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Abstract: A methanol extract of the flowers of Mammea siamensis (Miq.) T. Anders. (Calophyllaceae)
showed anti-proliferative activity against human prostate carcinoma LNCaP cells (IC50 = 2.0 µg/mL).
Two new coumarin-related polysubstituted benzofurans, mammeasins P (1) and Q (2), and a known
polysubstituted coumarin mammea B/AC cyclo F (39) were isolated from the extract along with
44 previously reported polysubstituted coumarin constituents (3–38 and 40–47). The structures of
two new compounds (1 and 2) were determined based on their spectroscopic properties derived from
the physicochemical evidence including NMR and MS analyses and taking the plausible generative
pathway into account. Among the coumarin constituents, mammeasins A (3, IC50 = 1.2 µM) and
B (4, 0.63 µM), sugangin B (18, 1.5 µM), kayeassamins E (24, 3.0 µM) and G (26, 3.5 µM), and
mammeas E/BA (40, 0.88 µM), E/BB (41, 0.52 µM), and E/BC (42, 0.12 µM) showed relatively potent
anti-proliferative activity.

Keywords: Mammea siamensis; mammeasin; polysubstituted coumarin; coumarin-related polysubstituted
benzofuran; anti-proliferative activity; prostate carcinoma; Calophyllaceae

1. Introduction

Prostate cancer, a hormonally driven cancer, is the second most frequent malignancy
in men worldwide [1–4]. It may be asymptomatic at an early stage, often has an indolent
course, and may require minimal or even no treatment. However, the most frequent com-
plaints are difficulty with urination, increased urination frequency, and nocturia, all of
which may also arise from prostatic hypertrophy. A more advanced stage of the disease
may present with urinary retention and back pain, as the axial skeleton is the most common
site of bone metastasis [4]. The main therapeutic option for advanced prostate cancer is an-
drogen deprivation therapy, which has limited clinical outcomes. However, its therapeutic
benefit does not last long, and most patients develop metastatic castration-resistant prostate
cancer. After progression into castration-resistant prostate cancer, several chemotherapeutic
drugs are used. Chemotherapy is the standard first-line treatment for recurrent metastatic
castration-resistant prostate cancer, and relapse eventually occurs due to drug resistance [5].
Therefore, there is a strong demand for the development of new therapeutic molecules
against prostate cancer.
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The Calophyllaceae plant Mammea siamensis (Miq.) T. Anders., which is the name
recorded by the World Flora Online [6], is a small evergreen tree with fragrant yel-
low or white flowers distributed throughout Thailand (locally known as Sarapi or Sara-
phi), Laos, Cambodia, Vietnam, and Myanmar [7–11]. In Thailand, the flower part of
this medicinal plant has been used as a heart tonic for lowering fever, and for boost-
ing appetite [12,13]. Previously, several coumarin [9–11,14–24], xanthone [8,10,17,21],
flavonoid [7,23], triterpene [10,12], and steroid [10,12,24] constituents have been reported
from the flowers [7,9–16,20,23,24], seeds [18,21], twigs [8,17,19], and bark [22] of M. siamen-
sis. This plant and its constituents have been reported to possess anti-proliferative and
apoptotic activities [9,13,22–24], B-cell-specific Moloney murine leukemia virus insertion
region 1 promoter inhibitory activity [11], and anti-malarial activity [10]. In our study, the
coumarin constituents obtained from the flowers of M. siamensis were reported to have
suppressive effects on inducible nitric oxide synthase expression in RAW264.7 cells [25],
aromatase [26,27], and 5α-reductase [28] inhibitory activities as well as anti-proliferative
activities against human digestive tract carcinoma cells, such as human gastric carcinoma
HSC-2, HSC-4, and MKN-45 cells [29]. Coumarins have also attracted much attention for
their anti-proliferative activity against prostate cancer cells, such as the human prostate
carcinoma cell line LNCaP [30–32]. Further studies on the flowers of M. siamensis revealed
that a methanol extract exhibited anti-proliferative activity against LNCaP cells. Thus, this
study deals with further separation studies on the chemical constituents of this extract for
the isolation and structure determination of two new compounds, mammeasins P (1) and
Q (2), as well as the identification of active coumarin constituents with anti-proliferative
activity against LNCaP cells.

2. Results and Discussion
2.1. Anti-Proliferative Effects of the Methanol Extract and Its Fractions against Human Prostate
Carcinoma LNCaP Cells

LNCaP, one of the most commonly used cell lines for prostate cancer research, is
derived from a human lymph node metastatic lesion in prostate adenocarcinoma [33–35].
These cells are androgen-responsive because they show mRNA and protein expression of
the androgen receptor and prostate-specific antigen [36,37]. As shown in Table 1, the anti-
proliferative effect of a methanol extract of the dried flowers of M. siamensis (25.66% dried
material) against human prostate carcinoma LNCaP cells was observed (IC50 = 2.0 µg/mL).
Bioassay-guided fractionation of the methanol extract with ethyl acetate (EtOAc)-H2O (1:1,
v/v) yielded an EtOAc-soluble fraction (6.84%) and aqueous phase. The latter was subjected
to Diaion HP-20 column chromatography (H2O→MeOH) according to previously reported
protocols, which yielded H2O- and MeOH-eluted fractions (13.50% and 4.22%, respec-
tively) [25]. The EtOAc-soluble fraction showed the highest activity (IC50 = 2.7 µg/mL),
whereas the other fractions showed no noticeable activity.

