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M. Malenović and Ana Protić
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Abstract: As the rate of discovery of new antibacterial compounds for multidrug-resistant bacteria is
declining, there is an urge for the search for molecules that could revert this tendency. Acinetobacter
baumannii has emerged as a highly virulent Gram-negative bacterium that has acquired multiple
resistance mechanisms against antibiotics and is considered of critical priority. In this work, we
developed a quantitative structure-property relationship (QSPR) model with 592 compounds for
the identification of structural parameters related to their property as antibacterial agents against A.
baumannii. QSPR mathematical validation (R2 = 70.27, RN = −0.008, a

(
R2) = 0.014, and δK = 0.021)

and its prediction ability (Q2
LMO = 67.89, Q2

EXT = 67.75, a
(
Q2) = −0.068, δQ = 0.0, rm2 = 0.229, and

∆rm
2 = 0.522) were obtained with different statistical parameters; additional validation was done

using three sets of external molecules (R2 = 72.89, 71.64 and 71.56). We used the QSPR model to
perform a virtual screening on the BIOFACQUIM natural product database. From this screening,
our model showed that molecules 32 to 35 and 54 to 68, isolated from different extracts of plants
of the Ipomoea sp., are potential antibacterials against A. baumannii. Furthermore, biological assays
showed that molecules 56 and 60 to 64 have a wide antibacterial activity against clinically isolated
strains of A. baumannii, as well as other multidrug-resistant bacteria, including Staphylococcus aureus,
Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa. Finally, we propose 60 as a potential
lead compound due to its broad-spectrum activity and its structural simplicity. Therefore, our QSPR
model can be used as a tool for the investigation and search for new antibacterial compounds against
A. baumannii.

Keywords: QSPR model; antibacterials; Acinetobacter baumannii; natural products; virtual screening

1. Introduction

Opportunistic infectious diseases caused by multidrug-resistant bacteria represent
a world-concerning health problem that is growing at an accelerated rate. Despite the
immense quantity of literature and efforts sponsored by health committees, academia, and
other non-governmental organizations on antibiotic resistance [1–3], there is still a lack
of real education campaigns to promote the correct use of antibiotics. In accordance with
recent reports, more than 2.8 million antibiotic-resistant infections occur in the U.S. alone,
with over 35,000 deaths as a result [3,4]. It is estimated that by 2050 a stunning 10 million
deaths will be caused solely by antibiotic-resistant bacteria [5]. In Mexico, the number of
deaths caused by septicemia in hospitals has been increasing in recent years, and since
2019, it has been among the 15 main causes of death [6–8].
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From the twelve bacteria listed on the website [9] of the World Health Organization
(WHO), Acinetobacter baumannii, Pseudomonas aeruginosa, and several Enterobacteriaceae
are considered of “critical” urgency. A. baumannii is an opportunist Gram-negative (GN)
pathogen that has gained notorious attention because of its high virulence, its multiple
resistance mechanisms against antibiotics, and its great capacity for adaptation to different
environments [10–13]. Its incidence has been mainly related to pneumonia (associated with
the use of ventilators), septicemia (due to contamination of central and peripheral airways),
and infections at the site of the injuries [14,15].

As companies have dropped out of the research and development (R&D) of new
antibacterial drugs and fewer molecules have been approved by the FDA [16–20], the quest
for novel potential candidates has decreased. Natural products (NPs) are a promising
alternative to the use of traditional drugs because of their vast scaffold diversity and struc-
tural complexity, offering advantages and challenges in the drug discovery process [21].
These properties can be beneficial when compared to typical synthetic small-molecule
compounds, for example, high molecular mass [22], a large number of sp3 carbon and oxy-
gen atoms, which also correlate with low cLogP values (or higher hydrophilicity) [23–26],
and greater rigidity [27]. Furthermore, small structural modifications to these scaffolds
often lead to an improvement of the biological activity, for example, as in the case of camp-
tothecin semisynthetic analogs topotecan and belotecan. Nonetheless, identifying bioactive
compounds of interest is challenging and often takes additional time for isolation, complete
characterization, and, if afforded, full synthesis [28,29]. Several analytical techniques have
proven to be of relevance for this task, for example, the use of computational resources,
which has reduced the amount of time and optimization of drug candidates. Quantitative
Structure-Activity/Property relationships (QSAR/QSPR) have allowed the search and
optimization of better bioactive molecules by determining which physicochemical and
structural features (molecular descriptors) are key points for biological activity [30].

Virtual screening (VS) comprises the use of computational tools to search and analyze
large databases of small molecules to identify potential bioactive compounds. VS can be
divided into two major categories depending on the type of information available: ligand-
based virtual screening (LBVS) and structure-based virtual screening (SBVS), both of which
have been reviewed elsewhere [31–33]. Nevertheless, many other types of techniques have
been developed to improve the accuracy of activity prediction. In this sense, the use of
QSAR/QSPR as an approach for the virtual screening of large libraries of small compounds
has proven to accelerate the rate of the discovery process by reducing the number of
potential candidates. When comparing the hit rates of techniques like High-throughput
screening (HTS) with the QSAR/QSPR-based virtual screening, it is seen that the hit rate of
HTS ranges between 0.01% and 0.1%, while for the latter, it spans between 1% and 40%. [34]
This has found application in the search for new antimalarial [35], anti-schistosomiasis [36],
anti-tuberculosis [37], and antiviral [38,39] drugs, for which several compounds proved
to be active. The usefulness of QSAR/QSPR models arises from the data used for the
generation of the models, which is reflected within its applicability domain. In this sense,
having a vast amount of structural information allows for a greater degree of confidence
in the prediction data for virtual screening. Otherwise, data extrapolation may lead to
false positives.

Due to the high resistance to different antibiotic treatments caused by A. baumannii,
worldwide research groups have carried out important efforts in the search for compounds
against this pathogen. Most of them have carried out QSAR-type studies to determine their
biological properties based on the molecular structure. However, a problem regarding these
QSAR models is the use of small sets of compounds, mainly those synthesized and tested
in the same work with minor chemical changes at the core structure. Furthermore, small
datasets considering molecules acting against multiple pathogens have the disadvantage
that it is necessary to seek/use as many models as possible to determine and predict the
antibacterial activity of these sets of compounds. Prado-Prado et al. developed a QSAR
analysis by introducing entropy-like molecular descriptors for their models to predict the
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antibacterial activity of several drugs against different strains of bacteria [40]. Semenyuta
and collaborators established several QSAR models for the activity of imidazolium ionic
liquids with the use of neural networks and random-forest regressions [41], allowing them
to use multiple molecular descriptors to correlate the structure with the bioactivity of these
new compounds towards A. baumannii. Nonetheless, a main drawback of these QSAR
analyses is the use of complex molecular descriptors that are often difficult to interpret and
handle, limiting their applicability and simplicity.

One important aspect of drug design relies on the pharmacokinetics profile of molec-
ular candidates. Indeed, a major problem at the early stages of clinical phases is due to
poor pharmacokinetics of compounds, especially regarding absorption and distribution in
the organism. Furthermore, when targeting microorganisms like bacteria, it is important
to consider another biological barrier, the cell wall, which most molecules need to pass
through to exert their bioactivity. Considering the vast amount of chemical structures for
compounds that present activity against A. baumannii, it is possible to design a structure-
property relationship model for the prediction of molecules that could have the possibility
of harming the bacterium without considering a specific biological target, but that exert
antibacterial activity.

