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Abstract: The present study proposed the synthesis of a novel acridine derivative not yet described
in the literature, chemical characterization by NMR, MS, and IR, followed by investigations of
its antileishmanial potential. In vitro assays were performed to assess its antileishmanial activ-
ity against L. amazonensis strains and cytotoxicity against macrophages through MTT assay and
annexin V-FITC/PI, and the ability to perform an immunomodulatory action using CBA. To in-
vestigate possible molecular targets, its interaction with DNA in vitro and in silico targets were
evaluated. As results, the compound showed good antileishmanial activity, with IC50 of 6.57 (amastig-
otes) and 94.97 (promastigotes) µg mL−1, associated with non-cytotoxicity to macrophages (CC50

> 256.00 µg mL−1). When assessed by flow cytometry, 99.8% of macrophages remained viable. The
compound induced an antileishmanial effect in infected macrophages and altered TNF-α, IL-10 and
IL-6 expression, suggesting a slight immunomodulatory activity. DNA assay showed an interaction
with the minor grooves due to the hyperchromic effect of 47.53% and Kb 1.17 × 106 M−1, and was
sustained by docking studies. Molecular dynamics simulations and MM-PBSA calculations propose
cysteine protease B as a possible target. Therefore, this study demonstrates that the new compound is
a promising molecule and contributes as a model for future works.
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1. Introduction

Leishmaniasis is a parasitosis caused by macrophage infection of protozoa from the
genus Leishmania, transmitted to mammal host through the bite of blood-feeding females
of phlebotomine sand flies [1]. It has been recognized as one of the main neglected tropical
diseases (NTDs) of global health concern, estimating that over one billion people are living
in endemic areas at risk of infection. Accordingly, each year more than two million new
cases occur, associated with high levels of morbidity and mortality [2,3].

Leishmania parasites exist in two forms during their life cycle (amastigotes and pro-
mastigotes) and are capable of manifesting three main clinical forms, generally classified as
cutaneous leishmaniasis (CL), mucocutaneous leishmaniasis (MCL) and visceral leishma-
niasis (VL, also known as kala-azar). Depending on the parasite species and the cellular
immune mechanisms of the host, different clinical, histopathological and immunopatholog-
ical manifestations are developed [4,5].

The immune mechanism response of the host to the infection relies on myeloid cells
such as dendritic cells and macrophages, which develops a complex relation [6]. Leish-
mania protozoa use macrophages as important host cells for establishing the infection. In
order to adapt, the parasite regulates phagosome maturation, promoting the alteration of
macrophage defenses such as oxidative damage, antigen presentation, immune activation
and apoptosis, while there is an increase in nutrient availability, causing the macrophage to
become a favorable environment for its growth and avoiding destruction [7].

Current chemotherapy includes drugs such as sodium stibogluconate, meglumine
antimoniate, amphotericin B, paromomycin, and pentamidine. These, however, have limi-
tations regarding the emergence of resistant strains, high costs, prolonged administration,
and the manifestation of side-effects such as nephrotoxicity, ototoxicity, and hepatotoxic-
ity [8,9]. In this sense, the development of new candidates for leishmanicidal drugs that are
more effective against parasites, associated with less toxicity to the human host, stands out
as a priority.

In this sense, the acridine nucleus has demonstrated to be an eligible scaffold due
to its potential as a chemotherapeutic precursor [10]. As an antiparasitic acridine com-
pound of clinical application, mepacrine stands out due to its wide spectrum of biological
action, with its main application in the treatment of malaria in chloroquine-resistant strains.
Therefore, several studies aimed at obtaining leishmanicidal compounds are based on the
chemical structure of this compound, maintaining the 9-amino-2-methoxy-6-chloroacridine
core while altering moieties linked to the 9-amino groups [11], as observed in the study
developed by Serafim et al. [12], in which the authors have synthesized and evaluated
the antipromastigote activity of thiophene-acridine derivatives against L. (L.) amazonensis
strains, highlighting compounds ACS01 and ACS02 as potent and selective, with IC50
values of 9.60 and 10.95 µM against antimony-sensitive strains, and 14.83 and 16.36 µM
against resistant strains, respectively. Furthermore, both molecules interacted with DNA
with binding constants of 104 M−1, in which the activity is attributed to the 6-chloro-2-
methoxy-acridine moiety, as also previously reported by Zhang et al. [13].