Table 1. Anti-proliferative effects of the methanol extract of M. siamensis flower and its fractions
against LNCaP cells.

Treatment
Inhibition (%) IC50

0 µg/mL 0.3 µg/mL 1 µg/mL 3 µg/mL 10 µg/mL (µg/mL)

MeOH extract 100.0 ± 1.7 96.2 ± 2.3 87.8 ± 2.0 ** 24.5 ± 1.7 ** 7.3 ± 0.1 ** 2.0
EtOAc-soluble fraction 100.0 ± 1.3 97.7 ± 2.0 97.0 ± 2.3 42.7 ± 1.5 ** 7.6 ± 0.2 ** 2.7

0 µg/mL 3 µg/mL 10 µg/mL 30 µg/mL 100 µg/mL

MeOH-eluted fraction 100.0 ± 2.0 99.4 ± 4.6 95.8 ± 2.2 38.1 ± 1.5 ** 11.9 ± 0.0 ** 23.8
H2O-eluted fraction 100.0 ± 6.1 99.7 ± 6.3 94.8 ± 4.1 86.1 ± 3.1 72.4 ± 2.5 ** >100

Each value represents the mean ± standard error of the mean (S.E.M.) (N = 5). Significantly different from the
control (** p < 0.01, Dunnett test).
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2.2. Isolation

From the active EtOAc-soluble fraction, we isolated 45 known coumarin constituents
(3–38 and 40–47), including the newly obtained compound mammea B/AC cyclo F (39,
0.0005%) [15], using normal-phase silica gel and reversed-phase ODS column chromato-
graphic purification and finally HPLC [27–29]. In this study, mammeasins P (1, 0.0004%)
and Q (2, 0.0005%) were newly isolated (Figure 1).
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Figure 1. Structures of mammeasins P (1) and Q (2).

2.3. Structure Determination for Mammeasins P (1) and Q (2)

Mammeasin P (1) was obtained as a pale-yellow oil, and its molecular formula was
determined to be C22H26O6 via high-resolution electron ionization (EI)-MS at m/z 386.1724
(M+, calcd for 386.1729). The 1H- and 13C-NMR spectra of 1 (Table 2, CDCl3) were as-
signed with the aid of distortionless enhancement by polarization transfer (DEPT), 1H–1H
correlation spectroscopy (COSY), heteronuclear single-quantum coherence (HSQC), and
heteronuclear multiple-bond connectivity (HMBC) (Figure 2). The 1H-NMR spectrum
showed signals for five methyl moieties [δ 1.01 (3H, t, J = 7.4 Hz, H3-4”’), 1.27 (3H, t,
J = 7.6 Hz, H3-3’), 1.52 (6H, s, 2”-CH3 × 2), and 3.71 (3H, s, 2-COOCH3)], four methylene
moieties [δ 1.73 (2H, qt, J = 7.4, 7.4 Hz, H2-3”’), 2.67 (2H, q, J = 7.6 Hz, H2-2’), 3.07 (2H, t,
J = 7.4 Hz, H2-2”’), and 3.75 (2H, s, H2-3)], a pair of cis-substituted olefinic protons [δ 5.51
and 6.65 (1H each, both d, J = 9.7 Hz, H-3” and H-4”)], and a hydrogen-bonded hydroxy
proton [δ 14.12 (1H, s, 8a-OH)]. 1H−1H COSY experiments on 1 indicated the presence of
partial structures (bold lines in Figure 2). In HMBC experiments, long-range correlations
were observed between the following proton and carbon pairs: H2-3 and C-2, 4, 4a, 1’; H2-2’
and C-4, 1’; H-3” and C-6, 2”, CH3-2”; H-4” and C-5, 7, 2”; CH3-2” and C-2”, 3”; H2-2”’,
H2-3”’ and C-1”’; 8a-OH and C-4a, 8, 8a. Thus, a polysubstituted benzofuran skeleton in
1 was constructed, and the linkage positions of the n-butyryl and 2,2-dimethyl-2H-pyran
groups in 1 were clarified. This benzofuran skeleton is speculated to be derived from
4-(1’-acetoxypropyl)coumarin, a common structure of many mammeacoumarins, via in-
tramolecular displacements to the furocoumarins, acid-catalyzed double-bond migration,
and lactone opening (Figure 3) [38,39]. Thus, the structure of 1 was determined.

