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Abstract: Triazole-based acetamides serve as important scaffolds for various pharmacologically
active drugs. In the present work, structural hybrids of 1,2,4-triazole and acetamides were furnished
by chemically modifying 2-(4-isobutylphenyl) propanoic acid (1). Target compounds 7a–f were
produced in considerable yields (70–76%) by coupling the triazole of compound 1 with different
electrophiles under different reaction conditions. These triazole-coupled acetamide derivatives were
verified by physiochemical and spectroscopic (HRMS, FTIR, 13CNMR, and 1HNMR,) methods. The
anti-liver carcinoma effects of all of the derivatives against a HepG2 cell line were investigated.
Compound 7f, with two methyl moieties at the ortho-position, exhibited the highest anti-proliferative
activity among all of the compounds with an IC50 value of 16.782 µg/mL. 7f, the most effective
anti-cancer molecule, also had a very low toxicity of 1.190.02%. Molecular docking demonstrates that
all of the compounds, especially 7f, have exhibited excellent binding affinities of −176.749 kcal/mol
and −170.066 kcal/mol to c-kit tyrosine kinase and protein kinase B, respectively. Compound 7f is
recognized as the most suitable drug pharmacophore for the treatment of hepatocellular carcinoma.

Keywords: 2-(4-isobutylphenyl) propanoic acid; hepatocellular carcinoma; anti-cancer; 1,2,4-triazole;
molecular docking; acetamides

1. Introduction

In the 21st century, cancer and other infectious diseases are the most prevalent causes of
death globally [1]. According to the World Health Organization (WHO), 11.5 million deaths
are expected by 2030 due to cancer [2]. Among all types of cancer, hepatocellular carcinoma
is among the leading causes of death, accounting for approximately 92% mortality rates
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worldwide [3,4]. Thus, the development of new anti-cancer drugs remains a huge clinical
need for improving therapeutic efficacy and controlling cancer [5]. The development of
multi-target anti-cancer agents is the major focus of researchers globally due to the different
drawbacks associated with already-used chemotherapeutics such as undesirable side effects,
a lack of selectivity, systemic toxicity, and the emergence of multidrug resistance [6–9].
Intensive efforts must be made to discover and develop new, effective, tailored –anti-cancer
agents with better safety profiles and drug-like properties.

Structurally modified nitrogen-containing heterocyclic moieties have a broad spectrum
of applications for the development of novel therapeutic drugs as shown in Figure 1 [10,11].
Approximately 75% of Food and Drug Administration-approved drugs are nitrogen-based
moieties [12]. Nitrogen-containing heterocyclic compounds have been synthesised in large
numbers in recent times. They exhibit anti-tubercular [13], anti-cancer [14], anti-fungal [15],
anti-microbial [16], anti-viral [17], and other biological properties such as genotoxicity and
lipid peroxidation [18], and anti-inflammatory properties [19].
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Figure 1. Structure of some common 1,2,4-triazole-based drugs.

Molecular hybridization is an easy and efficient method to combine various important
drug pharmacophores. Our ongoing research focuses on the design and synthesis of
pharmacologically active, diverse polyvalent scaffolds as anti-cancer agents. The versatile
nature of 1,2,4-triazole has been reported to be of great importance in medicinal chemistry,
such as for its anti-cancer [20], anti-fungal [21], anti-bacterial [22], anti-microbial, and anti-
tumor properties [23], as well as pyrophosphatases and phosphodiesterase [24]. Acetamide
has been identified as the most significant pharmacophore of anti-cancer drugs [25].

On this basis, we have created a hybrid of acetamide and 1,2,4-triazole pharmacophore
by chemical derivatization of 2-(4-isobutylphenyl)propanoic acid in an attempt to avoid
tumor progression. On each side of triazole and acetamide, we developed a molecular
framework with hydrophobic aryl rings. It improves the solubility of the drug and its
candidacy as a good drug molecule. Earlier, we reported the synthesis of various structural
hybrids of oxadiazole-based acetamide [26–29], and it has been proven from the literature
that heterocycle-based compounds possess good anti-cancer activity [30]. Thus, in an exten-
sion of our earlier research on heterocycles, –COOH group of 2-(4-isobutylphenyl)propanoic
acid was cyclized into a 1,2,4-triazole ring 4.
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2. Results
2.1. Chemistry

In the current study, 2-(4-isobutylphenyl)propanoic acid has been chemically modified
with improved clinical utility. Different N-arylated 5-aryl-1,2,4-triazole-coupled acetamides
(7a–f) have been synthesized in good yields by replacement of the H group of SH with
various electrophiles.