In the present work, we have developed a QSPR model of active compounds (from
synthetic to NPs) against multidrug resistance (MDR) A. baumannii by means of the ge-
netic algorithms (GA) technique, using molecular 0D, 1D, and 2D-descriptors. The QSPR
model was employed to identify structural features of the bioactivity compounds within
the dataset that can be associated with their pharmacokinetic aspects (absorption and
distribution). Therefore, one of the objectives of our QSPR model is to predict the entrance
of the compounds into A. baumannii [42–44]. Then, our QSPR model was used to identify
potential antibacterial candidates from an NP database. Furthermore, we obtained and
carried out the biological evaluation of these candidates, corroborating the prediction of
our QSPR model.

2. Results and Discussion
2.1. QSPR Model Validation

As a first approach, regression models were built using GA to select the most appro-
priate descriptors. After the selection of the descriptors, multiple linear regression analysis
was performed to generate suitable models that could allow us to categorize the biological
activity of the dataset. The best QSPR model for antibacterial activity against A. baumannii
consists of fifteen descriptors as follows:

pMIC = (0.001 ± 0.000)D/Dr06 + (-0.438 ± 0.004)GATS6m + (0.529 ± 0.004)nArCOOH
+ (1.249 ± 0.005)nRCONH2 + (0.334 ± 0.001)nROR + (-0.429 ± 0.006)nImidazoles

+ (0.115 ± 0.000)nHDon + (-0.204 ± 0.001)nHBonds + (1.257 ± 0.005)C018 + (0.476 ±
0.001)C029 + (1.149 ± 0.004)C032 + (-0.105 ± 0.000)H051 + (-0.186 ± 0.001)N075 + (-

0.555 ± 0.001)N079 + (0.025 ± 0.000)TI2 + 4.292( ±0.005)

(1)

R2= 70.278 (±0.907); R2
ADJ = 69.162 (±0.973); a

(
R2)= 0.014 (±0.000);

s = 0.462 (±0.000); F = 62.978 (±8.418); Q2
LMO = 67.886 (±1.043);

Q2
BOOT = 66.882 (±1.104); Q2

EXT = 67.747 (±5.414); a
(
Q2)= −0.068 (±0.000);

δK = 0.021 (0.000); δQ= 0.000 (−0.005); RP= 0.015 (0.100); RN = −0.008 (−0.054)

All statistical parameters were obtained as their average values (see Table S3), for example, the
square correlation coefficient (R2) of 70.278 (±0.907), and the R2

ADJ of 69.162 (±0.973). The Fischer F
and the standard deviation (s) are 62.978 (±8.418) and 0.462 (±0.000), respectively, indicating that
our model is acceptable. Moreover, redundancy and overfitting rules were checked to determine
the nature of the descriptors used in the model. In this sense, the overfitting rule, RN = −0.008
(−0.054), was complied with fairly while the redundancy rule, RP = 0.015 (0.100), indicating that
some descriptors, nHDon and nHBonds, are correlated to the dependent variable. However, these
descriptors cannot be removed as they are important for the correct description of our regression
model. Furthermore, the prediction ability of the model was validated by the leave-many-out cross-
validation, Q2

LMO = 67.886 (±1.043), a value indicating that the regression model has good predictive
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power. The robustness parameter as indicated by the high value of Q2
BOOT = 66.882 (±1.104) based

on bootstrapping, which was repeated 5000 times.
External validation was essential as a high Q2

LMO only indicates a good internal validation, but it
does not show a high prediction capability of the created model. Therefore, for the external validation
procedure, 70% of all the molecules in the dataset were randomly selected for the training process,
and the remaining 30% were used as the test set. This process was repeated six times; their plots
are shown in Figure 1, with their upper/lower confidence intervals at a 95% confidence level. The
Y-scrambling test was used on the training-test set, giving the new values of a

(
R2 ) = 0.014 (±0.000)

and a
(
Q2) = −0.068 (±0.000). These new values were lower than the original ones, confirming that

our model is reliable.
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For each plot, the percentage of molecules used in the training and test datasets were randomly chosen.

With the same purpose, the Asymptotic Q2 rule, δQ = 0.000 (−0.005), was employed. There-
fore, the model in (1) passed all the statistical tests proposed by Roy et al. [45–47], as an aver-
age value derived from ten experiments shows: (a) Q2 = 67.88 (±1.043); (b) r2 = 0.679 (±0.000);
(c)
(
r2 − r0

2)/r2 = 0.001 (±0.000); (d) k = 0.999 (±0.000) (or k′ = 0.991 (±0.000)); (e)
∣∣r0

2 − r′02
∣∣ = 0.127

(±0.000). For an acceptable prediction, the value of ∆rm
2 should preferably be less than 0.2, while

rm2 should be greater than 0.5. In our model, ∆rm
2 presents a value of 0.229 (±0.000), while rm2 has

an average value of 0.552 (±0.000). A complete list of each evaluation can be seen in Table S4.
The applicability domain is graphically depicted by the Williams plot in Figure 2. For each

compound, the leverage values can be calculated, and by plotting these values against the stan-
dardized residuals, it is possible to establish the applicability domain of the developed model [48].
This allows the detection of molecules that our model cannot predict adequately, thus considered
as outliers [49,50], molecules with distinctive structures (high leverage outliers, h > h∗), or those
associated with the response (predicted residuals > 3 × SDEC). All compounds that are outside the
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limits established by the leverage warning and three times the standard deviation in error calculation
are outliers.
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Figure 2. Williams plots for molecules with antibacterial activity against A. baumannii. The dotted
vertical line in red indicates the warning leverage limit (h∗ = 3p/n, where n is the number of
molecules and p is the number of descriptors in the model plus one). The upper/lower dotted
horizontal lines in black represent the boundaries for which the triple of the standard deviation
(3 × SDEC) value is used.

As seen from the Williams plot, outliers are correlated to the structure of molecules. Due to the
relatively wide variety of molecular structures used in our model, detected outliers both from the
training and test sets are very different (Figure 3).

In compound 1, although it shares a similar structure with those of the Batzelladine alkaloids’
family used in this model [51], the two cyclic ether-like motifs at the central positively charged
nitrogen core, as well as two pendant primary aliphatic charged amine arms, are distinctively different
from the rest of the analyzed molecules. Compounds 1, 2, and 5 to 13, 14, 15, and 17 are considered
outliers because of the many positively charged nitrogen atoms present in the molecules. Two
fluoroquinolone derivatives are present as outliers: compound 3 possesses a 3,5-difluoro-substituted
pyridine instead of the common cyclopropyl or ethyl groups at nitrogen, while compound 4 has a
pyridine-type structure at the core as in nalidixic acid. These two features are unique among the set
of fluoroquinolones used in our model. Compounds 14 and 15, being both aminoglycosides, are seen
as outliers from our model as it is suggested that amino groups are responsible for this distinction.
Compound 16 is a flavanone-7-O-glycoside. Although there are many flavanones in the dataset, none
of them present a disaccharide (or any mono- or polysaccharide), which makes 16 unique. On the
other hand, many examples of substituted triazoles are seen in our model, but molecule 17 has a
benzotriazole that is unique; thus, it is considered an outlier. Even though there are many compounds
with aromatic alcohols, 18 (gallic acid) possesses a benzenetriol motif that is not encountered in any
other molecule. Structure 19 has the hydantoin functional group, which is unique among the set of
active molecules against A. baumannii.
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To test the reliability of our QSPR model, molecules that were not introduced in our initial
dataset were employed as an external validation set to obtain their predicted pMIC values. Three sets
of compounds were used as follows: (a) the first set of molecules reported by Matsingos et al. [52];
(b) compounds reported by Singh [53], Wang [54], and Zhou [55] as the second set, and finally, (c)
chemical structures described by Lyons and collaborators [56]. For the three sets of data, there is a
good correlation between experimental and predicted pMIC values with R2 values of 75.54, 71.64,
and 71.56, respectively.