Based on these previous data, our group proposed the synthesis of a novel acridine
derivative containing the 6-chloro-2-methoxy-acridine moiety, through a rational strategy
of molecular design based on a privileged structure, linked to a triazolidine-dithione
nucleus obtained through an intramolecular spontaneous cyclization, followed by in silico
and in vitro evaluation of its antileishmanial activity, mechanism of action through DNA
interaction and immunomodulatory properties.

2. Results
2.1. Synthesis and Characterization

In order to develop a new compound for the treatment of leishmania, a novel triazoli-
dine acridine derivative was synthesized, obtained accidentally by spontaneous cyclization
from a coupling reaction between two scaffolds: thiosemicarbazide and disubstituted 9-
chloro-acridine. Scheme 1 outlines the synthesis with the sequence of the reactions to obtain
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compound ACW-02. The target compound was obtained in two steps, as described in the
experimental section. The synthesized compound is being reported for the first time and
its structure was confirmed by 1H NMR and 13C NMR spectroscopy, infrared spectroscopy
and mass spectrometry, where the results were in agreement with the described structure.
These data are present in the Supplementary Material (Figures S1–S4).
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Scheme 1. Synthesis of triazolidine acridines derivative. Reagents and conditions: (1)
Thiosemicarbazide; (2) Isothiocyanate; (3) N-phenylhydrazine-carbothioamide; (4) 6,9-Dichloro-
2-methoxyacridine; (a) EtOH, 50 ◦C; (b) EtOH, HCl, 78 ◦C.

Through 1H NMR analysis, it was possible to identify a singlet for two symmetrical
hydrogens with displacement at δ 12.79 ppm, correspondent to the triazolidine NH, cor-
roborating with the findings of Tiwari et al. [14], which observed a peak in δ 12.48 ppm
referring to triazolidine NH. Peaks characteristic of singlet (s), doublet (d), double dou-
blet (dd), double triplet (dt) and multiplet (m) with displacements ranging between δ
7.36–8.83 ppm have been observed, indicative of the acridine ring. Furthermore, a singlet
with an integral for three hydrogens in δ 3.88 ppm was recognized, correspondent to the
OCH3 attached to the acridine ring. The 13C NMR spectrum also confirmed the structure by
the presence of signals correspondent to the acridine nucleus, but mainly by the presence
of thiocarbonyl groups, which showed symmetric displacement at δ 194.64 ppm, just as it
was observed by Tiwari et al. [14]. Additionally, a peak in δ 55.86 ppm relative to OCH3
attached to the acridine ring was observed.

Infrared results also assisted in the structural characterization of the novel triazolidine
acridine derivative. The following bands were observed: 3242–3147 cm−1, suggestive
of axial deformation of secondary N-H; 3085–3056 cm−1, suggestive of aromatic C-H
axial deformation; 1621 and 1482 cm−1, characteristic of C=CAr vibration; 1208 cm−1,
suggesting the axial deformation vibration of C=S bound to nitrogen; 1197 cm−1, suggestive
of asymmetric axial deformation of C=C-O attributed to the methoxyl group attached to
the acridine ring. Ultimately, mass spectrometry (MS) was useful to confirm the structure
of the novel synthesized compound, exhibiting the result of m/z = 375.81.

2.2. Antileishmanial and Cytotoxic Activity Evaluation

The antileishmanial potential of compound ACW-02 was explored in vitro against
amastigotes and promastigotes forms of Leishmania amazonensis, responsible for causing the
clinical cutaneous form of the pathology. For this purpose, Amphotericin B, a well-known
commercial drug widely used in the treatment, was used as a positive control. It was
observed that the synthesized compound showed good activity against the amastigote
strain, with an IC50AMA of 6.57 µg mL−1. Nonetheless, against the promastigote strain, a
satisfactory result was not obtained (IC50PRO = 94.97 µg mL−1). These results are presented
in Table 1.