Scheme 1 depicts the synthetic route of final compounds 7a–f. The Fischer esterification
method was used to create compound 2 by refluxing compound 1 with absolute CH3OH at
76 ◦C for 3–4 h [31,32]. Compound 2 was slowly refluxed at 76 ◦C for 3–4 h with hydrazine
hydrate [32] in CH3OH and yielded 2-(4-isobutylphenyl)propane hydrazide (3). Molecule 3
was converted into its respective 5-(1-(4-isobutylphenyl) ethyl)-1,2,4-triazole-2-thiol (4) by
slowly heating it at 225 ◦C for 3–6 h with methyl isothiocyanate in 10% NaOH and absolute
CH3OH. Upon completion, the reaction was acidified to pH 4–5 with conc. HCl. Upon
acidification, precipitates appeared that had been separated as compound 4 by the process
of filtration. At room temperature, compound 4 was treated with various N-arylated
aralkyl/alkyl/aryl 2-bromoacetamides (6a–f) along with DCM and NaH as catalysts. The
structures of triazole-coupled acetamide scaffolds were verified by physiochemical and
spectroscopic (HRMS, FTIR, 13CNMR, and 1HNMR) methods.
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In the 1HNMR spectrum, –NH protons of the acetamide were the most deshielded
and their chemical shift value was observed around 10.27–9.64 ppm. In propanoic acid, the
protons of the aliphatic region were among the most shielded, with values ranging from
0.86–0.84 ppm. The presence of acetamide was confirmed by the appearance of signals
around 4.04 ppm for the CH2 group and in the range of 10.27–9.64 ppm for the NH group.
In 13CNMR, the appearance of C=O signals in the range of 164.15–168 ppm confirmed the
synthesis of acetamide. The presence of a triazole ring in the final derivatives was also con-
firmed by the appearance of signals in the range of 158.15 ppm and at 29.58 ppm for N-CH3.
In the 1HNMR spectrum, signals for N-CH3 were observed around 3.28 ppm. A distinctive
peak around 22.0 ppm corresponded to the protons of two -CH3 carbon nuclei. Signals
for the CH2 groups were observed between 44.18 to 20.19 ppm. By introducing some
electron-withdrawing substitutions and comparing them to electron-donating group substi-
tutions, we reported structure–activity relationships for the phenyl group. 3,5-disubstituted
triazole nuclei have a versatile nature and are important in the pharmaceutical industry. On
the basis of their medicinal importance, the anti-cancer activities of all of the compounds
were checked.

2.2. Anti-proliferative Potential

The anti-hepatocellular activity of afforded N-arylated 1,2,4-triazole coupled ac-
etamides (7a–f) was evaluated via MTT assay and these structural hybrids were screened
against a liver cancer HepG2 cell line [33]. All of the compounds demonstrated mild
to outstanding anti-cancer activity, as shown in Table 1. Among all of the compounds,
7f, with two methyl groups at positions 2 and 6 of the phenyl ring, displayed the best
anti-cancer potential with IC50 = 16.782 µg/mL. Compound 7a, which contains a methyl at
position 2 of the phenyl ring, also displayed good anti-cancer activity with an IC50 value
of 20.667 µg/mL but less than 7f. Compounds 7b, 7c, and 7e also exhibited a significant
anti-cancer effect but less than 7f and 7a. Compound 7d, with an electron-withdrawing
Cl substituent, displayed the lowest anti-hepatocellular activity with a 39.667 µg/mL
IC50 value.

Table 1. The anti-hepatocellular carcinoma and hemolytic activities of triazole-coupled acetamides 7a–f.

Compound Alkyl/Aryl Cell Viability
IC50 Value (µg/mL)

Hemolytic Activity
(Mean% ± S.D)

7a 2-methyl phenyl 20.667 2.46 ± 0.31
7b 2-methyl-4-bromo phenyl 33.565 2.43 ± 0.11
7c 4-ethyl phenyl 39.002 4.32 ± 0.24
7d 2-chloro phenyl 39.667 7.33 ± 0.42
7e phenyl 39.105 4.19 ± 0.02
7f 2,6-dimethyl phenyl 16.782 1.19 ± 0.02

Sorafenib 05.971
PBS 0.00 ± 0.0

Triton-X-100 100 ± 0.0

The cell viability of all of the compounds was further evaluated using various concen-
trations (3.125–200 µg) to test the dose response and % inhibition relationship as shown in
Table 2.

Figure 2 shows that compounds 7f and 7a produced the best results at a 25 µg/mL
dose among all of the compounds.

The dose response and % inhibition of the most potent compound, 7f, was checked at
various concentrations (Figure 3).
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Table 2. % inhibition of derivatives 7a–f at different concentrations (µg/mL).

Concentration
(µg/mL) 7a 7b 7c 7d 7e 7f

200 89.40 ± 0.34 89.50 ± 0.06 87.51 ± 0.20 87.70 ± 0.18 88.00 ± 1.44 88.36 ± 0.31
100 88.17 ± 0.26 89.39 ± 0.91 78.82 ± 10.78 78.33 ± 0.78 87.34 ± 2.09 87.71 ± 1.34
50 75.18 ± 5.99 88.64 ± 1.11 73.66 ± 15.54 76.69 ± 5.63 74.24 ± 13.16 86.57 ± 0.56
25 63.98 ± 1.67 31.90 ± 0.30 22.82 ± 0.29 19.52 ± 1.44 24.01 ± 6.12 85.90 ± 0.30

12.5 27.70 ± 6.46 25.23 ± 4.67 19.14 ± 1.25 19.11 ± 17.71 20.99 ± 3.13 33.96 ± 2.47
6.25 21.44 ± 6.24 24.75 ± 4.62 17.35 ± 1.32 17.32 ± 1.40 20.52 ± 7.11 19.55 ± 4.07

3.125 11.57 + 8.85 10.33 + 0.96 15.40 ± 2.01 14.27 ± 4.27 18.65 ± 0.50 8.40 ± 4.54
DMSO (-ve

Control) 0.0 0.0 0.0 0.0 0.0 0.0
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2.3. Hemolytic Activity Potential

Hemolytic activity was investigated by the reported method [34] using Triton-X-100
as a standard. All of the triazole-based acetamide derivatives showed very low cytotoxicity,
as shown in Table 1. Molecule 7f also presented very low toxicity at 1.19 ± 0.02 relative
to reference Triton-X-100. All of the other compounds had moderately good hemolytic
activity. Compounds 7a (2.46%), 7b (4.43%), 7c (4.32%), 7e (4.19%), and 7d (7.33%) also
exhibited low cytotoxicity.