On the other hand, compounds that exhibit, for example, many positively charged nitrogen
atoms like those reported by Vereshchagin and co-workers [57] are not well predicted by our model
in accordance with the results of the outliers analyzed previously. This fact can be explained by the
limited number of similar molecules (charge and scaffold related) used in the generation of the QSPR
model. Nevertheless, this type of molecules is very interesting and important for the development
of antibacterial compounds since many of them use facilitated diffusion transport related to amino
acids, like Lys, His, and Arg.

Our model applied to the first set of linezolid analogs with different C5-acylamino substituents
gives an insight into their structural features. An increase in the pMIC values is seen when mov-
ing from small-chain alkyl groups (Me, Et, or nPr) to small-branched or cyclic alkyls motifs (iPr,
cyclopropyl, cyclobutyl) and finally to aromatic substituents. This increase is shown in Figure 4.

The second set of compounds comprises three different groups of molecules for which our
model classifies first the divin derivatives, moving into pyrazinoindole analogs, and finally with
the subset of 2-aminothiazole sulfanilamide oximes, as seen in Figure 5. The last set of compounds
comprises several oxazolidinone derivatives in Figure 6. The first molecules are classified in accordance
with the structure of the 1,5-naphthyridin-2(1H)-one, while the last ones have a 1,8-naphthyridin-2(1H)-one.
Molecules at the center possess the nitrogen atom at different positions of the quinolin-2(1H)-one core.
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2.2. QSPR Interpretation
The understanding of the descriptors presented by the QSPR model allows us to gain some

insights into the chemical features of the molecules used in the model that are relevant for their
antibacterial activity towards A. baumannii. Equation (1) displays two topological descriptors (D/Dr06
and TI2), one 2D-autocorrelation (GATS6m), six functional group counts (nArCOOH, nRCONH2,
nROR, nImidazoles, nHDon, and nHBonds), and six atom-centered fragments (C-018, C-029, C-032,
H-051, N-075, and N-079), all of them being 2D-dimensional descriptors.

The first descriptor in the model is D/Dr06, a topological descriptor. Distance/detour ring
indices (D/Drk) are calculated by summing up distance/detour quotient matrix row sums of vertices
belonging to single rings in the molecule. These descriptors can be considered special substructure
descriptors reflecting local geometrical environments in complex cyclic systems [58]. D/Dr06 displays
a positive coefficient value, indicating that the presence of this descriptor enhances the activity
of the molecule. This descriptor appears when a 6-membered cyclic structure is present in the
molecule. From the set of compounds, most of the cyclic structures belong to benzene-type rings
(both carbocyclic and heterocyclic). D/Dr06 has been used in a similar way for the description of the
anticancer activity of aromatic molecules [59]. The highest D/Dr06 value belongs to compound 2,
where two adamantyl moieties are present in the molecule. Values of zero correspond to molecules
that do not display any 6-membered cyclic systems, such as compounds 22 to 25, as seen in Figure 7.
Furthermore, molecules that display high values of D/Dr06 also show high pMIC values.

The second Mohar index [60] (TI2) is calculated from the eigenvalues of the Laplacian matrix as shown:

TI2 =
4

nSK− λnSK−1
(2)

where the nSK is the number of non-H atoms and λnSK−1 is the first non-zero eigenvalue. TI2
is a topological descriptor and belongs to the Mohar indices that are related to the solubility of
compounds. In general, it is associated with size, shape, and symmetry, as well as with the branching
or cyclicity of the molecule. TI2 shows a positive coefficient value, indicating that by increasing
the value of the descriptor, the expected pMIC values will also increase. This descriptor has been
used in the explanation of the activity of diaryl urea derivatives [61] and in the QSAR analysis of
aminomethyl-piperidones [62].
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The GATS6m [63,64] descriptor belongs to the 2D autocorrelation indices where the Geary
coefficient is a distance-type function that can be any physicochemical property (w), calculated for
each atom, such as atomic mass, polarizability, or volume, among others, and is represented by (3).
By summing the products of a certain property of two atoms located at a certain distance or spatial
lag (k), a spatial autocorrelation can be obtained.

GATS(k, w) =

(
1

2∆k

)
·∑A

i=1 ∑A
j=1

(
wi − wj

)2
·δ(dij; k)(

1
A−1

)
·∑A

i=1(wi − w)2
(3)

where A is the number of non-hydrogen atoms, w is the average of the wi atomic property value,
δ(dij; k) is the Kronecker delta, and ∆k is the number of vertex pairs at a distance equal to k. GATS6m
is the mean Geary autocorrelation of lag 6/weighted by atomic mass, which means that this de-
scriptor considers the atomic mass of any atom in the structure at different path lengths (lag) of 6.
Strong spatial autocorrelation between pairs of atoms produces low values of this index. Moreover,
symmetric or low-branched structures, as well as molecules with a low number of heteroatoms (atoms
besides C and H), are expected to produce low to zero values. The GATS6m descriptor displays a
negative coefficient in (1), which indicates that by increasing the autocorrelation between pairs of
atoms considering their atomic masses at a distance of 6 between them, the value of this descriptor
will increase, causing a reduction in its pMIC value. As seen in Figure 8a, there is a homogeneous
distribution of the data when plotting the GATS6m descriptor against the corresponding pMIC values.
Eight molecules from the dataset have a zero value of GATS6m; their structures are displayed in
Figure 8b. Furthermore, these molecules are seen to have a medium interval of pMIC (between
3.5 to 5) relative to their location in the scatterplot. In Figure 8c, for the molecule with the highest
GATS6m value, selected pathways are shown for which the sum of their atomic masses produces the
final value.

The next six descriptors belong to the functional-group counts (FGC), which are considered
indicator variables. Their value will depend on the number of functional groups present or absent
from the molecule, meaning that not all compounds will feature them. The FGC has been used to
identify structural features that are important for a property of particular interest. Therefore, their
presence or absence can significantly alter the predicted activity in the model. Each FGC descriptor
can be easily understood in terms of the nature of functional groups. For example, nArCOOH,
nRCONH2, nROR, and nImidazoles account for the number of aromatic carboxylic acids, the number
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of aliphatic primary amides, the number of aliphatic ethers, and the number of imidazole moieties,
respectively (Figure 9).
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The nHDon descriptor indicates the number of hydrogen donor atoms (–NH2 and –OH) for
which the formation of hydrogen bonds is possible; in the same manner, nHBonds accounts for the
number of intramolecular hydrogen bonds that are possible when there are acceptor atoms like N, O,
or F, as shown in Figure 10. Intramolecular hydrogen bonds are crucial for the biological activity of
many compounds. It is well established that intramolecular hydrogen bond formation can lead to
temporarily closed ring systems which are more lipophilic in nature, while open forms are exposed
to solvent, lending more hydrophilic character to the molecule [65]. For example, small hydrophilic
molecules, such as β-lactams, use the pore-forming porins to enter cytoplasm/periplasm [66], while
hydrophobic drugs like macrolides diffuse across the lipid bilayer [67]. In our model, the nHDon
descriptor displays a positive value, indicating that a high number of hydrogen donor atoms (high
aqueous solubility) leads to an increase in biological activity. However, as the nHBonds descriptor
possesses a negative coefficient, it indicates that as the number of intramolecular hydrogen bonds
increases, the biological activity will decrease, which is correlated to a more lipophilic nature of the
molecules. Therefore, highly polar molecules are favored as antibacterials against A. baumannii, as
expected for Gram-negative bacteria.
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Figure 10. Functional-group count (FGC) descriptors with some representative molecules for nHDon
and nHBonds. Highlighted in yellow are groups for which hydrogen donor atoms are counted (nHDon).
Red arrows indicate the groups where intramolecular hydrogen bonds are possible (nHBonds).