Pharmaceuticals 2023, 16, 204 4 of 25

Table 1. Data on 50% growth inhibition of L. amazonensis, cytotoxic concentration on macrophages
(CC50), concentration that induces stimulatory effect on macrophages (EC50), and selectivity index
(SI), of ACW-02 and positive control Amphotericin B.

COMPOUND IC50AMA
(µg mL−1)

IC50PRO
(µg mL−1)

CC50
(µg mL−1)

EC50
(µg mL−1)

SI
(CC50/IC50AMA)

ACW-02 6.57 ± 0.04 94.97 ± 0.06 >256.00 9.46 ± 0.06 >38.94

AMPHOTERICIN B 2.94 ± 0.07 1.41 ± 0.003 3.09 ± 0.01 2.80 ± 0.0093 1.05

As for the cytotoxic effect, the synthesized compounds did not show cytotoxicity
against JJ74 macrophage strains up to the highest concentration evaluated (256.00 µg mL−1).
Thus, the compounds ACW-02 showed high rates of selectivity index for the amastigote
forms of the parasite, with a value of >38.94. This contrasts with the results obtained
for amphotericin, which, although it is a potent drug, presents a high level of toxicity, as
already described in the literature [15] and can be observed in the low selectivity index
(1.05) obtained.

Additionally, in the evaluation of the cytotoxic effect of the synthesized compound
on macrophages, indications of immunomodulatory activity were observed through the
identification of its stimulatory effects on the proliferation of such cells. The is quantified
in EC50 value in Table 1 (EC50 = 9.46 µg mL−1). Therefore, in order to clarify the effects of
the synthesized compound on macrophages and the possibility of an immunomodulatory
effect, further studies were carried out.

2.3. Cytotoxicity Evaluation in Macrophages by Annexin V-FITC/PI Double Staining Assay

In order to understand in more detail the effect of the synthesized compound on
the J774 macrophages, a cell cycle evaluation assay using the annexin V-FITC/PI method
was performed. The results reaffirm the compound’s non-cytotoxicity to macrophages,
with the percentage of living cells corresponding to approximately 98%, up to the highest
concentration tested. The results are shown in the graph in Figure 1.
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Figure 1. Effect of ACW-02 on J774 macrophages through the annexin V-FITC/PI method after 2 h.
Asterisks represent statistically differences between treated and untreated macrophages; * p < 0.05;
** p < 0.01; *** p < 0.001. ANOVA followed by Tukey’s multiple comparisons test.

As demonstrated, in the absence of the compound, all cells were viable as the per-
centage of initial, late apoptosis and necrosis was 0%. In contrast, in a concentration of
1 µg mL−1, the percentage of cells in initial, late apoptosis and necrosis was 0.46, 1.09 and
1.07, respectively. When increased to the concentration of 16 µg mL−1, there is a decrease
in the percentages, these being 0.29, 0.94 and 0.81, respectively. Finally, at a concentration
of 32 µg mL−1, the percentages increase to 0.70, 1.27 and 1.8, respectively. In comparison
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to negative control, which has shown values of 0.06, 0.17 and 0.31%, ACW-02 exhibits
approximate values, highlighting its viability as non-cytotoxic to macrophages.

2.4. Determination of the Microbicidal Effect in Cultures of J774 Macrophages Infected with
L. amazonensis

Previous studies provided information about the antileishmanial activity of the evalu-
ated compound associated with a possible immunomodulatory activity on macrophages.
Given the importance of this cell for the progression of the pathogenesis in question,
this possibility represents a pertinent association of mechanisms. Therefore, the effect of
ACW-02 on macrophages infected with L. amazonensis was evaluated, in order to verify its
immunomodulatory potential. The results are shown in Table 2.

Table 2. Data on ACW-02 microbicidal effect assay.