2.4. Structure–Activity Relationship of 7a–f

The anti-hepatocellular potential of all of the derivatives, 7a–f, was evaluated against a
HepG2 cancer cell line at various concentrations via MTT assay. The most potent derivative
was 7f, which contains two methyl groups at ortho-positions of the phenyl ring (IC50
value of 16.782 µM). Compound 7d, which contained an electron-withdrawing Cl-group
in an orthogonal position, showed the lowest anti-cancer potency with an IC50 value
of 39.667 µM. The anti-proliferative activity of all of the derivatives was decreased in
the following order: 7f > 7a > 7b > 7c > 7e > 7d. This proves that the attachment of an
electron-donating CH3 group at the ortho-position increases the anti-cancer activity of the
compounds. Based on the results of the SAR of N-arylated 5-aryl-1,2,4-triazole-coupled
acetamide scaffolds 7a–f, it was determined that the -CH3 motif at the ortho-position of the
phenyl ring improved the anti-proliferative potential of the compounds.

2.5. Molecular Docking

Molecular docking screenings were carried out to theoretically predict the most promis-
ing protein targets of compounds by molecular docking to some cancer targets. Five
major targets in the treatment of cancer have been identified: human Aurora B kinase,
phosphatidylinositol 3-kinase alpha (PI3Kalpha), the signal transducer and activator of
transcription 3 (STAT3), protein kinase B (Akt), and c-kit tyrosine kinase (c-Kit). The web
page http://www.swisstargetprediction.ch/ (Accessed on 7 November 2022) was used
to study the potential anti-cancer effect of new synthesized molecules [35]. The results
suggest that molecules may be effective against kinase targets.

http://www.swisstargetprediction.ch/
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Some important kinases and important targets in cancer treatment were determined
by the literature review. c-kit tyrosine kinase endorses cellular proliferation by activating
signal transduction mechanisms in response to stem cell factor adhesion [36]. Akt plays
a vital role in internal cell signalling by accelerating cellular survival and proliferation.
Its path becomes irregular during cancer [37]. Aurora kinase B regulates the cell cycle
and is ubiquitously expressed in cancerous cells. [38]. The insulin-like growth factor-1
receptor (IGF-1R) has a vital role in cells in conjunction with PI3K–AKT and Ras–Raf–
MEK signalling cascades, which control proliferation and apoptosis within cells. It is
considered an important therapeutic target because of its deregulation of solid tumor
types [39]. Phosphatidylinositol 3-kinase alpha is an intracellular lipid kinase that regulates
cell survival, development, proliferation, and metabolism. It has been linked to a number
of human cancers [40]. STAT3 is a secret transcription factor; it is regarded as an appealing
target of anti-cancer therapeutics [41].

Table 3 shows the selected targets, grid box coordinates, their protein data bank codes,
and Moldock scores. The docking findings demonstrate that molecules have the ability to
affect a variety of targets. c-kit and Akt specifically are anticipated to have a high binding
potential with cancer therapeutic targets, as demonstrated in Table 3.

Table 3. Docking data of scaffolds 7a–f to cancer proteins with grid box coordinates, codes, and mol.
docking scores.

Targets
Protein Kinase B

(Akt)
(PKB)

c-Kit Tyrosine
Kinase
(c-Kit)

Human Aurora B
Kinase

(AURKB)

Phosphatidylinositol
3-Kinase Alpha

(PI3Kalpha)

Signal Transducer and
Activator of

Transcription 3 (STAT3)

PDB ID 2X39 1T46 4AF3 4FA6 6NJS

Center of docking X:43 X:28 X:21 X:44 X:13
Coordinates Y:31 Y:26 Y:-22 Y:14 Y:56

Z:111 Z:39 Z:-10 Z:31 Z:0.32
Reference Ligand X39 STI VX6 0TA KQV

Ligands
Mol. Dock

Score
(Kcal/mol)

Mol. Dock Score
(Kcal/mol)

Mol. Dock Score
(Kcal/mol)

Mol. Dock Score
(Kcal/mol)

Mol. Dock Score
(Kcal/mol)

7a
7b

−166.843
−166.371

−173.411
−167.882

−145.234
−138.33

−139.389
−136.267

−125.105
−120.348

7c −162.234 −167.814 −137.943 −134.596 −118.623
7d −154.675 −158.747 −132.083 −124.135 −107.246
7e −156.207 −161.394 −136.421 −131.706 −113.82
7f −170.066 −176.749 −149.617 −149.36 −125.441

Reference
Molecules −130.624 −181.533 −144.231 −112.819 −197.521

Figure 4 demonstrates 2D and 3D diagrammatic representations displaying the molecu-
lar bindings between the reference ligand SIT and the active pocket of c-Kit tyrosine kinase.
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The docking findings demonstrate that all of the compounds have good binding affin-
ity to kinase protein. The protein c-kit tyrosine kinase is expected to interact strongly with
cancer-targeted therapeutics. Table 4 shows the docked complexes’ categories, modes of in-
teractions, binding affinities, and by-products. Each ligand’s hydrophobic contacts and hy-
drogen bonding interactions were evaluated within the receptor protein’s binding pocket.

Table 4. Docking of scaffolds 7a–f to protein c-kit tyrosine kinase.

Ligand (ACE) (kcal/mol) Category Types Interacting Residues

7a −173.411 H-bond Alkyl
LEU595, LYS623, VAL654,
LEU644, LEU595,LEU644,

CYS673, CYS809, and VAL668.
Hydrophobic Pi-alkyl TYR672.

7b

−167.882 H-bond Sulfur-X CYS809.

Hydrophobic

C-alkyl

Pi-alkyl

LEU595, VAL654, LEU644,
CYS809, LEU595, ILE808,

LEU644, AL654.
TYR672, HIS790, and PHE811.

7c −167.814 H-bond Conventional GLU640.
Hydrophobic Pi-Alkyl HIS790.

Hydrophobic C-alkyl

VAL643, VAL603, LYS623,
VAL668, LEU783, CYS788,
LYS623, LEU644, VAL668,

ALA621, and CYS788.

7d

−158.747 H-bond Conventional GLU640 and ASP810.