Six atom-centered fragment (ACF) descriptors are present. ACF descriptors are based on
structural fragments which contain information about the central atom and their bonding neigh-
bors [68–70]. Each ACF is defined by the type of bonding, as well as the number and nature of the
neighbors bounded to the centered atom. For example, C018 (=CHX) corresponds to an sp2 C atom
which is single-bonded to a hydrogen and to any electronegative atom (such as N, O, S, etc.). The C029
(R–CX–X) descriptor, for which the “–” represents an aromatic bond (e.g., benzene) or delocalized
bonds (as in the N–O bond in a NO2 group), corresponds to a central sp2 C atom that is single-bonded
to an electronegative X atom, and also both double-bonded to an X atom and an R group, in which
their bonds are delocalized. The C032 (X–CX–X) descriptor behaves in a similar fashion to C029, but
instead of an R group, it is replaced by a third X atom. This descriptor has also been used for the
analysis of chemical features essential for anticoronaviral activity [71]. The H051 descriptor stands for
the environment in which a hydrogen atom is bonded. It is defined as a hydrogen that is attached to
an alpha-C atom; an alpha-C may be defined as a carbon connected through a single bond with –C=X
(double bond), –C≡X (triple bond), or –C–X (aromatic bond), where X represents any electronegative
atom, like in the case of alpha-hydrogens in carbonyl compounds. This descriptor has been used to
explain the activity of a series of molecules containing nitroaromatics motifs as radiosensitizers [72].
The next two descriptors, N075 and N079, are nitrogen-based structural fragments. The first one is
defined as a central sp2 N atom that is bonded to two R groups or to one R and X groups (R–N–R or
R–N–X), like in pyridine-type motifs. This descriptor is particularly important as many molecules in
our set present these kinds of motifs. The second descriptor is related to any nitrogen atom which
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bears a positive charge. Representative examples for each of the ACF descriptors are presented in
Figure 11.
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Figure 11. Atom-centered fragments (ACF) descriptors with representative molecules that incorporate
them within their structures.

From a general view, descriptors in Equation (1) can be classified into global and indicator
variables. Global terms like GATS6m and TI2 are present in the molecule and give information about
the whole structure, while indicator variables only appear if the molecular structure contains the
motif. Furthermore, descriptors can be associated with the steric and electronic properties of the
molecule (D/Dr06, GATS6m, and nImidazoles, as well as the six-ACF descriptors), while others are
more related to the solubility of compounds, like in the case of nHDon, nHBonds, TI2, as well as
functional groups like nArCOOH, nRCONH2, and nROR. Electronic parameters can be associated
with atom-centered fragments, which indicate the distribution of substituents around a specific
atom. As many molecules include within their structure specific ACF moieties, their inclusion will
lead to an increase or decrease in the predicted pMIC value. For example, the three ACF based on
central carbon (C-018, C-029, and C-032) are positive in their signs, indicating that their presence
enhances bioactivity. Furthermore, as they are carbon ACF descriptors, they can be associated with
core-structure features. However, H051, N075, and N079 ACF descriptors lead to a decrease in the
activity. H-051 counts hydrogen atoms that are reactive, and hence, they are prone to be abstracted by
the use of bases. Nitrogen atoms like those described by the N075 descriptor are good hydrogen bond
acceptors, leading to the generation of inter- and intramolecular interactions by the use of their lone
pairs of electrons, which decreases the solubility of molecules, as stated by the nHBonds descriptor.
On the other hand, molecules that are well-solvated in aqueous media are expected to be high in
pMIC values.
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Figure 12 shows the percentage of distribution of the descriptors for molecules in the dataset.
95.9% of the molecules (568) have the nHDon functional group, and almost all other descriptors
fall within this category. The second major descriptor that appears in the dataset is nHBonds, with
53.9% of the molecules (319), followed by the N075 descriptor in 278 molecules of the subset (47%).
Considering the high number of bioactive compounds, which includes pyridine-fused or pyridine-
containing heterocycles, as well as their tendency to participate in hydrogen bonding, the presence of
the N075 descriptor in great percentage is important to account for the description of the activity of
molecules [73,74].
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Figure 12. Local distribution of descriptors in molecules used in the model.

Some molecules are observed to be outside the boundaries of the nHDon/nHBonds descriptors,
which agrees with the presence of compounds without donor groups, such as hydroxyls (–OH)
or amines (–NH2), as in natural products. The rest of the molecules are located into these major
categories, which can be seen adequately in the Venn diagram [75–80] in Figure 13. It is also seen that
eight molecules lack the rest of the molecular descriptors used in the model. Thus, they are depicted
outside the Venn diagram as a sole group.

2.3. Virtual Screening Using BIOFACQUIM Dataset
Once we fully validated our model for antibacterial activity against A. baumannii, we proceeded

to search for new molecular candidates in an online database of molecular compounds. NP databases
are relevant sources of biologically active compounds, which often comprise complex molecular struc-
tures isolated from diverse organisms. However, because there is no globally accepted community
resource for NPs, an impressive number of sites contain information for several isolated molecules,
which often differ in annotation and structure [81–83]. BIOFACQUIM [84] is a Mexican natural
product database that comprises 528 compounds isolated from many plants and other organisms
across Mexico. The BIOFACQUIM database was selected for the initial evaluation since those natural
products isolated from different species from Mexico would represent a reliable and affordable option
for biological assays. As a second approach for tracking new molecular candidates, larger databases
from different regions across a continent would be beneficial. After careful curation of the database
and calculation of their descriptors (Table S5), we performed the analysis of the molecules using
our QSPR model. The predicted pMIC values from molecules of the database range between 1.65
and 11.24. Table 1 shows these values for the most active molecules, suggested by our model, and
depicted for some structures in Figure 14. As stated in Equation (1), a high value of the calculated
pMIC implies a small concentration of the compound, which correlates to an increase in its potency.
In this sense, desirable molecules should exhibit high pMIC values.
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Figure 13. Venn diagram showing representative molecules from the dataset classified by the presence
of at least one molecular descriptor and their correlations. Molecular descriptors used for the Venn
diagram are nHDon, nHBonds, nArCOOH, nRCONH2, nROR, nImidazoles, C018, C029, C032, H051,
N075, N079.

Table 1. Molecular descriptor values for natural products 26 to 53 with their predicted pMIC value.
These molecules show the highest values from the BIOFACQUIM database.

MolID MW D/Dr06 GATS6m nROR nHDon nHBonds C018 H051 N075 TI2 pMIC

26 274.24 101.297 0.399 1 1 0 1 0 0 1.208 5.910
27 404.51 208.41 1.05 5 2 2 0 0 0 3.678 5.533
28 1167.41 1692.143 0.951 12 16 8 0 2 0 8.304 9.049
29 1195.47 1739.777 0.958 12 16 8 0 2 0 8.397 9.076
30 1341.63 2360.184 0.965 13 19 10 0 2 0 10.723 9.756
31 1690.16 2257.102 1.01 14 13 8 0 9 0 6.18 8.879
32 2473.43 6328.172 1.071 19 16 11 0 10 0 20.998 12.845
33 2449.3 7015.971 1.082 19 16 11 0 8 0 21.234 13.451
34 2445.37 6531.924 1.071 19 16 11 0 10 0 21.416 12.972
35 2501.49 6713.547 1.076 19 16 9 0 10 0 21.566 13.485
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Table 1. Cont.