ACW-2
(µg mL−1) Infected Cells (%) Mean of Leishmanias Infection Rate (%)

0 22.00 2.40 53.00

1 12.00 1.20 14.50

16 11.50 1.20 13.50

32 11.50 1.80 21.00

Our results evaluated by the J774 macrophage infection index showed the microbicidal
potential of ACW-02. In comparison to infected and untreated cells (0 µg mL−1), it was
observed that the addition of ACW-02 reduced the infection rate in all concentrations (1,
16 or 32 µg mL−1), due to the decrease in the percentage of infected macrophages and the
number of Leishmania ingested by macrophages (Table 2).

The microbicidal effect of ACW-02 is shown in Figure 2. The low infection rate,
especially at the lowest concentrations of ACW-02 (1 or 16 µg mL−1), possibly interfered
with the functionality of macrophages, thus favoring the elimination of parasites.
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Stain: Giemsa 10%. Bars = 10 µm.
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2.5. Assessment of Cytokine Production by Macrophages

Evaluations were made concerning the effect of the compound ACW-02, at concen-
trations 2, 4, and 8 µg mL−1, on the modulation of the Th1 (T helper 1), Th2 (T helper 2),
and Th17 (T helper 17) response through the expression of the respective cytokines: TNF-α
(Tumor Necrosis Factor-α), IFN-γ (Interferon-γ), IL-2 (Interleukin-2), IL-10 (Interleukin-
10), IL-4 (Interleukin-4), IL -6 (Interleukin-6) and IL-17A (Interleukin-17A). The response
expressed by the basal macrophage (untreated and uninfected) and macrophage infected
with L. amazonensis (untreated) were used as negative and positive controls, respectively
(Figure 3).
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The progression of the infection caused by Leishmania protozoa is directly related to
the immune response developed by the host, especially the T-cell mediated immunity and
the expression of pro-inflammatory and/or anti-inflammatory cytokines, that can result in
an asymptomatic, self-healing, or chronic leishmaniasis. The cellular immunity generated
by the Th1 is considered to be the key mediator of resistance to Leishmania, as they are
associated with the secretion of pro-inflammatory cytokines (e.g., TNF-α, IFN-γ, IL-2) that
activate the MΦ killing machinery, leading to parasite inactivation [16–18]. Nevertheless,
according to the results obtained in our experiments, there is a significant decrease in the
expression of TNF-α (Figure 3a) with the addition of the acridine compound ACW-02, at
the lowest up until the highest concentration evaluated, thus favoring an anti-inflammatory
action. Further, the effect of the compound on IFN-γ and IL-2 cytokines was not significant.

On the other hand, cytokines expressed by Th2 cells (e.g., IL-4, IL-6, IL-10) are related
to an anti-inflammatory action, as they are capable of suppressing the host’s immune
system, causing macrophage depletion and, consequently, promoting development of the
intracellular forms of the parasite and disease progression [17]. According to our findings,
a decrease in IL-10 expression is observed (Figure 3d), approaching basal values at the
lowest concentration tested (2 µg mL−1). Moreover, there is a significant decrease in IL-6
expression at all concentrations evaluated. Opposed to the previous results, the decrease in
the expression of an anti-inflammatory interleukin will favor a pro-inflammatory effect,
that is, a leishmanicidal action. Results found for the other evaluated cytokine, IL-4, were
not significant.

Lastly, Th17 is involved in the production of IL-17, a highly pro-inflammatory cytokine
with significant effects on stromal cells, resulting in the recruitment of leukocytes and
forming an interaction between innate and adaptive immunity [16,19]. However, according
to the results obtained, the compound ACW-02 does not show significant activity on the
cytokine IL-17A (Figure 3g).

2.6. Reactive Oxygen and Nitrogen Species Evaluation

The production of reactive oxygen (ROS) and nitrogen (RNS) species is of significant
relevance to disease progression. The activation of macrophages as a response to an
infectious process induces the overproduction of reactive oxygen species (ROS), including
superoxide, hydrogen peroxide, hydroxyl radicals, and reactive nitrogen species (RNS),
such as nitric oxide (NO). ROS and RNS exhibit high microbicidal capacity, as these species
can generate oxidative damage to parasite’s biomolecules, such as lipids, proteins, and
DNA, leading to loss of membrane integrity, defective replication, and ultimately cell
death [20,21].