Hydrophobic C-alkyl
Pi-alkyl

ILE808.
VAL603, VAL643, LEU783,
CYS788, CYS809, LEU595,

VAL603, VAL643, and LEU783.

7e

−161.394 H-bond Conventional CYS673,

Hydrophobic C-alkyl
Pi-alkyl

LEU595, VAL654, LEU644,
CYS809, LYS623, LEU644,

LEU644, TYR672, and VAL668.

7f

−176.749 H-bond
Conventional

H-bond
Pi-sigma

GLU640, ASP810,
And HIS790.

Hydrophobic Alkyl

VAL603, LYS623, VAL643,
LEU783, CYS788, LYS623,
LEU644, VAL668, CYS809,

ILE571, and CYS788.

Reference Ligand H-bond Conventional ALA232, GLU236, MET282,
ASP293, GLU279,

STI −181.533 Other C-H bond MET229, GLY159,

Hydrophobic C-alkyl VAL166, LEU158, ALA179,
LYS181, and LEU183.

Compound 7f bonded to c-kit tyrosine kinase with the most suitable binding pose and
a low binding energy of −176.749 kcal/mol. It formed an H-bond with Asp810 and Glu640.
Hydrophobic interactions occurred such as the pi-sigma bond with Thr670, His790, and
Val643. Other hydrophobic interactions involved alkyl interactions with Val603, Val668,
Leu644, Leu783, and Ile571, pi-sulfur interactions with Cys788 and Lys623, and amide-
pi-stacked interactions with Cys809 residue. It also interacts with Val654, Ile789, Leu647,
Ile808, Ile653, and Phe811 residues through van der Waals interaction. The 2D and 3D
diagrammatic expressions of the binding interactions of 7f and c-kit tyrosine kinase are
shown in Figure 5.
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Figure 5. Binding interaction of docked ligand 7f in the active site of c-Kit Tyrosine Kinase.

Compound 7a combines with c-kit tyrosine kinase with the most suitable binding
poses with a low binding energy of −173.411 kcal/mol. Hydrophobic interactions of 7a
involved a pi-sigma bond with Leu595 and Leu644 and alkyl interactions with Cys673,
Cys809, Ala621, Val654, Tyr672, and Phe811. It also interacts with Gly676, Leu799, Asp810,
Leu647, Leu783, His790, Ile808, Glu640, Thr670, Val603, and Asp677 residues by van der
Waals interactions. The 2D and 3D diagrammatic expressions of the binding interactions of
7a and c-kit tyrosine kinase are shown in Figure 6.
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Figure 6. Binding interaction of 7a in the active site of c-kit tyrosine kinase B.

The docked conformations of reference ligand X39 and protein kinase B were investi-
gated in order to calculate qualitative estimates and the molecular basis of the analyzed
bioactive molecules. Figure 7 shows 2D and 3D diagrammatic representations of the
molecular bindings between the reference ligand X39 and kinase B protein’s active pocket.
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According to the docking findings, all triazole-coupled acetamide scaffolds have a
significant ability to influence the protein kinase B moiety. Akt is anticipated to have a high
affinity for carcinoma therapeutic targets. Table 3 shows the docked complexes’ binding
interactions, classifications, kinds of interactions, and interacting residues. Each ligand’s
hydrophobic contacts and hydrogen bonding interactions were assessed within the receptor
protein’s binding site. Table 5 describes the ligand conformations that demonstrated the
greatest biological activity, as well as their suitable interactions in the receptors.

Table 5. Docking of scaffolds 7a–f to protein kinase B.

Ligand (ACE) (kcal/mol) Category Types Interacting Residues

7a −166.843 H-bond Conventional
C-H bond

GLY164.
SER9.

Other
Hydrophobic

Pi-sulfur
C-alkyl

PHE163.
VAL166, LYS181, and

EU183.

7b
−166.371 H-bond Conventional CYS809.

Hydrophobic C-alkyl LYS181, VAL166, and
LEU296.

7c −162.234 Hydrophobic Alkyl LYS181, VAL166, and
LEU183.

7d

−154.675 H-bond Conventional GLY161, LEU158.

Hydrophobic
C-H bond

C-alkyl
Pi-alkyl

ASP293.
VAL166, LYS181.

PHE239, and PHE439.

7e
−156.207 H-bond C-H bond CYS673.

Hydrophobic Alkyl LEU296.

7f −170.066 H-bond Conventional
C-H bond

GLY161, ASP293, and
ARG6.

ASP293.
Hydrophobic C-alkyl LYS181 and LEU183.

Reference Ligand H-bond Conventional
ALAA232, ASPA293,
META282, GLUA279,

GLUA236
X39 −130.624 Other C-H bond MET229, GLY159,

Hydrophobic C-alkyl
VAL166, LEU A183,
LEU A158, ALA179,

LYS and A181.

Compound 7a had the most suitable binding poses with a binding energy of−166.843 kcal/mol
to protein kinase B. Compound 7a had the most suitable binding poses with a low energy
of −166.843 kcal/mol to the catalytic site of protein kinase B. 7a bonded to protein kinase
B via H-bonding with Gly164, Phe163, and Thr162, a carbon–hydrogen bond with SerC9,
pi-sigma interaction with Gly161, and pi–sulfer interaction with Asp293. It bonded with
residues Leu183, val166, and Lys181 via hydrophobic alkyl interactions. Asn280, Lys277,
Glu279, ArgC6, Lys160, Glu236, Gly159, Lys165, and ThrC8 residues involve van der Waals
interactions among protein kinase B and compound 7a (Figure 8).
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7f and the protein kinase B complex is stabilized by H-bonding and van der Waals
interactions. 7f combines with the active site of the protein via H-bonding with Gly161,
ArgC6, and Asp293. Hydrophobic bonds are involved with alkyl interactions with Lys181
and Leu183 and pi-sigma interactions with Val166 residues. Figure 9 demonstrates 2D and
3D diagrams displaying the most suitable binding interactions between 7f and the active
pocket of the kinase B protein.
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3. Materials and Methods
3.1. General