MolID MW D/Dr06 GATS6m nROR nHDon nHBonds C018 H051 N075 TI2 pMIC

36 272.27 101.297 0.894 1 0 0 1 0 0 1.208 5.579
37 346.31 89.966 1.133 2 1 0 1 0 0 1.397 5.920
38 560.71 440.654 0.966 4 8 4 0 0 0 5.474 5.695
39 250.27 80.687 0.942 1 2 1 1 0 0 1.546 5.580
40 1151.41 1669.117 0.921 11 16 9 0 2 0 8.266 8.511
41 1179.47 1715.713 0.923 11 16 9 0 2 0 8.347 8.539
42 869.18 889.623 0.957 7 10 5 0 2 0 8.006 6.834
43 1035.28 1396.119 0.967 10 14 8 0 2 0 8.601 7.984
44 1165.44 1695.422 0.921 11 15 10 0 2 0 8.575 8.216
45 1193.5 1742.017 0.923 11 15 9 0 2 0 8.623 8.446
46 250.27 80.687 0.942 1 2 1 1 0 0 1.546 5.580
47 1199.65 1656.598 1.024 10 10 7 0 4 0 8.71 7.644
48 1223.67 1189.333 1.054 10 8 6 0 5 0 5.649 7.156
49 512.56 409.063 0.805 3 6 2 1 2 1 4.621 6.430
50 302.36 106.192 1.753 5 2 1 0 0 0 1.027 5.304
51 1369.82 1718.197 1.079 10 8 6 0 5 0 6.149 7.460
52 1383.85 1778.609 1.097 10 8 6 0 6 0 6.324 7.386
53 2795.76 9251.423 1.099 20 16 8 0 10 0 22.254 15.481
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Figure 14. Molecular structure of selected natural products. Molecules 32 to 35 and 53 exhibits the
highest predicted pMIC value. Molecules 27, 36, 37, 46, and 50 show low predicted values according
to Equation (12).

Table 1 shows that molecules with the highest predicted pMIC values are compounds 32 to
35 and 53, which were isolated from several plants of the genus Ipomoea [85,86]. Their molecular
structures contain several functional groups that contribute to their predicted activity. Three impor-
tant features are observed: (1) all of them have a high number of pyranose-like rings, which may
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contribute to their hydrophilicity properties; (2) most of them contain large aliphatic side chains
and/or macrocyclic lactone rings, which may contribute to their lipophilicity; (3) all of them present
at least one terminal ester group which may be prone to cleavage by hydrolysis in aqueous media.
Molecules 59 to 62 and 64 also exhibit terminal carboxylic acid fragments.

Analyzing these characteristics in our model, we can obtain some insights regarding the struc-
tural information that correlates to the predicted values. For example, all the molecules exhibit a great
number of aliphatic ether groups and, according to our model in Equation (12), as the number of
aliphatic ether motifs (nROR) increases, the greater their activity will be. This is highly correlated to a
large number of donor atoms (oxygens) and, therefore, as the number of nHDon increases, so does the
predicted bioactivity. Nonetheless, a great number of donor atoms also increases the possible number
of intramolecular hydrogen bonds (nHBonds), which, according to our model, diminishes the pre-
dicted values. Another descriptor that appears to affect the predicted values is H-051, which implies
the presence of hydrogens attached to alpha-carbon atoms, known as alpha-hydrogens (α-H). As
the number of α-H increases, the bioactivity tends to decrease. In those molecules that are predicted
with the highest pMIC values, ester and carboxylic acid groups appear in great numbers, suggesting
that these kinds of functional groups are not adequate for their pharmacokinetic profile, as all of
them exhibit α-H. Another feature is the presence of a high number of pyranose-like rings, which are
6-membered rings; thus, the high D/Dr06 value is displayed. Furthermore, because of their structure,
these molecules are highly branched, which is seen in their high TI2 values. GATS6m is complex in
nature but correlates well with the molecules under analysis. As the average number of possible
6-pathways for which heavy atoms can be included, there is a decrease in the predicted bioactivity.
There are many known bioactive compounds for which their molecular masses are substantially high,
for example, the macrolides and some other natural products like digitoxin [21,22,87,88]; thus, they
violate one of Lipinski’s rules used for the evaluation of possible new drugs [89]. Molecules 31, 48,
and 53 present relatively medium-high GATS6m values, hence high molecular mass; however, our
model predicts elevated pMIC for these compounds. This can suggest that there could be a limit in
the mass of the molecule and the number of oxygen atoms or any other heavy elements that will
cause molecules to be less active.

2.4. Antibacterial Activity Evaluation
Having identified molecular properties with high potential activity against A. baumannii from

plants, we searched for similar molecules from the same genus of plants Ipomoea. Several isolated
molecules from plants of the species I. stans, I. purga, I. murucoides, and I. tyrianthina [90–92] were
subject to treatment with our model to obtain their predicted values prior to experimental work.
Results are shown in Table 2, and Figure 15 depicts molecules with the highest and lowest predicted
pMIC values.

Table 2. Molecular descriptors for natural products 54 to 68 with their predicted pMIC value.

MolID MW D/Dr06 GATS6m nROR nHDon nHBonds H051 TI2 pMIC

54 1139.49 637.544 1.05 8 8 4 5 4.452 6.553
55 1095.43 603.051 1.06 8 7 4 5 4.134 6.406
56 1155.49 645.374 1.047 8 9 4 5 4.4 6.672
57 1225.64 1192.314 1.016 10 9 5 7 5.92 7.289
58 1107.49 600.453 1.072 8 6 5 5 4.095 6.080
59 1153.38 1669.117 0.957 12 16 11 2 8.266 8.422
60 334.46 90.65 0.904 2 4 3 2 4.886 4.374
61 326.33 164.888 1.054 1 5 1 0 4.222 4.733
62 342.33 166.979 1.09 1 6 2 0 3.98 4.624
63 1646.15 2393.949 1.019 13 14 12 6 5.644 8.223
64 1019.28 1307.203 0.962 10 13 6 2 9.197 8.242
65 855.1 437.562 0.955 8 9 5 2 3.704 6.688
66 1093.46 601.959 1.069 8 6 4 5 4.081 6.285
67 1037.39 565.718 1.019 8 7 4 5 4.448 6.410
68 1123.49 624.213 1.054 8 7 4 5 4.266 6.424
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Figure 15. Molecular structure of natural products isolated from different species of Ipomoea.
Molecules 59, 63, and 64 display high values of predicted pMIC, while compounds 60 to 62 show the
lowest values.

Compounds 59, 63, and 64 exhibit the highest predicted values of pMIC of 8.422, 8.223, and
8.242. From our QSPR model, we can observe some important features which are present in these
compounds. First, molecules from 54 to 68 present many aliphatic ether groups from the pyranose-
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type rings, consequently a great number of hydrogen donors (nHDon descriptor), which contributes
to an increase in their antibacterial activity. As the pyranose-type rings are six-membered structures,
the D/Dr06 descriptor also promotes a rise in the expected pMIC. However, because of a large number
of oxygen atoms and carbonyl motifs, the nHBonds and H-051 descriptors have a considerable effect
in decreasing the predicted pMIC. Furthermore, the value of the calculated GATS6m, compared to
other molecules, implies a small negative contribution to the predicted activity, which is balanced
by the contribution of the D/Dr06 descriptor. Compounds 60, 61, and 62 (Figure 15) are predicted
to have the lowest pMIC values (4.781, 4.733, and 4.264, respectively). This situation is due to the
presence of only one pyranose-type ring in each structure, hence, only one aliphatic ether group
and a reduced number of oxygen atoms. Moreover, given their molecular structure (low symmetry),
their GAST6m values are also the highest among the compounds, thus diminishing the predicted
value. Consequently, it is expected that a great number of pyranose-type rings that do not form
intramolecular hydrogen bonds are valuable for the antibacterial activity of these compounds.