In order to evaluate the ability of the synthesized compound to induce the formation
of reactive species, evaluations were carried out that showed that the compound under
evaluation at concentrations 2, 4, and 8 µg mL−1 did not significantly affect the production
of ROS, when compared to the infected and untreated macrophages, as shown in Figure 4a.
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Similarly, at the same concentrations (2, 4, and 8 µg mL−1), ACW-02 presented
no significant alteration on RNS production in comparison to infected and untreated
macrophages, as shown in Figure 4b.

2.7. Interaction with DNA

In order to propose a potential target that justifies the antileishmanial action of the
acridine compound ACW-02, interaction studies with the DNA molecule were performed.

The UV–vis absorption spectra of ACW-02 showed significant absorption in the region
between 400–500 nm. This derivative exhibited, in the absence of ctDNA, maximum peak
at 460 nm, while in the presence of ctDNA, it presented a maximum peak of 461 nm. The
maximum absorption wavelengths of the compound in the absence and presence of ctDNA
can be observed in Table 3.

Table 3. UV–vis absorption data of triazolidine acridine in the absence and presence of ctDNA.

Compound λmax Free
(nm)

λmax Bound
(nm) ∆λ (nm) Hyperchr a

(%)
Hypochr b

(%)
Kb (M−1)

ACW-02 + DNA 460 461 1 47.53 - 1.17 × 106

a Hyperchromicity for complexes formed by compounds and 100 µM of ctDNA in comparison to free ligands.
b Hypochromicity for complexes formed by compounds and 100 µM of ctDNA in comparison to free ligands. Kb:
affinity constant.

In these studies, the model of McGhee and Von Hippel [22] was used to estimate the
binding constant (Kb) from the spectrophotometric data. The interaction by intercalation
can be characterized by the hypochromic effect and by the wavelength alteration for the
red region (bathochromic effect) [23–26], whereas the occurrence of hyperchromism with
little or no redshift is associated with electrostatic attachment or interaction with DNA
groove (major or minor) [27,28]. According to the absorption results, ACW-02 presented
hyperchromism of 47.23% and Kb (M−1) = 1.17 × 106 in the presence of ctDNA (Figure 5).
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According to the data, ACW-02 presented characteristics suggestive of interaction
either by intercalation or by interaction with DNA grooves due to its Kb value. Kb values
for intercalation complexes with DNA ranges from 1× 104 to 1× 106 M−1, while Kb values
of groove binders range from 1 × 105 to 1 × 109 M−1 [29]. To confirm this effect, molecular
docking studies were performed.
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Docking Studies of Interaction with DNA

The DNA intercalation capacity of ACW-02 in silico was evaluated using the crystallo-
graphic fitting model available in the PDB for Ellipticin (PDB ID: 1Z3F). Figure 6 shows
the highest-scoring ACW-02 conformer (71.77) after the molecular fit study. The acridine
portion of the compound indicated more affinity to intercalate between the nitrogenous
bases of DNA through π-π electron stacking. This stacking limit between the bases was de-
limited by the steric hindrance of the cyclic triazolidine-derived portion in the structure. As
proposed in spectroscopic studies, molecular anchoring also indicated the ability of double
interaction with DNA, with the triazolidine fragment capable of interacting with the side
chains of the macromolecule. Although ACW-02 had a lower score than ellipticin (75.68),
they showed great similarity in terms of pose and intermolecular interactions performed
with DNA (Figure 6), highlighting the ability of the acridine derivative for new interactions
in the receptor.
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Although these results indicate the ability of the compound to interact with DNA,
this is probably not the only mechanism of action performed by the compound under
evaluation, since there is no structural difference between the DNA molecules of the
parasite and the host that provides selectivity to the compound, and, consequently, justifies
the entirety of the leishmanicidal action. For this reason, the possibility of new targets was
evaluated in silico to investigate possible complementary mechanisms of action.