In the present research, all of the starting materials were of analytical grade and were
purchased from Alfa Aesar or Sigma Aldrich. 2-(4-isobutylphenyl) propanoic acid was used
as a starting material. A Stuart SMP10 melting point apparatus was used for determining
the melting point of all of the derivatives. The structures of all of the triazole-based scaffolds
were confirmed by spectroscopy and physiochemical methods. An FT-IR spectrophotome-
ter (4000–400 cm−1) by BRUKER was used at the Hi-Tech Lab, GC University, Faisalabad.
1HNMR spectra were recorded on an Bruker Advance 500 MHz spectrophotometer us-
ing DMSO-d6, on 5 mm diameter tubes at the University of Copenhagen, Denmark. An
Bruker Advance NMR spectrophotometer was used to record 13C NMR spectra at 75 MHz
by using DMSO-d6, on 5 mm diameter tubes. The reactions were supervised by thin
layer chromatography.

3.2. General Procedure for the Synthesis of Synthesized N-Arylated 5-Aryl-1,2,4-Triazole-Coupled
Acetamide Scaffolds 7a–f
3.2.1. Synthesis of Methyl 2-(4-Isobutylphenyl)Propanoate (2)

Compound 2 was prepared by the reported method [42]. The compound (2) was
obtained as a pale yellow, oily liquid. Yield: (90%); b.p. 263–265 ◦C; IR (KBr) cm−1:
1736.32, 1203.36, 1162.83; 1H NMR (400 MHz, CDCl3) δ 7.15 (d, 2H, J = 8.0 Hz), 7.05 (d,
2H, J = 8.0 Hz), 3.67 (q, 1H), 3.60 (s, 3H), 2.40 (d, 2H, J = 8.0 Hz), 1.82 (m,1H), 1.44 (d, 3H,
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J = 8.0 Hz), 0.85 (d, 6H, J = 8.0 Hz). 13C NMR (101 MHz, CDCl3) δ 175.22 (C=O), 140.49
(C-1), 137.63 (C-4), 129.04 (C-2 & C-6), 127.31 (C-3 & C-5), 52.09 (OCH3), 44.99 (CH2-9),
40.11 (CH-7), 30.25 (CH-10), 22.21 (CH3-11 & CH3-12), 18.50 (CH3-8). HRMS (ESI+): m/z
calculated for [(C14H20O2)+H]+: 220.1463; found: 220.1460. Element analysis: C, 76.30; H,
9.16% (Figures S1 and S6).

3.2.2. Synthesis of 2-(4-Isobutylphenyl)Propanehydrazide (3)

Compound 3 was prepared by the reported method [43]. 2-(4-isobutylphenyl) propane
hydrazide was separated as a white, crystalline solid. Yield: (88%); m.p. 77–78 ◦C; IR
(KBr) cm−1: 3272.76, 2963.13, 1640.12, 1604.83, 1466.29, 1366.62, 906.66, 686.83. 1H NMR
(400 MHz, CDCl3) δ 9.50 (s, 1H), 7.13 (d, 2H, J = 8.0 Hz), 7.06 (d, 2H, J = 8.0 Hz), 3.48 (d,
2H), 3.46 (q, 1H), 2.40 (d, 2H, J = 8.0 Hz), 1.81 (m,1H), 1.48 (d, 3H, J = 8.0 Hz), 0.84 (d, 6H,
J = 8.0 Hz). 13C NMR (101 MHz, CDCl3) δ 175.24 (C=O), 140.49 (C-1), 137.59 (C-4), 129.57
(C-2 & C-6), 127.30 (C-3 & C-5), 44.96 (CH2-9), 40.11 (CH-7), 30.25 (CH-10), 22.19 (CH3-11 &
CH3-12), 18.23 (CH3-8). HRMS (ESI+): m/z calculated for [(C13H20N2O)+H]+. 220.1576;
found: 220.1574. Element analysis: C, 70.85; H, 9.16; N, 12.72% (Figures S2 and S7).

3.2.3. Synthesis of 5-(1-(4- Isobutylphenyl)Ethyl)-1,2,4-Triazole -2-Thiol (4)

In the current study, methyl isothiocyanate and 2-(4-isobutylphenyl) propane hy-
drazide (0.02 mol) were dissolved in 10% KOH soln. in an equimolar amount. For 10–11 h,
the mixture was set on refluxing at 95 ◦C. Thin-layer chromatography was used for moni-
toring the reaction. Upon completion, cold water was added to afford the precipitates of
product. Water was used to filter and wash the precipitates. The precipitates were further
purified with an ethanolic recrystallization process. The 5-(1-(4-isobutylphenyl)ethyl)-
1,2,4- triazole-2-thiol scaffold was crystalized as an off-white solid. 1HNMR (400 MHz,
CDCl3) δ 11.77 (s, 1H, SH), 7.05 (d, 2H, J = 8.0 Hz), 6.99 (d, 2H, J = 8.0 Hz), 3.96 (q, 1H),
3.18 (s, 3H), 2.39 (d, 2H, J = 8.0 Hz), 1.80 (m,1H), 1.62 (d, 3H, J = 8.0 Hz), 0.83 (d, 6H,
J = 8.0 Hz). 13C NMR (101 MHz, CDCl3) 155.16 (C-1 & C-4), 141.43 (C-1), 137.11 (C-4),
129.94 (C-2 & C-6), 126.87 (C-3 & C-5), 45.03 (CH2-9), 37.60 (CH-7), 30.67 (CH-10), 30.15
(CH3-N), 22.22 (CH3-11 & CH3-12), 20.20 (CH3-8). HRMS (ESI+): m/z calculated for
[(C15H21N3S)+H]+: 275.1456; found: 275.1454. Element analysis: C, 65.41; H, 7.69; N, 15.27;
S, 11.65% (Figures S3–S5 and S8).