2.5. Glycoside SAR Analysis
As stated before, the increasing number of multidrug-resistant bacteria represents an important

risk to human health worldwide. Although A. baumannii represents a serious threat, the search for
wide-spectrum antibiotics for the treatment of infections caused by several of the ESKAPE pathogens
is crucial. To determine if the proposed molecules display antibacterial activity towards this bacterial
critical group, the corresponding bioassays were tested using clinical isolates, which are metallo-β-
lactamase producers and resistant to beta-lactam antibiotics (Table 3). Experiments were conducted
by adding 3 µL of compound solution over each agar plate.

Table 3. Biological assays for compounds isolated from Ipomoea sp. towards different bacterial strains.
For each bacterial strain, essays marked as (+) were positive and (−) negative in susceptibility tests.

Bacterial Strains

ID Sample E. coli
ATCC 25922

S. aureus
ATCC

A. baumannii
9736 (1)

A. baumannii
10324 E. coli 10225 K. pneumoniae

6411
K. pneumoniae

3407-2
P. aeruginosa

4899
P. aeruginosa

4677

54 − − − − − + − − −
55 − + − − − + − + +
56 + + + − − + + + +
58 − − − − − − + − −
60 + + + + + + + + +
61 − − − + − − − − −
62 − − − + − − − − −
63 − − + + − − − − −
64 − − + − − − − − −

From the results, important features arise from the molecular structures of the glycosides. First,
the molecular structures of compounds 54, 55, 56, and 58 contain the same tetrasaccharide core, which
is connected by a macrolactone ring. From 54 to 55, the removal of one carbon atom from central
2-methylbutyrate to 2-methylpropionate increases the activity of the glycoside, being active not only
in K. pneumonia but also now to P. aeruginosa and S. aureus. In compound 56, the reinsertion of the
carbon atom but with the addition of a hydroxyl group at position three of the 2-methylbutyrate group
reinforces the activity spectrum by being active to A. baumannii, as seen in Figure 16. However, the
removal of the hydroxyl group of the central and outer 2-methylbutyrate groups and the addition of
one carbon atom of the macrolactone ring (from ten atoms to eleven) causes molecule 58 to lose wide
spectrum activity and to be only active against K. pneumoniae. This suggests that hydroxyl groups
located in specific regions of this molecular core enhance the bioactivity of this set of glycosides.

Compounds 60 to 62 are the smallest compounds. They share in common a terminal carboxylic
acid alongside a pyranose ring. Although 60 has wide antibacterial activity against multidrug-
resistant bacteria, 61 and 62 only display activity against A. baumannii. This important loss of activity
may be attributed to the removal of the aliphatic chain connecting the pyranose ring and the terminal
carboxylic acid, being replaced by a more rigid phenyl core. Close inspection of compound 63 reveals
the structure of compound 60 within it, forming an ester bond at the terminal carboxylic acid group.
This feature could explain the retained activity against A. baumannii. Similar to this, molecules 54
to 56 share common structural features, like at the macrolactone ring with the same set of atoms; in
addition, the lack of hydroxyl groups at the outer methylbutyrates may affect the expected activity.
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Figure 16. SAR analysis of compounds 54, 55, 56, and 58. Small changes in the structure expand the
antibacterial activity from 54 to 56. Removal of –OH groups and elongation of the alkyl chain in the
macrocyclic ring decrease the bioactivity of the molecule.

An insight into the chemical structures of 32 to 35 and 53, the most potent molecules according
to the model in Equation (12), reveals that the core of 60 is present (Figure 17). Furthermore, the
macrolactone ring alongside the chiral carbon is also a common feature, with the cycle formed of ten
or eleven methylene groups as in 54 to 58. This could suggest that molecules of the BIOFACQUIM
database would also exert antibacterial activity towards A. baumannii and other resistant bacteria.
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within the other structures. Furthermore, the macrolactone ring is shared between compounds.

One of our remaining questions is which action mechanisms can be exerted by these molecules.
To propose one, we constructed a simplified version of the Venn diagram in which it is possible to
observe the correlation between the H-051 and the nROR descriptors seen in the isolated molecules.
The purpose of this diagram in Figure 18 is to identify molecules with known action mechanisms
and with structural similarity (same molecular descriptors) to our compounds. Furthermore, other
types of compounds used are also part of the inner set of molecules. These compounds have different
structural motifs when compared to compounds 54 to 68, and they present different mechanisms
of action.
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nROR, and H-051 descriptors which appear in molecules 54 to 68.

From a structural point of view, compounds 56 and 63 resemble those of the macrolide antibi-
otics [88]. Examples of macrolides are erythromycin A, oleandomycin, josamycin, and spiramycin,
isolated from different microorganisms, as well as many semisynthetic derivatives like clarithromycin,
flurithromycin, and other unique compounds like azithromycin. Moreover, the latest new members,
the ketolides and fluoroketolides, are also structurally related to the macrolide family. As stated
above, when comparing the new molecules with macrolides, several features are shared (Figure 19).
Macrolides are well characterized by the presence of a 14- to 16-membered macrocyclic lactone ring
to which one or more deoxy sugars are attached. In the case of compounds like 56 and 63, the
macrolactone ring is shown connecting two or three sugar-type rings. Furthermore, because of the
relatively high number of carbonyl motifs in macrolides, α-H are also present in great numbers.
This is also true for many compounds from 54 to 58 and 65 to 68, where the ester group is observed.
Moreover, a great number of aliphatic ether groups and a great number of oxygen atoms present at
the hydroxyl groups and other motifs are also features that are in common. Macrolides are potential
bacteriostatic compounds for which one mechanism of action relies on binding to the P site on the
50S subunit of the bacterial ribosome. Because of this, we can suggest that compounds 56 and 64,
among others, could exhibit a similar action on bacteria, thus acting as protein synthesis inhibitors.

Finally, compound 60, being a small molecule, can be considered a lead compound for which
specific chemical transformations could improve its efficacy. Compound 60 is expected to be water
soluble, having a calculated LogP value below 1.0, hence, with good gastrointestinal (GI) absorption.
According to Equation (1), the incorporation of specific functional groups contributes favorably to the
expected pMIC. In this sense, aromatic carboxylic acids, primary aliphatic amides, and aliphatic ethers
can be employed to improve the activity of 60-derived analogs as they represent simple chemical
transformations, as seen in Figure 20. Calculated pMIC values for the new derivatives can be seen in
Table S7. In all proposed compounds, their predicted pMIC values are higher than the lead compound.
The physicochemical properties of compounds 60 and derivatives were tested using the SwissADME
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server, for which specific alerts are given in Figure S4. All derivatives are expected to be soluble in
water and predicted to be passively absorbed by the GI tract, and 60e could also permeate through
the blood-brain barrier. Furthermore, all compounds also obey Lipinski’s rules.
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Figure 20. Proposed 60-derivates which, in accordance with Equation (1), are expected to improve
their antibacterial activity by incorporation of specific functional groups.

Moreover, molecules isolated from Ipomoea share within their structures a deoxy-sugar moiety,
as in compound 60, that could be relevant to their activity. By close inspection of the fragment,
we searched for molecules in the ChEMBL database for bioactive compounds which incorporate
deoxy sugar in their structures. A wide variety of molecules possesses the motif, from anticancer
to anti-allergenic [93–101], demonstrating its importance; further research is needed to validate this
point. Chemical structures for these compounds can be seen in Figure S3 as well as their predicted
ADME properties.