The molecular formula of mammeasin Q (2) was determined to be C23H28O6, showing
a molecular ion peak at m/z 400.1880 (M+, calcd for 400.1886), using high-resolution EI-MS
measurements. The 1H- and 13C-NMR spectra (Table 1, CDCl3) of 2 were similar to those
of 1, except for the signals owing to a 2-methyl-butyryl moiety in C-8 position [δ 0.92 (3H, t,
J = 7.5 Hz, H3-4”), 1.17 (3H, d, J = 6.9 Hz, H3-5”’), 1.42, 1.87 (1H each, both m, H2-3”’), and
3.81 (1H, m, H-2”’)] instead of an n-butyryl moiety, as seen in 1. As shown in Figure 2, the
connectivity of the quaternary carbons in 2 was elucidated via 1H–1H COSY and HMBC
experiments. 1H−1H COSY correlations indicated the presence of the following partial
structures of 2, shown in bold lines: linkage of C-2’–C-3’; C-3‘–C-4”; C-2”’–C-5”’. HMBC
correlations revealed long-range correlations between the following proton and carbon
pairs: H2-3 [δ 3.75 (2H, s)] and C-2, 4, 4a, 1’; H2-2’ [δ 2.67 (2H, q, J = 7.5 Hz)] and C-4, 1’; H-3”
[δ 5.51 (1H, d, J = 9.8 Hz)] and C-6, 2”, CH3-2”; H-4” [δ 6.65 (1H, d, J = 9.8 Hz)] and C-5,
7, 2”; CH3-2” [δ 1.52 (6H, s)] and C-2”, 3”; 8a-OH [δ 14.09 (1H, s)] and C-4a, 8, 8a; H2-2”’,
H2-3”’, H3-5”’ and C-1”’. Therefore, the structure of 2 was established.
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Table 2. 1H and 13C NMR spectroscopic data (500 and 125 MHz, CDCl3) of mammeasins P (1) and
Q (2).

Position
1 2

δH δC δH δC

2 171.9 171.9
3 3.75 (2H, s) 29.8 3.75 (2H, s) 29.7
4 107.7 107.7
4a 111.1 111.2
5 * 152.2 * 151.9
6 99.1 99.1
7 * 154.6 * 154.5
8 107.0 107.0
8a 159.8 159.8

2-COOCH3 3.71 (3H, s) 52.1 3.71 (3H, s) 52.1
8a-OH 14.12 (1H, s) 14.09 (1H, s)

1’ 155.5 155.5
2’ 2.67 (2H, q, 7.6) 19.4 2.67 (2H, q, 7.5) 19.5
3’ 1.27 (3H, t, 7.6) 12.8 1.27 (3H, t, 7.5) 12.8
2’’ 78.1 78.1
3’’ 5.51 (1H, d, 9.7) 125.7 5.51 (1H, d, 9.8) 125.7
4’’ 6.65 (1H, d, 9.7) 116.1 6.65 (1H, d, 9.8) 116.1

2’’-CH3 × 2 1.52 (6H, s) 27.6 1.52 (6H, s) 27.6
1”’ 207.5 211.8
2”’ 3.07 (2H, t, 7.4) 128.4 3.81 (1H, m) 46.2
3”’ 1.73 (2H, qt, 7.4, 7.4) 18.5 1.42, 1.87 (each 1H, both m) 26.8
4”’ 1.01 (3H, t, 7.4) 14.0 0.92 (3H, t, 7.5) 11.9
5”’ 1.17 (3H, d, 6.9) 16.9

* Assignment may be interchangeable within the same column.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 4 of 12 
 

 

2-COOCH3 3.71 (3H, s) 52.1 3.71 (3H, s) 52.1 
8a-OH 14.12 (1H, s)  14.09 (1H, s)  

1’  155.5  155.5 
2’ 2.67 (2H, q, 7.6) 19.4 2.67 (2H, q, 7.5) 19.5 
3’ 1.27 (3H, t, 7.6) 12.8 1.27 (3H, t, 7.5) 12.8 
2’’  78.1  78.1 
3’’ 5.51 (1H, d, 9.7) 125.7 5.51 (1H, d, 9.8) 125.7 
4’’ 6.65 (1H, d, 9.7) 116.1 6.65 (1H, d, 9.8) 116.1 

2’’-CH3 × 2 1.52 (6H, s) 27.6 1.52 (6H, s) 27.6 
1’’’  207.5  211.8 
2’’’ 3.07 (2H, t, 7.4) 128.4 3.81 (1H, m) 46.2 
3’’’ 1.73 (2H, qt, 7.4, 7.4) 18.5 1.42, 1.87 (each 1H, both m) 26.8 
4’’’ 1.01 (3H, t, 7.4) 14.0 0.92 (3H, t, 7.5) 11.9 
5’’’   1.17 (3H, d, 6.9) 16.9 

* Assignment may be interchangeable within the same column. 