3.2.4. Synthesis of N–Aryl/Alkyl 2-Bromoroacetamides 6a–f

Compounds 6a–f were synthesized using the reported method [27]. In an RBF,
12.0 moles N-substituted alkyl/aryl amines (5a–f) were dissolved in 10.0 mL of 5% Na2CO3
solution. Bromoacetyl bromide (12.0 mmoles) was gradually added to the reaction mixture
described above. Upon reaction completion, n-hexane was added to afford arylated deriva-
tives as precipitates which were further purified with an ethanolic recrystallization process
or column chromatography technique using ethyl acetate–petroleum ether (1:9).

3.2.5. Synthesis of N-Arylated 5-(1-(4-Isobutylphenyl)Ethyl)-1,2,4-Triazole-2-yl- 2-Sulfanyl
Coupled Acetamide Derivatives 7a–f

Various N-arylated 5-(1-(4-isobutylphenyl)ethyl)-1,2,4-triazole-2-yl-2-sulfanyl-coupled
acetamide compounds were prepared in good yield by thoroughly mixing 4 (0.02 mol)
with an equimolar amount of N-alkyl/aryl 2-bromoacetamides 6a–f using DMF and NaH
(0.01 mol). Thin-layer chromatography was used for monitoring the reaction. Upon reaction
completion, n-hexane was added to afford arylated derivatives as precipitates which were
further purified with an ethanolic recrystallization process or column chromatography
technique using ethyl acetate–petroleum ether (1:9).
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3.2.6. N-(2-Methylphenyl)-2-((5-(1-(4-isobutylphenyl)ethyl)-4-methyl-4H-1,2,4-triazol-3-
yl)thio)Acetamide (7a)

White, amorphous solid. Yield 73%, m.p 122–124 ◦C. IR: ν (cm−1): 3270, 1696, 1524,
1488, 1306, 1082, 756. 1HNMR (500 MHz, DMSO) δ 9.64 (s, 1H), 7.40 (d, J = 5.0 Hz), 7.20 (d,
J = 5.0 Hz), 7.15 (t, 1H), 7.09–7.06 (m, 5H), 4.33–4.29 (q, 1H), 4.04 (s, 2H), 3.28 (s, 3H), 2.40
(d, 2H, J = 10.0 Hz), 2.15 (s, 3H), 1.83–1.78 (m, 1H) 1.60 (d, J = 5.0 Hz), 0.85 (d, J= 10.0 Hz).
13C NMR (126 MHz, DMSO) δ 165.93, 158.08, 149.15, 139.59, 139.36, 135.90, 131.21, 130.27,
129.27, 126.81, 125.92, 125.18, 124.32, 44.15, 37.11, 35.47, 29.99, 29.53, 22.14, 20.93, 17.67
(Figures S9–S11). HRMS (ESI+): m/z calculated for [(C24H30N4OS)+H]+: 423.2119; found:
423.2214 (Figure S27). Analysis calculated for C24H30N4OS, C, 68.21; H, 7.16; N, 13.26;
S, 7.59%.

3.2.7. N-(4-Bromo-2-Mthylphenyl)-2-((5-(1-(4-Isobutylphenyl)Ethyl)-4-Methyl-4H-1,2,4-
Triazol-3-yl)Thio)Acetamide (7b)

Off-white, amorphous solid. m.p 122–124 ◦C. Yield 71%. IR: ν (cm−1): 3370, 1670,
1528, 1470, 1306, 659.93. 1HNMR (500 MHz, DMSO) δ 9.68 (s, 1H), 7.43 (s, 1H), 7.40 (d,
J = 5.0 Hz, 1H), 7.34 (dd, J = 10.0 Hz, 1H), 7.08–7.05 (m, 4H), 4.33–4.2 (q, 1H), 4.04 (s, 2H),
3.27 (s, 3H), 2.40 (d, 2H, J = 10.0 Hz), 2.15 (s, 3H), 1.80–1.75 (m, 1H), 1.60 (d, J = 10.0 Hz, 3H),
0.85 (d, J = 10.0 Hz, 6H). 13C NMR (126 MHz, DMSO) δ 166.17, 158.09, 149.05, 139.53, 139.30,
135.34, 133.77, 132.67, 129.25, 128.71, 126.78, 125.93, 44.15, 37.10, 35.47, 30.00, 29.53, 22.14,
20.92, 17.40 (Figures S12–S14). HRMS (ESI+): m/z calculated for [(C24H29BrN4OS)+H]+:
501.1324; found: 503.1313 (Figure S28). Analysis calculated for C24H29BrN4OS. Elemental
Analysis: C, 57.48; H, 5.83; N, 11.17; S, 6.39.

3.2.8. N-(4-Ethylphenyl)-2-((5-(1-(4-Isobutylphenyl)Ethyl)-4-Methyl-4H-1,2,4-Triazol-3-
yl)Thio)Acetamide (7c)

Off-white, amorphous solid. Yield 75%, m.p 100–102 ◦C. IR: ν (cm−1): 3235, 1682, 1517,
1468, 1320, 695. 1HNMR (500 MHz, DMSO) δ 10.18 (s, 1H), 7.43–7.42 (d, 2H, J = 5.0 Hz),
7.14–7.13 (d, 2H, J = 5.0 Hz), 7.05–7.01, (m, 4H,) 4.32–4.29 (q, 1H), 3.98 (s, 2H), 3.26 (s, 3H),
2.39(d, 2H, J = 5.0 Hz), 1.81–1.76 (m, 1H), 1.59 (d, J = 12, 3H), 1.17–1.14 (t, 3H) 0.84 (d,
J = 5.0 Hz, 6H). 13C NMR (126 MHz, DMSO) δ 165.44, 157.97, 149.05, 139.46, 139.35, 138.87,
136.40, 129.25, 127.91, 126.68, 119.14, 44.15, 37.84, 35.49, 29.97, 29.52, 27.54, 22.14, 20.89,
15.60 (Figures S15–S17). HRMS (ESI+): m/z calculated for [(C25H32N4OS)+H]+: 437.2375;
found: 437.2366 (Figure S29). Analysis calculated for C25H32N4OS, C, 68.77; H, 7.39; N,
12.83; S, 7.34.