In summary, the model was validated statistically by internal and external parameters, showing
good predictive power. This was demonstrated using the model, first applied to the BIOFACQUIM
natural products database in search of potential candidates and finally, by exploring the properties
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of isolated natural products from Ipomoea sp. We observed wide antibacterial spectra activity of
compounds 56, 60, and 63 against several isolated bacterial strains, which agrees with the properties
calculated by the model.

3. Materials and Methods
3.1. Data Set

An initial dataset of 944 compounds was obtained from the literature between 1995 and 2020.
These compounds shared the same evaluation method, as follows. To improve the reliability of the
data, all the compounds were curated [102–104] to point out outliers, uncertainties, and potential
errors that could affect the models generated at later stages, which included: (1) removal of mixtures,
salts, and inorganic/organometallic compounds; (2) ring aromatization as well as standardization of
the carboxyl, nitro, and sulfonyls groups; (3) deletion of duplicates and exclusion of stereoisomers of
the same compound, as 3D-molecular descriptors are not used in this work (see below). After data
curation, compounds with undefined Minimum Inhibitory Concentration (MIC) values and values
greater than 300 µg/mL were removed [105], leaving a final set of 592 molecules for the generation of
the models. Finally, logarithmic transformation of MIC values was achieved to normalize the experi-
mental information; a conversion of MIC values from µg/mL to molar concentration (M = mol/L)
was done, followed by a transformation to pMIC according to:

pMIC = – log10[MIC] (4)

3.2. Calculation of Molecular Descriptors
The structures of the molecules of interest were drawn in Avogadro [106,107] and MarvinS-

ketch [108] (ChemAxon, Budapest, Hungary). For the calculation of molecular descriptors, the
Dragon [109] computational package was employed. For most of the molecules, their action mecha-
nism is unknown, as in the case of many natural products. Therefore, because molecular conformation
is not considered, only zero-, mono- and bi-dimensional descriptors were calculated. The number
of descriptors employed per family for the Genetic Algorithms (GA) technique were as follows: 45
constitutional, 105 topological, 33 connectivity indices, 96 2D autocorrelations, 21 topological charge
indices, 93 functional groups, 88 atom-centered fragments, and ten molecular properties. A complete
list with the molecular descriptors and biological activities reported as MIC in µg/mL is found in the
Supplementary Information (SI, Tables S1 and S2).

3.3. Generation of the Mathematical Model
The regression models were built using GA techniques with the Mobydigs software [110]. GA

are a statistical method that can be employed for analyzing complex systems that correlate with
multiple variables. In an analogous manner to genetic evolution, this approximation allows the
selection of the most suitable mathematical models from a large set [111]. Molecular descriptors were
used as independent variables, and the experimental MIC value expressed as pMIC was used as
the dependent variable. The selection of the best model was based on parameter values such as the
coefficient of determination (R2); additionally, the standard deviation (s) and the Fischer test (F) were
employed. The Y-scrambling test was used to guarantee that the QSPR model was built adequately
in terms of correlation obtained by chance. This was performed first by randomly permuting the
pMIC values of the data set and then using the new column of values with the same variables to
generate new models. The procedure was repeated 300 times, and the quality parameters of these
new models were compared to the original values of the QSPR model: if the original model has
no chance correlation, the new R2 and Q2 values calculated for the permuted pMIC QSPR models
will have a significant difference with respect to the original values; otherwise, the model is rejected.
Non-collinearity between descriptors is determined using the QUIK rule. Accordingly, the QUIK
rule is based on the K multivariate correlation index that measures the total correlation of a set of
variables as follows:

K =
∑j

∣∣∣ λj

∑j λj
− 1

p

∣∣∣
2(p−1)

p

(5)

where j = 1, . . . , p and 0 ≤ K ≤ 1
λ are the eigenvalues obtained from the correlation matrix of the data set X(n, p), n represents

the number of compounds, and p the number of variables (descriptors). The total correlation in the
set given by the model descriptors X plus the response Y(KXY) should always be greater than that
measured only in the set of descriptors (KX). In other words, if KXY − KX < δK, then the model
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is rejected. The typical δK threshold values for models are between 0.01–0.05. Models that have
negative values are not allowed. To detect models with an excess of “good” or “bad” descriptors, the
redundancy (RP) and overfitting (RN) rules were applied. RP is defined as:

RP =
p+

∏
j=1

(
1−Mj

(
p

p− 1

))
(6)

with Mj > 0 and 0 ≤ RP ≤ 1.
While RN is defined as

RN =
p−

∑
j=1

Mj (7)

where Mj < 0 and −1 < RN ≤ 0.
Given a regression model with p variables, Rjy is the absolute value of the regression coefficient

between the jth descriptors and the response Y. In this sense, Mj can be calculated as follows:

Mj =
Rjy

R
− 1

P
and− 1

P
≤ Mj ≤

p− 1
p

(8)

The redundancy rule establishes that if RP < tP, then the model is rejected, where depending on the
data, tP, which is a user-defined threshold, can range from 0.01 and 0.1, with a suggested value of 0.05.
The overfitting rule specifies that if RN < tN(ε), then the model is rejected. Calculating tN(ε) follows:

tN(ε) =
pε− R

pR
(9)

where values of ε can range from 0.01 to 0.1, and p is the number of variables.

3.4. QSPR Validation of Prediction Capability
The model reported herein was validated internally by the leave-many-out cross-validation

method (Q2
LMO) for which the data set was randomly divided into a training set (415 molecules) and

a test set (117 molecules) which represented 70% and 30%, respectively of the complete data set. The
robustness of the model was further evaluated by bootstrap (Q2

BOOT) and Q2
EXT. The predictive

ability validation was performed by applying the Asymptotic Q2 rule (δQ). It is assumed that a good
model should have a small difference between fitting and predictive ability, in which significant variations
between the R2 and Q2 values can be due to overfitting or to some not predictable samples [112,113]. The
Asymptotic Q2 rule evaluates the asymptotic Q2 versus the Q2 values of the model:

Q2
LMO −Q2

ASYM < δQ (10)

If the difference is less than the threshold, typically δQ = −0.005, then the model is rejected. As
Q2

LMO is asymptotically related to the value of R2, it is possible to calculate the Q2
ASYM by using the

following expression:

Q2
ASYM = 1−

(
1− R2

)( n
n− p′

)2
(11)

where n is the number of objects and p′ the number of model parameters. To further evaluate the
predictive applicability of the model, some statistical parameters developed by Roy et al. were
used [45–47]. According to the statistical parameters, the following criteria must be present for each
evaluation as shown: (i) Q2 > 0.5; (ii) r2 > 0.6; (iii)

(
r2 − r0

2)/r2 < 0.1 (or
(
r2 − r′02)/r2 < 0.1);

(iv) 0.85 ≤ k ≤ 1.15 (or 0.85 ≤ k′ ≤ 1.15) and (v)
∣∣r0

2 − r′02
∣∣ < 0.3. Additionally, two parameters

derived from the above, rm2 and ∆rm
2 were also used to evaluate the predictive power of the

model [114]. According to, rm2 follows that:

rm2 =

(
rm

2 + r′m2)
2

(12)

where rm
2 is calculated as

rm
2 = r2

(
1−

√
r2 − r02

)
(13)
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and where:

r′m2 = r2
(

1−
√

r2 − r′02
)

(14)

While according to (15), ∆rm
2 is obtained by the following expression:

∆rm
2 =

∣∣∣rm
2 − r′m2

∣∣∣ (15)

The calculation of the r2, r0
2, r′02, k and k′ are shown in the SI.