 
Figure 2. 1H–1H COSY and HMBC correlations of 1 and 2. 

The molecular formula of mammeasin Q (2) was determined to be C23H28O6, showing 
a molecular ion peak at m/z 400.1880 (M+, calcd for 400.1886), using high-resolution EI-MS 
measurements. The 1H- and 13C-NMR spectra (Table 1, CDCl3) of 2 were similar to those 
of 1, except for the signals owing to a 2-methyl-butyryl moiety in C-8 position [δ 0.92 (3H, 
t, J = 7.5 Hz, H3-4’’), 1.17 (3H, d, J = 6.9 Hz, H3-5’’’), 1.42, 1.87 (1H each, both m, H2-3’’’), 
and 3.81 (1H, m, H-2’’’)] instead of an n-butyryl moiety, as seen in 1. As shown in Figure 
2, the connectivity of the quaternary carbons in 2 was elucidated via 1H–1H COSY and 
HMBC experiments. 1H−1H COSY correlations indicated the presence of the following 
partial structures of 2, shown in bold lines: linkage of C-2’–C-3’; C-3‘–C-4’’; C-2’’’–C-5’’’. 
HMBC correlations revealed long-range correlations between the following proton and 
carbon pairs: H2-3 [δ 3.75 (2H, s)] and C-2, 4, 4a, 1’; H2-2’ [δ 2.67 (2H, q, J = 7.5 Hz)] and C-
4, 1’; H-3’’ [δ 5.51 (1H, d, J = 9.8 Hz)] and C-6, 2’’, CH3-2’’; H-4’’ [δ 6.65 (1H, d, J = 9.8 Hz)] 
and C-5, 7, 2’’; CH3-2’’ [δ 1.52 (6H, s)] and C-2’’, 3’’; 8a-OH [δ 14.09 (1H, s)] and C-4a, 8, 8a; 
H2-2’’’, H2-3’’’, H3-5’’’ and C-1’’’. Therefore, the structure of 2 was established. 

Figure 2. 1H–1H COSY and HMBC correlations of 1 and 2.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 5 of 12 
 

 

 
Figure 3. Plausible generative pathway of 1 and 2. 

2.4. Anti-proliferative Effects of the Coumarin Constituents against Human Prostate Carcinoma 
LNCaP Cells 

Chemical studies on the flowers of M. siamensis allowed the isolation of the two 
above-mentioned new coumarin-related polysubstituted benzofurans, mammeasins P (1) 
and Q (2), and 45 coumarin constituents (3–47) (Figure 4). As has been previously reported 
[25–29], these isolates were obtained from the active EtOAc-soluble fraction of the meth-
anol extract to furnish the following isolation yields from the dried material: mammeasins 
A (3, 0.0250%), B (4, 0.0083%), C (5, 0.0008%), D (6, 0.0047%), E (7, 0.0102%), F (8, 0.0015%), 
G (9, 0.0025%), H (10, 0.0009%), I (11, 0.0008%), J (12, 0.0006%), K (13, 0.0008%), L (14, 
0.0006%), M (15, 0.0021%), N (16, 0.0007%), and O (17, 0.0015%); surangins B (18, 0.0272%), 
C (19, 0.0571%), and D (20, 0.0600%); kayeassamin A (21, 0.0578%), 8-hydroxy-5-methyl-
7-(3,7-dimethylocta-2,6-dienyl)-9-(2-methyl-1-oxobutyl)-4,5-dihydropyrano [4,3,2-
de]chromen-2-one (22, 0.0015%), 8-hydroxy-5-methyl-7-(3,7-dimethylocta-2,6-dienyl)-9-
(3-methyl-1-oxobutyl)-4,5-dihydropyrano [4,3,2-de]chromen-2-one (23, 0.0012%); 
kayeassamins E (24, 0.0125%), F (25, 0.0435%), G (26, 0.0196%), and I (27, 0.0107%); mam-
meas A/AA (28, 0.0528%), A/AB (29, 0.0054%), A/AC (30, 0.1055%), A/AD [=mesuol (31, 
0.0036%)], A/AA cyclo D (32, 0.0039%), A/AB cyclo D (33, 0.0363%), A/AC cyclo D (34, 
0.0109%), A/AA cyclo F (35, 0.0010%), A/AC cyclo F (36, 0.0119%), B/AB cyclo D (37, 
0.0016%), B/AC cyclo D (38, 0.0062%), B/AC cyclo F (39, 0.0005%), E/BA (40, 0.0045%), 
E/BB (41, 0.0288%), E/BC (42, 0.0130%), E/BC cyclo D (43, 0.0058%), and E/BD cyclo D (44, 
0.0007%); and deacetylmammeas E/AA cyclo D (45, 0.0025%), E/BB cyclo D (46, 0.0056%), 
and E/BC cyclo D (47, 0.0078%). To characterize the active constituents, the anti-prolifera-
tive effects of the isolates against LNCaP cells were examined. However, evaluation of the 
coumarin constituents (21–23, 29, 31, 32, and 39), including the new compounds 1 and 2, 
for which we did not have a sufficient sample amount to assess biological activity, could 
not be performed. As shown in Table 3, seven coumarin constituents, including mam-
measins A (3, IC50 = 1.2 µM) and B (4, 0.63 µM), sugangin B (18, 1.5 µM), kayeassamins E 
(24, 3.0 µM) and G (26, 3.5 µM), and mammeas E/BA (40, 0.88 µM), E/BB (41, 0.52 µM), 
and E/BC (42, 0.12 µM), showed relatively potent anti-proliferative activity. The structural 
requirements of the coumarins for the activity were suggested as the following: (1) regard-
less of the structure of the substitutions at C-4, C-5, C-6, and C-8, coumarins with 7-OH 
group (e.g., 3, 4, 18, 24, 26, 40, 41, and 42) were essential for the strong activity; (2) com-
pounds with the 6-prenylcoumarin moieties showed stronger or equivalent activity to 
those with the geranyl moiety [41 > 18, 42 > 3, 40 ≒ 4] or those forming the 2,2-dimethyl-
2H-pyran structure with 5-OH group [41 > mammea E/BD cyclo D (44, IC50 = 53.9 µM), 42 
> mammea E/BC cyclo D (43, 23.1 µM)]; (3) compounds with the 4-propylcoumarin 