3.2.9. N-(2-Chlorophenyl)-2-((5-(1-(4-Isobutylphenyl)Ethyl)-4-Methyl-4H-1,2,4-Triazol-3-
yl)Thio)Acetamide (7d)

White, amorphous solid. Yield 70%, m.p 123–125 ◦C. IR: ν (cm−1): 3330, 1691, 1515,
1452, 1315, 1081, 757. 1HNMR (500 MHz, DMSO) δ 9.90 (s, 1H), 7.75 (d, 1H, J = 10.0 Hz),
7.50 (d, 1H, J =10.0 Hz), 7.33–7.31 (t, 1H, J = 5.0 & 10.0 Hz), 7.21–7.18 (t, 1H, J = 5.0 & 10.0
Hz), 7.10–7.06 (m, 4H), 4.33–4.29 (q, 1H), 4.12 (s, 2H), 3.28 (s, 3H), 2.40(d, 2H, J = 5.0 Hz),
1.79–1.76 (m, 1H) 1.60 (d, J = 5.0 Hz, 3H), 0.84 (d, J = 10.0 Hz, 6H). 13C NMR (126 MHz,
DMSO) δ 166.56, 158.12, 148.93, 139.65, 139.28, 134.53, 129.50, 129.27, 127.43, 126.81, 126.14,
125.14, 44.07, 37.07, 35.48, 30.04, 29.53, 22.13, 20.97 (Figures S18–S20). HRMS (ESI+): m/z
calculated for [(C23H27ClN4OS)+H]+: 444.1672; found: 444.1697 (Figure S30). Analysis
calculated for C23H27ClN4OS, C, 62.36; H, 6.14; N, 12.65; S, 7.24.

3.2.10. N-(Phenyl)-2-((5-(1-(4-Isobutylphenyl)Ethyl)-4-Methyl-4H-1,2,4-Triazol-3-
yl)Thio)Acetamide (7e)

White, amorphous solid. Yield 74%, m.p 88–90 ◦C. IR: ν (cm−1): 3250, 1686, 1525, 1436,
1303, 1082, 757. 1HNMR (500 MHz, DMSO) δ 10.27 (s, 1H), 7.54 (d, 2H, J = 10.0 Hz), 7.32–
7.29 (t, 2H, J = 5.0 & 10.0 Hz), 7.10–7.02 (m, 5H), 4.31–4.29 (q, 1H), 4.01 (s, 2H), 3.29 (s, 3H),
2.39(d, 2H, J = 5.0 Hz), 1.79–1.76 (m, 1H), 1.59 (d, J = 5.0 Hz, 3H), 0.85 (d, J = 10.0 Hz, 6H).



Pharmaceuticals 2023, 16, 211 14 of 18

13CNMR (126 MHz, DMSO), δ 165.75, 158.10, 149.03, 139.60, 139.33, 138.68, 129.25, 128.74,
126.77, 123.42, 119.04, 44.10, 37.79, 35.41, 29.88, 29.49, 22.14, 20.89 (Figures S21–S23). HRMS
(ESI+): m/z calculated for [(C23H28N4OS)+H]+: 409.2044; found: 409.2054 (Figure S31).
Analysis calculated for C23H28N4OS, C, 67.62; H, 6.91; N, 13.71; S, 7.85.

3.2.11. N-(2,6-Dimethylphenyl)-2-((5-(1-(4-Isobutylphenyl)Ethyl)-4-Methyl-4H-1,2,4-
Triazol-3-yl)Thio)Acetamide (7f)

Off-white, amorphous solid. Yield 76%, m.p 150–152 ◦C. IR: ν (cm−1): 3272, 1640, 1516,
1445, 1388, 1081, 694. 1HNMR (500 MHz, DMSO) δ 9.68 (s, 1H), 7.12–7.02 (m, 7H), 4.40–4.23
(q, 1H), 4.06 (s, 2H), 3.29 (s, 3H), 2.29 (d, 2H, J = 10.0 Hz), 2.13 (s, 6H), 1.81–1.78 (m, 1H), 1.61
(d, J = 5.0 Hz, 3H), 0.85 (d, J= 10.0 Hz, 6H). 13C NMR (126 MHz, DMSO) δ 165.46, 157.98,
149.10, 139.60, 139.38, 135.06, 134.57, 129.26, 127.57, 126.83, 126.49, 44.15, 36.59, 35.46, 29.97,
29.54 (Figures S24–S26). HRMS (ESI+): m/z calculated for [(C25H32N4OS)+H]+: 437.2375;
found: 437.2366 (Figure S32). Analysis calculated for C25H32BN4OS, C, 68.77; H, 7.39; N,
12.83; S, 7.34.

3.3. Experimental Procedures for Biological Activities
3.3.1. Cell Culture and Treatment

Human HepG2 liver cancer cell lines were cultured by Dulbecco’s modified Eagle’s
medium. It is composed of 100 µg/mL streptomycin, 100 units/mL penicillin, and 10% FBS.
A humidified atmosphere was provided for incubation at 37 ◦C with 5% CO2. The anti-
hepatocellular therapeutic potential of triazole-based scaffolds was evaluated by dissolving
its different concentrations in 0.05% DMSO.