2.8. Theoretical Study of Possible Mechanisms of Action
2.8.1. Molecular Docking

The high selectivity presented in the in vitro tests of ACW-02 against Leishmania ama-
zonensis supported the in silico study of possible mechanisms of action involved in the
survival of the parasite. Some metabolic pathways explored in the disease, such as: redox
balance (Trypanothione reductase, TryR); regulation of DNA supercoiling by topoiso-
merases I (Topo I); and the enzymes involved in ergosterol biosynthesis (14-alpha-ester
demethylase, CYP51) were explored by molecular docking [12,30–32]. Moreover, cysteine
proteases, such as cysteine protease B from Leishmania amazonensis (CPBLa) are promising
drug targets against parasitic diseases, essential for the biochemical processes and survival
of parasites [33]. The crystallographic models used for the theoretical studies were obtained
from the PDB and the CPBLa was built using homology modeling. Validations by redock-
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ing, when possible, were performed and presented acceptable results for the study [34].
The ACW-02 presented scores lower than the standards complexed to the targets studied in
the docking (Table 4). However, information about the main residues and polar interactions
intrinsic to the formation of the ligand-receptor complex were reproduced and indicated
good affinities for the docking of ACW-02 in the studied targets; characteristics such as
planarity and points of polar interactions in the cyclic triazolidine-derived portion were
essential for the performance of the scaffold in this study. For example, in TryR (PDB ID:
4APN), polar interactions with residues such as Lys61 and hydrophobic interactions with
residues Val58 and Leu62 are reported to be essential for docking in the enzyme. In this
study, ACW-02 demonstrated the ability to reproduce these interactions and, additionally,
pointed out other interactions with nearby residues in the aforementioned cavity [10,35].
Finally, interaction analysis CPBLa reveled H-bond with the key residues Cys153 and van
der Waals with His289 and Gly151, proposing that the acridine derivative can perform on
the cysteine protease as a drug target.

Planar condensed fragments are commonly associated with mechanisms that directly
or indirectly involve DNA, due to their validated intercalation capability, as visualized in
aforementioned in silico and in vitro studies with DNA performed in this paper [36,37].
The docking results found suggest that Topo IB (PDB ID: 2B9S) is a possible mechanism
for ACW-02. Due to the absence of a co-crystallized ligand to the topoisomerase I target,
Camptothecin (CPT) was used as a standard compound, given its elucidated mechanism of
action as a topoisomerase I inhibitor [10]. The intrinsic polar interactions of Camptothecin
in docking with LDTopoI (63.98) were reproduced with residues Arg190 and Lys211 [38]. As
in the docking with DNA, the cyclic portion linked to acridine induced a steric restriction for
an improved stacking between DNA topoisomerase I bases (Figure 7A), however, this same
fragment was responsible for additional interactions with the enzymatic portion of topo I,
which justifies the similarity between the scores found for ACW-02 and Camptothecin.
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On the other hand, the docking analysis of the ACW-02 in CPBLa (Figure 7B) has
several interactions that can propose this drug target. First, acridine nitrogen interacts
with the Cys153 by H-bond, and the aromatic ring is positioned to perform van der Waals
interactions with the catalytic residue of His289. In addition, interactions amide-π Stacked
are formed with the residue Asn288 and π-alkyl with Leu287 and Ala288. Finally, repulsive
interactions are observed with hydrophobic residues such as Gly151, Gly193, and Gly194.
Similar interactions were found in docking analyses of the standard compound. Finally,
the most effective fit score of ACW-02 compared with the standard (50.97 and 47.77,
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respectively) and most effective interactions propose the CPBLa as the possible drug target.
Thus, to confirm our findings, MD simulations and MM-PBSA calculations were performed
and discussed in the following topics. Two-dimensional figures of these dockings are
present in the Supplementary Material (Figures S7–S10).

Table 4. Molecular docking results of ACW-02 against potential antileishmanial targets.

4APN (TryR) 3L4D (CYP51) 2B9S (Topo I) CPBLa

ACW-02 54.22 58.74 60.34 50.97
Standard * 67.58 78.77 63.98 47.77

RMSD 0.76 1.02 - -
* Ligand co-crystalized in 4APN for TryR; ligand co-crystalized in 3L4D for CYP51; Camptothecin for Topo I; and
compound 1c [39] for CPBLa.