Figure 3. Plausible generative pathway of 1 and 2.



Pharmaceuticals 2023, 16, 231 5 of 12

2.4. Anti-Proliferative Effects of the Coumarin Constituents against Human Prostate Carcinoma
LNCaP Cells

Chemical studies on the flowers of M. siamensis allowed the isolation of the two above-
mentioned new coumarin-related polysubstituted benzofurans, mammeasins P (1) and Q
(2), and 45 coumarin constituents (3–47) (Figure 4). As has been previously reported [25–29],
these isolates were obtained from the active EtOAc-soluble fraction of the methanol ex-
tract to furnish the following isolation yields from the dried material: mammeasins A (3,
0.0250%), B (4, 0.0083%), C (5, 0.0008%), D (6, 0.0047%), E (7, 0.0102%), F (8, 0.0015%), G (9,
0.0025%), H (10, 0.0009%), I (11, 0.0008%), J (12, 0.0006%), K (13, 0.0008%), L (14, 0.0006%),
M (15, 0.0021%), N (16, 0.0007%), and O (17, 0.0015%); surangins B (18, 0.0272%), C (19,
0.0571%), and D (20, 0.0600%); kayeassamin A (21, 0.0578%), 8-hydroxy-5-methyl-7-(3,7-
dimethylocta-2,6-dienyl)-9-(2-methyl-1-oxobutyl)-4,5-dihydropyrano [4,3,2-de]chromen-
2-one (22, 0.0015%), 8-hydroxy-5-methyl-7-(3,7-dimethylocta-2,6-dienyl)-9-(3-methyl-1-
oxobutyl)-4,5-dihydropyrano [4,3,2-de]chromen-2-one (23, 0.0012%); kayeassamins E (24,
0.0125%), F (25, 0.0435%), G (26, 0.0196%), and I (27, 0.0107%); mammeas A/AA (28,
0.0528%), A/AB (29, 0.0054%), A/AC (30, 0.1055%), A/AD [=mesuol (31, 0.0036%)], A/AA
cyclo D (32, 0.0039%), A/AB cyclo D (33, 0.0363%), A/AC cyclo D (34, 0.0109%), A/AA
cyclo F (35, 0.0010%), A/AC cyclo F (36, 0.0119%), B/AB cyclo D (37, 0.0016%), B/AC cyclo
D (38, 0.0062%), B/AC cyclo F (39, 0.0005%), E/BA (40, 0.0045%), E/BB (41, 0.0288%), E/BC
(42, 0.0130%), E/BC cyclo D (43, 0.0058%), and E/BD cyclo D (44, 0.0007%); and deacetyl-
mammeas E/AA cyclo D (45, 0.0025%), E/BB cyclo D (46, 0.0056%), and E/BC cyclo D (47,
0.0078%). To characterize the active constituents, the anti-proliferative effects of the isolates
against LNCaP cells were examined. However, evaluation of the coumarin constituents
(21–23, 29, 31, 32, and 39), including the new compounds 1 and 2, for which we did not
have a sufficient sample amount to assess biological activity, could not be performed. As
shown in Table 3, seven coumarin constituents, including mammeasins A (3, IC50 = 1.2 µM)
and B (4, 0.63 µM), sugangin B (18, 1.5 µM), kayeassamins E (24, 3.0 µM) and G (26, 3.5 µM),
and mammeas E/BA (40, 0.88 µM), E/BB (41, 0.52 µM), and E/BC (42, 0.12 µM), showed
relatively potent anti-proliferative activity. The structural requirements of the coumarins
for the activity were suggested as the following: (1) regardless of the structure of the
substitutions at C-4, C-5, C-6, and C-8, coumarins with 7-OH group (e.g., 3, 4, 18, 24, 26, 40,
41, and 42) were essential for the strong activity; (2) compounds with the 6-prenylcoumarin
moieties showed stronger or equivalent activity to those with the geranyl moiety [41 > 18,
42 > 3, 40
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Table 3. IC50 values of anti-proliferative effects of coumarin constituents (3–20, 24–28, 30, 33–38,
40–47) from M. siamensis flower against LNCaP cells.