3.3.2. Evaluation of Cell Viability

An MTT assay was applied for evaluation of cell viability against the HepG2 cell
line [44]. In short, different concentrations of new triazole-based scaffolds were incubated
with HepG2 cell lines for 48 h. After incubation, 5 mg/mL of 10 µL MTT solution was
added in each plate and they were further incubated at 37 ◦C for 4 h. The percentage of
cell viability was calculated at 490 nm after the addition of 150µL DMSO into a microplate
reader (Thermo Scientific, Waltham, MA, USA).

3.3.3. Hemolytic Activity Potential

Hemolytic activity was investigated by the reported method [45,46] using Triton-X-100
as standard.

3.4. Molecular Docking of Triazole-Coupled Acetamides

Docking experiments for all of the scaffolds were carried out in order to compre-
hend the potential interaction process of the synthesized anti-cancer compounds on the
HepG2 cancer cell line. The website https://www.rcsb.org was used for drawing the
structures of PI3Kalpha, Akt, c-kit tyrosine kinase, human Aurora B kinase, and STAT3
from the RCSB Protein Data Bank under the PDB IDs of 4FA6, 2X39, 1T46, 4AF3, and
6NJS, respectively [36–39,47]. ChemDraw 20.1.1 was used to create and reduce the 3D
SDF structures of all of the compounds, which were then transferred to MarvinSketch.
Prior to docking, the target proteins’ frameworks were evaluated, and errors in amino
acid structures were rectified using Molegro Virtual Docker software [48]. The grid boxs’
centers were chosen to be the co-crystallized ligands of proteins. They re-docked in order to
validate the in silico process. Molegro Virtual Docker was applied to dock active chemicals
10 times to the target proteins’ receptors. The sequences with the lowest interaction affinity
and excellent connections with the targets were separated for further detailed analysis. The
molecular bindings between the target and new derivatives were visualized in 2D using
Discovery Studio Visualizer Software 2021.

https://www.rcsb.org
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4. Conclusions

A series of new anti-cancer compounds (7a–f) were synthesized in moderate to good
yield (73–76%) by combining compound 4 with various electrophiles under different
reaction conditions (Table 1, Scheme 1). Because of its low bioavailability of 38–49%,
Sorafenib necessitates a significant daily dose in cancer therapy. Sorafenib is a very costly
medicine with many side effects. We have incorporated various electron-donating and
electron-withdrawing groups into electrophiles to test structure–activity relationships
at various concentrations. All of the molecules demonstrated medium to outstanding
anti-cancer activity, comparable to sorafenib, which diversified according to aryl ring
substitution, as shown in Table 1. These triazole-based acetamide derivatives also exhibited
low cytotoxicity, with values ranging from 7.33% to 1.19% in comparison to the 100%
cytotoxicity exhibited by the reference standard Triton X100. Compounds 7f and 7a showed
the highest anti-cancer potential, with IC50 values of 16.782 µg/mL and 20.667 µg/mL,
respectively. On the other hand, the triazole derivative containing an electron-withdrawing
chloro moiety demonstrated the least anti-proliferative activity with an IC50 value of 39.667
µg/mL. The sequence of anti-cancer potential was found to be 7f > 7a > 7b > 7c > 7e > 7d.
The anti-cancer potential of all of the compounds was further investigated by molecular
docking studies and the results were in accordance with in-vitro studies. In silico studies
have shown that the molecules have strong affinity for kinase targets. Molecules 7f and
7a have shown their anti-cancer effects, especially by affecting Akt and c-lit molecular
targets. According to in silico modelling studies, 7f has an outstanding docking score with
the lowest binding energy of −170.066 kcal/mol, which is lower than the reference ligand
X39 for protein kinase B (−130.624 kcal/mol). We concluded that compound 7f contained
electron-donating methyl groups at the 2 and 6 position of the aryl ring and showed good
anti-cancer activity, low cytotoxicity, and good thrombolytic activity. Thus, compound 7f
might be utilized to synthesize new anti-cancer drugs in the near future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph16020211/s1, Figure S1: 1HNMR spectrum of compound
2, Figure S2: 1HNMR spectrum of compound 3, Figure S3: 1HNMR spectrum of compound 4,
Figure S4: 1HNMR spectrum of compound 4 (aromatic region), Figure S5: 1HNMR spectrum of
compound 4 (aliphatic region), Figure S6: 13C NMR spectrum of compound 2, Figure S7: 13C NMR
spectrum of compound 3, Figure S8: 13C NMR spectrum of compound 4, Figure S9: 1H NMR
spectrum of 7a, Figure S10: COSYH NMR spectrum of 7a, Figure S11: 13C NMR spectrum of 7a,
Figure S12: 1H NMR spectrum of 7b, Figure S13: COSYH NMR spectrum of 7b, Figure S14: 13C
NMR spectrum of 7b, Figure S15: 1H NMR spectrum of 7c, Figure S16: COSYH NMR spectrum of
7c, Figure S17: 13C NMR spectrum of 7c, Figure S18: 1H NMR spectrum of 7d, Figure S19: COSYH
NMR spectrum of 7d, Figure S20: 13C NMR spectrum of 7d, Figure S21: 1H NMR spectrum of 7e,
Figure S22: COSYH NMR spectrum of 7e, Figure S23: 13C NMR spectrum of 7e, Figure S24: 1H
NMR spectrum of 7f, and Figure S25: COSYH NMR spectrum of 7f. Figure S26: 13C NMR spectrum
of 7f. Figure S27: HRMS spectrum of compound 7a, Figure S28: HRMS spectrum of compound 7b,
Figure S29: HRMS spectrum of compound 7c, Figure S30: HRMS spectrum of compound 7d, Figure
S31: HRMS spectrum of compound 7e, and Figure S32: HRMS spectrum of compound 7f.
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