oxazole side-chain was preferable, and although the addition
of a methyl group at either free site on the oxazole improved efficacy, a molecular dynamic
simulation suggested that 24a displays fewer steric clashes than 24b, and, hence, a 2-methyl
moiety is preferential.
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PDB IDs 4KFG, 4K40, 4KQV 22 (MIC = 0.31 yg mL™") 23b: Ry = Ph, R; = Me (< 10 nM), 24b: R = 5-Me (MIC = 2 yg mL"' [E. coli],
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P. aeruginosa) P. aeruginosa, PDB ID 6Y8N) Hydroxyquinolone 27 (0.145 M)

Figure 7. Development of bacterial topoisomerase ATPase inhibitors featuring novel core scaffolds,
including tricyclic cores. Motifs binding to a conserved aspartate (red) branched away from the
previously identified N-ethyl urea moiety. Values in brackets are ICs5; values measured against E.
coli DNA gyrase unless otherwise stated. Although no crystal structures were obtained for many of
these compounds, conserved motifs were inferred due to comparisons with successfully crystallised
analogues: 22 with PDB IDs 6M1S, 6M1]; 23 with PDB ID 6TTG, 24-26 with PDB ID 6Y8N. *No
crystal structure of 25 or similar analogues have been obtained, so the key binding atoms were not
fully elucidated. As such, the entire thiadiazole-thiazole motif is highlighted to indicate that this
region binds to the key aspartate residue, though the exact atoms remain undetermined.

However, subsequent work by Henderson et al. determined compound 25 (Redx04739,
Figure 7) of the same series to be slightly less potent than a previously described analogue 26
(Redx03863, Figure 7) across a range of Gram-positive and Gram-negative bacterial strains.
26 showed notable activity against P. aeruginosa, with an MIC value of 4 ug mL~! [63]. Al-
though this value is higher than activities against other tested strains, P. aeruginosa employs
a range of defence mechanisms, particularly multiple efflux pumps, which significantly
reduces the impact of tested drugs. As such, reasonable activity against this bacterium is a
marked improvement over several other topoisomerase inhibitors, including novobiocin
and several tested oxazole-bearing tricycles [61]. Moreover, the authors successfully crys-
tallised 26 and novobiocin in the Mycobacterium thermoresistibile GyrB ATPase sub-domain,
as well as novobiocin in the Mycobacterium smegmatis GyrB ATPase sub-domain, allow-
ing them to determine that the two compounds occupy a similar binding site with some
overlap, but in general, the tricycle binds deeper into the pocket (PDB IDs 6Y8N, 6YSL,
6Y80, respectively). It also makes distinct interactions with GyrB compared to novobiocin,
leading to differences in resistance patterns. For example, novobiocin forms a key bonding
interaction with Arg!4!, but site-directed mutagenesis proved that interaction with this
residue is not a requirement for 26 to maximise its potency.



Pharmaceuticals 2023, 16, 261

11 of 17

Fragment screens have been successfully deployed multiple times in the search for
GyrB/ParE inhibitors, in part due to the presence of numerous hydrophilic and charged
residues in the active site, as well as the availability of crystal structures of the GyrB/ParE
subunits. Huang et al. employed a fragment screening approach to identify novel motifs
capable of binding to the GyrB subunit, and novel druggable sites [64]. Through a combi-
nation of a thermal-shift assay and an ATPase-activity screen, 49 fragments were identified
from a library of 486, of which 10 were successfully co-crystallised into the E. coli GyrB
ATPase sub-domain, highlighting the high hit-rate a fragment-based approach can yield
(Figure 8).

Figure 8. Superimposed co-crystal structures of fragments bound to the ATPase sub-domain of
DNA gyrase identified by (A) Huang et al. and (B) Yu et al. [64,65]. A wider range of positions and
functional groups were found in crystals produced by Huang et al., including one fragment (green)
which filled a similar space to novobiocin. In comparison, the work by Yu et al. found one dominant
binding mode, but multiple examples of phenols in this position suggest it may be a favourable
binding mode for fragments of this class (PDB IDs (A): 5Z9N, 5Z9N, 5Z4H, 579L, 5729P, 579Q, 5Z9F,
5740, 5Z9E, 579B; PDB IDs (B): 7DOR, 7DPR, 7DPS, 7DQEF, 7DQH, 7DQI, 7DQ]J, 7DQL, 7DQM,
7DQS, 7DQU, 7DQW).

Multiple binding modes were identified from the 10 crystallised fragments, with
some showing micromolar activity and others showing no activity up to 1 mM. Some
active compounds were found to overlap with novobiocin’s binding mode, whilst others
bound deeper into the pocket. This research could provide a basis for a fragment merging
approach in the future to explore the effect of combining these alternate binding sites to
explore both the active and inactive fragments as potential sites within topoisomerases to
boost activity.

Yu et al. adopted a similar approach to identify and co-crystallise 12 ATPase inhibiting
fragments, of which the two most active compounds were found to have high micromolar
activity (Figure 8) [65]. Phenols were a common motif in this screen, with all 12 successfully
crystallised ATPase binders containing at least one. Whilst this does indicate that a phenol
is a suitable fragment core for the binding site, the fragment screen led to limited modes of
binding being identified, with eight of the fragments adopting a similar binding pose deep
in the ATPase binding pocket.