Treatment IC50 (µM) Treatment IC50 (µM)

Mammeasin A (3) 1.2 Kayeassamin G (26) 3.5
Mammeasin B (4) 0.63 Kayeassamin I (27) 16.1
Mammeasin C (5) 30.5 Mammea A/AA (28) 51.9
Mammeasin D (6) 25.0 Mammea A/AC (30) 26.2
Mammeasin E (7) 5.9 Mammea A/AB cyclo D (33) >100 (82.7) (a)

Mammeasin F (8) 16.7 Mammea A/AC cyclo D (34) >100 (90.0) (a)

Mammeasin G (9) 83.5 Mammea A/AA cyclo F (35) 21.3
Mammeasin H (10) 69.4 Mammea A/AC cyclo F (36) 39.7
Mammeasin I (11) ca 100 Mammea B/AB cyclo D (37) 61.9
Mammeasin J (12) >100 (86.9) (a) Mammea B/AC cyclo D (38) >100 (78.4) (a)

Mammeasin K (13) >100 (79.9) (a) Mammea E/BA (40) 0.88
Mammeasin L (14) 49.4 Mammea E/BB (41) 0.52
Mammeasin M (15) >100 (91.3) (a) Mammea E/BC (42) 0.12
Mammeasin N (16) ca 100 Mammea E/BC cyclo D (43) 23.1
Mammeasin O (17) 35.2 Mammea E/BD cyclo D (44) 53.9

Surangin B (18) 1.5 Deacetylmammea E/AA cyclo D (45) 25.9
Surangin C (19) 11.8 Deacetylmammea E/BB cyclo D (46) 34.0
Surangin D (20) 24.7 Deacetylmammea E/BC cyclo D (47) 19.7

Kayeassamin E (24) 3.0 IC50 (nM)

Kayeassamin F (25) 6.2 Paclitaxel (b) [40,41] 3.7

Each value represents the mean ± S.E.M. (N = 5). (a) Values in parentheses represent the control cell viability at
100 µM. (b) The positive control, paclitaxel, was purchased from FUJIFILM Wako Pure Chemical Industries (Osaka,
Japan) [40,41].

3. Materials and Methods
3.1. Spectroscopy and Column Chromatography

The following instruments were used to obtain spectroscopic data: specific rotation,
JASCO P-2200 polarimeter (JASCO Corporation, Tokyo, Japan, l = 5 cm); UV spectra,
Shimadzu UV-1600 spectrometer; IR spectra, IRAffinity-1 spectrophotometer (Shimadzu,
Kyoto, Japan); 1H NMR spectra, JNM-ECA800 (800 MHz), JNM-LA500 (500 MHz), JNM-
ECS400 (400 MHz), and JNM-AL400 (400 MHz) spectrometers; 13C NMR spectra, JNM-
ECA800 (200 MHz), JNM-LA500 (125 MHz), JNM-ECA400 (100 MHz), and JNM-AL400
(100 MHz) spectrometers (JEOL, Tokyo, Japan); EI-MS and high-resolution EI-MS, JMS-
GCMATE mass spectrometer (JEOL, Tokyo, Japan); HPLC detector, SPD-10Avp UV-VIS
detector; and HPLC columns, Cosmosil 5C18-MS-II (Nacalai Tesque, Kyoto, Japan). For
NMR, the samples were dissolved in deuterated chloroform (CDCl3) at room tempera-
ture with tetramethylsilane as an internal standard. Columns of 4.6 mm × 250 mm and
20 mm × 250 mm were used for analytical and preparative purposes, respectively.

The following chromatographic materials were used for column chromatography
(CC): highly porous synthetic resin, Diaion HP-20 (Mitsubishi Chemical, Tokyo, Japan);
normal-phase silica gel CC, silica gel 60 N (Kanto Chemical, Tokyo, Japan; 63–210 mesh,
spherical, neutral); reversed-phase ODS CC, Chromatorex ODS DM1020T (Fuji Silysia
Chemical, Aichi, Japan; 100–200 mesh); TLC, pre-coated TLC plates with silica gel 60F254
(Merck, Darmstadt, Germany, 0.25 mm) (normal-phase) and silica gel RP-18 WF254S (Merck,
0.25 mm) (reversed-phase); and reversed-phase HPTLC, pre-coated TLC plates with silica
gel RP-18 WF254S (Merck, 0.25 mm). Detection was performed by spraying with 1%
Ce(SO4)2–10% aqueous H2SO4, followed by heating.