2.8.2. Molecular Dynamics (MD) Simulations

Molecular dynamics simulations were performed in trajectory of 100 ns (Figure 8) to
confirm the drug target of ACW-02. The RMSD plot (Figure 8A) reveals the best stability
of ACW-02 in complex with CPBLa, showing values lower 2 Å. On the other hand, the
compound in complex with the other targets shows up to 3 Å. In addition, the RMSF
plots (Figure 8B) reveal lower fluctuations of the residues for the complex with CPBLa,
suggesting the best stability of the complex. The stiffness and protein compaction is shown
in the Rg plot (Figure 8C), in which better protein compaction for the complex with CPBLa
(between 15 and 16 Å), different of the other complexes that presented values higher than
15. Finally, the compounds showed similar h-bonds interactions around the trajectory
(Figure 8D), up to 2 for the complexes with CPBLa, CYP51, TryR, and up to 3 for Topo I.
The MD results are according to other reports and generate useful information that can be
used to propose the complex stability and interaction with the targets [40–42]. Thus, these
findings suggest the best stability of the ACW-02 with the CPBLa and can be a possible
drug target.
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2.8.3. MM-PBSA Calculations

MM-PBSA calculations using the MD simulations trajectories were used to re-score the
affinities energies and determine the attractive forces involved in the formation of the ACW-
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02 complexes against the proposed targets (Table 5). As observed in molecular docking stud-
ies, the affinity energy of ACW-02 against CPBLa by MM-PBSA (∆Gbind = −103.13 KJ/mol)
was superior to the complex with other proposed targets. Furthermore, it is clear that van
der Waals interactions are essential for complex formation (DGvdw = −151.75 KJ/mol)
when compared to electrostatic forces (0.68 KJ/mol). The polar solvation and SASA energy
show low solvation (61.09 and −13.15 KJ/mol, respectively), indicating more excellent
permanence of the ligand in a hydrophobic environment free of water molecules when
compared to its interaction with other targets. Finally, the results suggest CPBLa as one of
the main targets of ACW-02.

Table 5. Binding energy and interaction parameters calculated by MM-PBSA.

2B9S (Topo I) CPBLa

∆Gbing (KJ/mol) −42.17 ± 21.36 −103.13 ± 8.11
SASA Energy (KJ/mol) −10.66 ± 1.69 −13.15 ± 0.78

Polar solvation energy (KJ/mol) 65.34 ± 23.63 61.09 ± 5.20
Electrostatic energy (KJ/mol) −1.87 ± 19.59 0.68 ± 3.60

Van der Waals energy (KJ/mol) −94.98 ± 25.52 −151.75 ± 7.79

3. Discussion

The compound under study is an unprecedented triazolidine-acridine derivative.
The initial design of the compound contemplated the coupling reaction between the di-
substituted acridine nucleus and the intermediate N-phenylhydrazine-carbothioamide, a
thiosemicarbazide derivative, selected during the design stage due to the inherent potential
of the fragment that gives it a broad spectrum of biological activity [43,44], including anti-
protozoal action [45–47]. However, during the synthesis stage, the triazolidine-dithione
nucleus was obtained through a nucleophilic substitution reaction between the carboth-
ioamide intermediate and the acridine nucleus, followed by an intramolecular attack
favored by the energy provided by the heating of the reaction and by the free protons in the
reaction medium, inducing an autocyclization and a fragmentation of the aniline portion
from the carbothioamide subunit, forming a new triazolidine-thione nucleus coupled to the
substituted acridine. Thus, due to the novelty of the compound, it was decided to continue
the studies by observing the contributions of this new ring to the acridine scaffold.

The reaction to obtain the final product occurred in an ethanolic and acidic medium,
at reflux temperature, and was finalized by cooling the reaction to room temperature,
followed by the addition of distilled water and precipitation of the product, subsequently
filtrated. Ultimately, ACW-02 was elucidated by 1H and 13C NMR, infrared, and mass
spectrometry techniques, showing signs that confirmed the proposed structure.