Interestingly, Xue et al. utilised a different technique to identify a suitable fragment to
build from. Instead of screening a fragment library, the group progressed from one single
active molecule, identified through their previous work, and after predicting its interactions
in the GyrB catalytic site, fragmented that to a 4-hydroxy-2-quinolone core [66,67]. Working
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from this lone fragment, the authors then performed a virtual screen on compounds bearing
this motif and ultimately identified several compounds displaying sub-micromolar activity,
including 27 (IC5y DNA gyrase = 0.145 uM, Figure 7). The hit compounds tested showed
reasonable antibacterial activity against a range of S. aureus strains, though optimisation of
solubility alongside other physicochemical properties is desirable. The redox potential of
the scaffold may further warrant exploration into potential off-target effects.

4. Miscellaneous Topoisomerase Inhibitors

Several natural products have been previously identified, which branch away from
the modes of inhibition outlined above. The first, a polythioamide produced by Clostridium
cellulolyticum called closthioamide (28, Figure 9), was found by Chiriac et al. to be a strong
DNA gyrase inhibitor (ICsg E. coli = 1.4 uM), with moderate potency against topo IV (ICs E.
coli = 113 uM) [68,69]. The authors’ findings show that closthioamide likely has a separate
mode of inhibition to both FQs and novobiocin. However, their suggestion is that it is
inhibiting the ATPase activity of gyrase, though more likely at a site distal to the novobiocin
binding site. Comparisons were drawn with a further natural product kibdelomycin
(29, Figure 9), derived from Kibdelosporangium sp. (MA7385), which also shows ATPase
inhibitory activity, whilst acting with a different mode of inhibition to novobiocin [70].
Kibdelomycin occupies a similar region to novobiocin in the ATPase domain, but shows no
cross-resistance. This is because of a unique binding mode, which does not utilise GyrB-
Asp® (S. aureus numbering) to form a bonding interaction, which is key to many other
DNA gyrase ATPase inhibitors. The natural product displays a U-shaped conformation,
which shares no common features to the way in which novobiocin binds to the same region,
and hence its ATPase inhibition differs from that of novobiocin [71]. Kibdelomycin features
an interesting dichloropyrrole motif, which was identified by researchers at AstraZeneca as
a potent binder to the adenine pocket of GyrB/ParE, and subsequently benzothiazole 23a
and 23b, highlighting its versatility across scaffolds [59,72]. Kibdelomycin displays strong
inhibition against DNA gyrase in proteinogenic assays (ICsy = 60 nM E. coli), though this
does not translate to potency in Gram-negative bacteria (MIC >64 pg mL~! of E. coli) [70].

Closthioamide, 28 (1.4 M)

HO NH Cl
\ Cl
@)
HN
Simocyclinone D8, 30 (0.41 uM) Kibdelomycin, 29 (60 nM)

Figure 9. Bacterial topoisomerase inhibitors displaying unique or unusual modes of inhibition, with
ICs¢ values against E. coli DNA gyrase in brackets. Closthioamide and kibdelomycin are ATPase
inhibitors, though display different modes of inhibition to known ATPase inhibitor novobiocin.
Simocyclinone D8 is further found to bind to a region of GyrB; hence, it displays a novel mechanism
of action where it is capable of interacting with two regions of DNA gyrase simultaneously.
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The natural product simocyclinone D8 (30, Figure 9), derived from Streptomyces antibi-
oticus Tii 6040, has further been the subject of much research. This bifunctional molecule
features both an aminocoumarin head and polyketide, and studies have found that it binds
in two sites on DNA gyrase [73]. The primary site on the N-terminal domain of GyrA is
occupied by the polyketide head, whilst the aminocoumarin head sits on the C-terminal
domain of GyrB [74]. However, simocyclinone D8 is unable to competitively inhibit ATPase
activity in GyrB, nor does it promote cleavage complex formation. Therefore, it has a
unique mechanism of action with respect to both binding sites.

X-ray crystallography shows that the polyketide head does indeed occupy a space
adjacent to ciprofloxacin, and hence likely intercalates DNA, but the site is nonetheless
distinct. In fact, the dominant mechanism of action of simocyclinone D8 is to prevent
cleavage complex formation, in stark contrast to FQs which allow formation and then
stabilise the cleavage complex. Although simocyclinone D8 does also bind to a site on
GyrB, this is the minor binding site, and whilst it cooperatively functions with binding
on GyrA, the GyrB binding is calculated to be approximately 1000-fold weaker [75,76].
It further shows good activity against E. coli in in vitro testing (ICsq = 0.41 pM E. coli
DNA gyrase) [77].

The natural products reported in this section have all been characterised as bacterial
topoisomerase inhibitors via macromolecular biosynthesis and supercoiling DNA gel-based
assays with ciprofloxacin and novobiocin as controls. To our knowledge, their potential
off-target effects have not been characterised with respect to structural features such as
Michael acceptors and redox-active aromatics. Therefore, follow-up characterisation is
warranted to rule out chemical promiscuity or pan-assay interference before pursuing
further as bacterial topoisomerase inhibitors [78].

5. Conclusions

Although improvement upon and development of new FQs will prove fruitful in
the generation of new antibiotics, other approaches are required to prevent the antibiotic
pipeline from drying up. Topoisomerases are a known target, which have been validated
in both Gram-positive and Gram-negative bacteria, making them an excellent drug target.
This review has summarised key research into topoisomerase inhibitors with different
modes of action to FQs, particularly those which target a recently discovered allosteric
site in the GyrA/ParC subunit, and GyrB/ParE inhibitors which bind to the ATPase
site. Moreover, a discussion of compounds with novel modes of action highlighted that
other DNA-intercalating compounds exist which do not proceed via the FQ mechanism
of action, nor that of NBTIs. The research highlighted above shows that the scope for
novel topoisomerase inhibitors is broad, and future research may produce new life-saving
antibiotics, with some research mentioned already in clinical trials.
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