3.2. Plant Material

M. siamensis flowers were collected from Nakhonsithammarat Province, Thailand, in
September 2006, as previously described [25–29]. The plant material was identified by one
of the authors (Y.P.). A voucher specimen (2006.09. Raj-04) was deposited in our laboratory.
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3.3. Extraction and Isolation

The methanolic extract (25.66% dried material) of the dried flowers of M. siamensis
(1.8 kg) was partitioned using a solution of EtOAc-H2O (1:1, v/v) to yield an EtOAc-soluble
fraction (6.84%) and aqueous phase. The EtOAc-soluble fraction (89.45 g) was subjected to
normal-phase silica gel column chromatography [3.0 kg, n-hexane-EtOAc (10:1→7:1→5:1,
v/v)→EtOAc→MeOH] to produce 11 fractions [Fr. 1 (3.05 g), Fr. 2 (2.86 g), Fr. 3 (11.71 g),
Fr. 4 (1.62 g), Fr. 5 (4.15 g), Fr. 6 (6.29 g), Fr. 7 (2.21 g), Fr. 8 (2.94 g), Fr. 9 (10.23 g), Fr. 10
(11.17 g), and Fr. 11 (21.35 g)], as previously reported [25]. Fraction 2 (2.86 g) was subjected
to reversed-phase silica gel CC [74 g, MeOH–H2O (70:30→90:10, v/v)→MeOH→acetone]
to yield nine fractions [Fr. 2-1 (21.0 mg), Fr. 2-2 (26.2 mg), Fr. 2-3 (114.1 mg), Fr. 2-4
(425.0 mg), Fr. 2-5 (182.8 mg), Fr. 2-6 (79.6 mg), Fr. 2-7 (94.8 mg), Fr. 2-8 (1211.4 mg), and
Fr. 2-9 (328.8 mg)], as described previously [27]. Fraction 2-3 (114.1 mg) was purified via
HPLC [Cosmosil 5C18-MS-II, MeOH–1% aqueous AcOH (80:20, v/v)] to give mammeasins
P (1, 4.8 mg, 0.0004%) and Q (2, 6.7 mg, 0.0005%). Fraction 5 (4.15 g) was subjected to
reversed-phase silica gel CC [120 g, MeOH–H2O (80:20→85:15, v/v)→MeOH→acetone]
to obtain six fractions [Fr. 5-1 (115.7 mg), Fr. 5-2 (2789.8 mg), Fr. 5-3 (515.4 mg), Fr. 5-4
(430.0 mg), Fr. 5-5 (119.2 mg), and Fr. 5-6 (1110.0 mg)], as previously reported [28]. Fraction
5-2 (517.0 mg) was purified via HPLC [Cosmosil 5C18-MS-II, MeOH–1% aqueous AcOH
(85:15, v/v) or MeOH–1% aqueous AcOH (80:20, v/v)] to give mammea B/AC cyclo F (39,
1.2 mg, 0.0005%) together with mammeasins M (15, 5.0 mg, 0.0021%) and O (17, 3.7 mg,
0.0015%) and mammeas A/AA (28, 101.2 mg, 0.0418%), A/AC (30, 112.9 mg, 0.0466%),
A/AA cyclo D (32, 3.7 mg, 0.0015%), A/AC cyclo F (36, 4.6 mg, 0.0019%), E/BC cyclo D
(43, 14.0 mg, 0.0058%), and E/BD cyclo D (44, 1.8 mg, 0.0007%) [27–29].

3.3.1. Mammeasin P (1)

Pale-yellow oil; UV [MeOH, nm (log ε)]: 247 (4.23), 267 (4.03), 354 (3.29); IR (film):
1743, 1622, 1456, 1167, 1120; 1H-NMR (500 MHz, CDCl3) δ: see Table 1; 13C-NMR data
(125 MHz, CDCl3) δC: see Table 1; 2D-NMR spectra: see Figures S1–S5; EIMS m/z (%): 386
(M+, 71), 371 (100); high-resolution EIMS m/z 386.1724 (calculated for C22H26O6, 386.1729).

3.3.2. Mammeasin Q (2)

Pale-yellow oil; [α]22
D 0 (c = 0.34, CHCl3); UV [MeOH, nm (log ε)]: 247 (4.23), 268

(4.04), 352 (3.36); IR (film): 1743, 1622, 1456, 1169, 1123 cm–1; 1H-NMR (500 MHz, CDCl3)
δ: see Table 1; 13C-NMR data (125 MHz, CDCl3) δC: see Table 1; 2D-NMR spectra: see
Figures S6–S10; EIMS m/z (%): 400 (M+, 100); high-resolution EIMS m/z 400.1880 (calcu-
lated for C23H28O6, 400.1886).