3.5. External Validation
The generated model was validated externally by the prediction of different sets of molecules

that were not included in the generation of the model with the following specifications: (1) only
molecules with reported MIC values and active towards A. baumannii were used, and (2) molecules
above 300 µg/mL were excluded. Data curation, as stated above, was performed on a total of
98 molecules, which were drawn in Avogadro, and their molecular descriptors were obtained from
the Dragon software package. A complete list of descriptors and references can be found in the SI,
Table S5.

3.6. Virtual Screening
Five hundred twenty-eight natural products were obtained from the molecular database BIO-

FACQUIM. To improve the consistency of the data, all the compounds were curated by (1) ring
aromatization, (2) standardization of the carboxyl, nitro, and sulfonyl groups if present, and (3) ad-
dition of missing bonds where required. The structures of the molecules of interest were drawn in
Avogadro, and their molecular descriptors were obtained from the Dragon software package. A
complete list of descriptors can be found in Table S6.

3.7. Plant Material
Roots of Ipomoea stans were collected in the state of Puebla, México. The botanical classification

was carried out by Abigail Aguilar, Head of the Instituto Mexicano del Seguro Social Herbarium in
Mexico City (IMSSM), and a voucher specimen (number 15077) was deposited at IMSSM. Exudates
from the bark of Ipomoea murucoides were collected manually on the campus of the Universidad
Autónoma del Estado de Morelos (UAEM) in Cuernavaca, Morelos, Mexico. The plant material
was identified by Biol. Alejandro Flores and a voucher specimen (No. 22444) were deposited at the
Herbarium of the Centro de Investigación en Biodiversidad y Conservación, UAEM. Roots of Ipomoea
purga were authenticated and donated by M. Sc. Abigail Aguilar, Head of the Instituto Mexicano del
Seguro Social Herbarium in Mexico City (IMSSM). A voucher specimen (number 16180) is deposited
at IMSSM.

3.8. Extraction and Isolation of Compounds
The dried, powdered roots of I. purga and I. stans (250.0 g each one) were extracted by maceration

with MeOH (500 mL × 3) to obtain a dark syrup (25.0 g I. purge, and 20.4 g I. stans). The dark syrups
were extracted with distilled water (3 × 50 mL) and dichloromethane (DCM, 3 × 50 mL) to afford a
dark solid (9.3 g I. purga and 7.6 g I. stans). The dark solids (1.0 g I. purga, 1.1 g I. stans) were submitted
to a C18 column (Supelco, 10 × 15 mm) with a gradient of MeOH:H2O (0:100 to 100:0, at increments
of 10%), fractions were collected and (0.7 g I. purga, 0.6 g I. stans) was obtained. The resinous solids
were percolated on an activated charcoal column, eluting with MeOH. Fractions of 5 mL were
collected and reunited, giving the convolvulin (0.42 g I. purga and 0.32 g I. stans). Convolvulin of I.
purga was chromatographed on normal and inverse phase silica gel columns, using mobile phase
DCM/MeOH/H2O (84:14:2), respectively, with MeOH gradient, yielding 80 mg IPJALB (compound
63). From the convolvulin of I. stans in the same conditions, 30 mg of ISACAF (compound 62) and
27 mg of ISACAR (compound 61) were obtained. Exudates from the bark of Ipomoea murucoides
(15 g) were dried, ground, and dissolved in MeOH to give, after filtration and removal of the solvent,
a brown solid material (10 g). The brown solid was dissolved in a mixture of CHCl3:MeOH (9:1).
This solution was subsequently subjected to passage over a silica gel column eluted with a gradient
system of CHCl3:MeOH (from 9:1 to 7:3), leading to the separations of two chromatographic fractions.
Purification of the less polar chromatographic fraction was carried out by preparative HPLC. Eluates
with retention time, tR, and value of 23.5 min were collected and reinjected into the HPLC system
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to achieve pure IM620 (compound 57). The rest of the compounds tested for biological essays were
given by Dr. Ismael León, purified by similar methods, and used as received.

3.9. Bacterial Strains
Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29,213 were purchased from the

American Type Culture Collection. MDR clinical isolates, which are non-susceptible to at least one
agent in three or more antimicrobial categories and cause nosocomial infections, were obtained from
the Center for Research on Infectious Diseases collection of the National Institute of Public Health
(Instituto Nacional de Salud Pública), Cuernavaca, Morelos, Mexico. The various strains include the
following isolates: A. baumannii 9736 and 10324, E. coli 10225, K. pneumoniae 6411 and 3407-2, and two
P. aeruginosa 4899 and 4677. These isolates are metallo-β-lactamase-producers and are resistant to all
betalactam antibiotics, including cephalosporins, and carbapenems.

3.10. Antibacterial Assays
The antibacterial activity of the compounds was qualitatively measured following the Kirby–

Bauer method (1996), according to the CLSI (Clinical and Laboratory Standards Institute) recom-
mendations [115]. Briefly, Petri dishes containing Müeller–Hinton agar were sown with bacteria
inoculums from 1 to 2 × 108 colony-forming units (CFU)/mL, and then 3 µL of the compound
solution was placed over the agar. Incubation time was from 16 to 19 h at 35 ± 2 ◦C. A halo of growth
inhibition was observed as a positive result. Two reference susceptible strains were used: E. coli
ATCC 25922 and S. aureus ATCC 29213.

4. Conclusions
There is a great number of compounds that have been biologically tested as antibacterials

against A. baumannii. Nevertheless, a careful selection of them needs to be done before their use
for the generation of a QSPR/QSAR model. Our QSPR model comprises fifteen 2D-dimensional
descriptors: one 2D-autocorrelation, two topological, six functional group counts, and six atom-
centered fragments descriptors. These molecular descriptors were used to describe their suitability
as antibacterial compounds against A. baumannii. Additionally, our QSPR model prediction ability,
which was fully evaluated by means of different test and validation sets of molecules, allowed us
the identification of antibacterial compounds against A. baumannii by means of a virtual screen-
ing of the BIOFACQUIM database, an interesting source for potential bioactive compounds. The
identified compounds, isolated from Ipomoea sp., indicated specific molecular features consistent
with antibacterial activity. Furthermore, our model proved to be predictively reliable by identifying
compounds isolated from local collections of Ipomoea sp. that showed a promising wide antibacterial
spectrum. Upon experimental testing, compound 60 showed wide antibacterial activity against
clinically isolated multidrug-resistant bacteria. Its structure can be found in other compounds also
isolated from Ipomoea, as in the case of molecule 63. Molecule 60 could serve as a lead compound for
the development of new compounds with possible wide-spectrum antimicrobial activity, like 60a–60e
proposed in this work.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph16020250/s1, Figure S1. Scatterplots and Williams plots for
each training-test experiment; Figure S2. Scatterplots for each of the molecular descriptors against
experimental pMIC; Figure S3. Chemical structures from the ChEMBL database, which incorporate
the deoxy-sugar moiety found in compound 60; Figure S4. SwissADME predictions for compound 60
and derivatives; Figure S5. BOILED-Egg model for 60-derivatives and compounds (a–f) and 60 to
60 h; Table S1. Complete list of descriptors from the Dragon package; Table S2. List of molecules used
for the generation of the QSPR model; Table S3. Average values for each molecular descriptor; Table
S4. Statistical parameters for the evaluation of the predictive power; Table S5. List of molecules used
for the validation test sets, their calculated molecular descriptors, and predicted pMIC values; Table
S6. List of molecules from the BIOFACQUIM database, their calculated molecular descriptors, and
predicted pMIC values; Table S7. List of 60-derivatives, their calculated molecular descriptors, and
predicted pMIC values.

https://www.mdpi.com/article/10.3390/ph16020250/s1
https://www.mdpi.com/article/10.3390/ph16020250/s1
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