3.4. Bioassay
3.4.1. Reagents

RPMI 1640 medium was purchased from FUJIFILM Wako Pure Chemical Industries
(Osaka, Japan), fetal bovine serum (FBS) from Biosera (Nuaille, France), other chemicals
from FUJIFILM Wako Pure Chemical Industries (Osaka, Japan), and 96-well microplates
from Sumitomo Bakelite (Tokyo, Japan).

3.4.2. Cell Culture Assay

Experiments were performed in accordance with previously reported methods [40,41],
with slight modifications. LNCaP clone FGC (89110211) was purchased from KAC (Kyoto,
Japan). Cells were cultured in RPMI 1640 medium (FUJIFILM Wako) supplemented with
10% FBS, 1 mM sodium pyruvate, 100 U/mL penicillin G, and 100 µg/mL streptomycin at
37 ◦C in a 5% CO2 environment. LNCaP cells were seeded in 96-well plates at a density of
5 × 103 cells/well in 100 µL/well medium, and 100 µL/well of medium containing a test
sample was added after an initial incubation of 24 h. Cell viability was detected after 96 h
of incubation using the Cell Counting Kit-8 (CCK-8). CCK-8 was purchased from Dojindo
Molecular Technologies (Kumamoto, Japan). The O.D. of the yellow-colored formazan
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solution was measured using a microplate reader at 450 nm (reference: 650 nm) (Table S1).
The IC50 value was determined graphically, and the inhibition (%) was calculated using the
following formula:

Inhibition (%) = [(O.D. (sample) − O.D. (control))/(O.D. (normal) − O.D. (control))] × 100

Each test compound was dissolved in DMSO and added to the medium (final concen-
tration in 0.1% DMSO).

3.4.3. Statistical Analysis

Values are expressed as the mean ± standard error (S.E.M.). One-way analysis of
variance (ANOVA) followed by Dunnett’s test was used for statistical analysis. Probability
(p) values less than 0.05 were considered significant.

4. Conclusions

The methanol extract of the flowers of M. siamensis (Miq.) showed anti-proliferative
activity against human prostate carcinoma LNCaP cells (IC50 = 2.0 µg/mL). Two new
coumarin-related polysubstituted benzofurans, mammeasins P (1) and Q (2), were isolated,
and their structures were elucidated based on their spectroscopic properties derived from
the physicochemical evidence including NMR and MS analyses as well as considering the
plausible generative pathway. We have already achieved the total syntheses of mammeasins
C (5) and D (6), which were isolated as new compounds from the same plant material [42],
and we would like to conduct the similar synthetic studies for 1 and 2 to further confirm
the stated properties in the future.

Among the isolates, seven coumarin constituents, including mammeasins A (3,
IC50 = 1.2 µM) and B (4, 0.63 µM), sugangin B (18, 1.5 µM), kayeassamins E (24, 3.0 µM)
and G (26, 3.5 µM), and mammeas E/BA (40, 0.88 µM), E/BB (41, 0.52 µM), and E/BC
(42, 0.12 µM), showed relatively potent anti-proliferative activity. The results suggest the
following structural requirements of the coumarins: (1) 7-OH group was essential for the
strong activity; (2) the 6-prenylcoumarin moieties showed stronger or equivalent activity to
those with the geranyl moiety or those forming the 2,2-dimethyl-2H-pyran structure with
5-OH group; (3) the 4-propylcoumarin moieties with the 1’-acetoxy group showed stronger
activity than those of the corresponding deacetyl analogs or those forming the 2-methyl-3,4-
dihydro-2H-pyran structure with 5-OH group. We previously reported that several of these
coumarins, which exhibit potent anti-proliferative activity against LNCaP cells, have mod-
erate enzymatic inhibitory activity against testosterone 5α-reductase [3 (IC50 = 19.0 µM), 4
(24.0 µM), 24 (33.8 µM), 26 (17.7 µM), 40 (16.2 µM), 41 (16.8 µM), and finasteride (0.12 µM),
a commercially available 5α-reductase inhibitor] (Table S2) [27]. The role of 5α-reductase
inhibitors in prostate cancer chemoprevention remains controversial [43–45]. Tindall and
Rittmaster reported that the inhibition of 5α-reductase represents a valid target for prostate
cancer risk reduction and treatment strategy [43]. In contrast, Chau and Figg reported that
cancer prevention trials with 5α-reductase inhibitors have shown a decreased incidence
of low-grade prostate cancer but a potentially increased risk of high-grade disease [44].
Furthermore, a large population-based prospective study on the risk of prostate cancer
in men treated with 5α-reductase inhibitors was conducted by Wallerstedt et al. They
concluded that treatment with 5α-reductase inhibitors for lower urinary tract symptoms
is safe with respect to prostate cancer risk [45]. Therefore, further studies are needed to
elucidate whether these coumarins, which have potent anti-proliferative activity against
LNCaP cells with moderate 5α-reductase inhibitory activity, are promising therapeutic
candidates for prostate cancer.
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