Therefore, given the potential of acridine compounds as chemotherapeutic agents,
with several studies exploring and reporting their anticancer anticancer [13,48–51], an-
tibacterial [52–54] and antiparasitic [12,55,56] properties, this study aimed to evaluate the
potential antileishmanial activity of the new synthetically obtained compound, given the
urgent need for efficient drugs for this purpose.

Leishmaniasis comprises the pathology caused by protozoa of the genus Leishmania.
In its digenetic life cycle, the parasite assumes metacyclic promastigote and amastigote
forms in the vertebrate host. The promastigote forms are initially inoculated into the host
through the bite of the sandfly mosquito and, in the bloodstream, the parasites penetrate
phagocytic cells through interactions between their surface molecules and macrophage
receptors. In the phagocytic vacuole, these differentiate into the amastigote form and
multiply intensely until the infected macrophage ruptures. These free amastigotes, in
turn, infect other macrophages and continue the cycle [4,57]. Therefore, depending on the
drug’s affinity for each parasitic form, different stages of the infection progression will
be achieved. According to the studies carried out, the compound ACW-02 presented an
IC50 value of 6.57 µg mL−1 against amastigote forms of L. amazonensis, and 94.97 µg mL−1

against promastigote forms of the same species.
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Depending on the infecting species, different clinical manifestations may develop. The
species under study, Leishmania amazonensis, is an important etiological agent that causes
American cutaneous leishmaniasis (ACL) and is capable of establishing a broad spectrum
of clinical manifestations, varying from: cutaneous, localized or diffuse, which are the most
common; mucocutaneous; and even visceral leishmaniasis [58]. Thus, it is observed that
the amastigote forms are more sensitive to the pharmacological action of ACW-02 than the
promastigote forms, indicating the possible potentiality of the compound against these
forms of L. amazonensis in the treatment of ACL.

Moreover, based on the report by Serafim et al. [12], the hybridization of the thiophene
portion with the 6,9-dichloro-2-methoxy-acridine ring was beneficial to the evaluated
antipromastigote activity against L. amazonensis, obtaining IC50 values between 9.62 and
69.11 µM. However, the hybridization of the non-substituted acridine ring to the thiophene
portion caused a loss in activity, highlighting then the relevance of the substitution in the
acridine ring by groups with positive mesomeric effect (–OCH3 and –Cl) for antileishmanial
activity. As this study involves obtaining an unprecedented molecule that possesses the
substituted acridine nucleus, the same as that used by Serafim et al. [12], it is supposed that
this portion of the molecular structure of ACW-02 is associated with the antileishmanial
activity presented.

Considering the importance of macrophages during the installation and progression
of the Leishmania infectious process [59], studies involving the effects of ACW-02 on J774
macrophages were carried out. The determination of CC50 demonstrates that the compound
did not show cytotoxicity up to the highest concentration tested (256.00 µg mL−1), and this
result is confirmed in more detail through the evaluation of cytotoxicity in macrophages by
Annexin V-FITC/PI double staining assay, which showed low percentages of cells (<2%) in
initial, late apoptosis and necrosis after treatment with ACW-02 at concentrations of 1, 16,
and 32 µg mL−1. Thus, evaluating the first result mentioned, the calculated selectivity index
of ACW-02 to L. amazonensis amastigote cells was above 38.94, providing a safety margin.

Additionally, a stimulatory effect on macrophages was observed at a concentration
of 9.46 µg mL−1 in preliminary studies and the possibility of the compound’s ability to
play an immunomodulatory effect on macrophages was evaluated in more comprehensive
studies. The determination of the microbicidal effect contributed to the supposed possibility
of altering the functionality of the macrophage in the face of parasitic infection with the
addition of the ACW-02 compound, due to the alteration in the parameters that evaluate
the percentage of infected cells, the average of Leishmanias and percentage of infection,
especially in lower concentrations (1 and 16 µg mL−1) and, accordingly, closer to the EC50
value obtained. Moreover, it is supposed that the highest concentration (32 µg mL−1)
may have caused a supersaturation on the culture medium during the test, thus causing
a modification in the solubility of the compound and consequent decrease in biological
activity, due to the lower interaction of the compound with the infected macrophages.

To determine the influence of the compound directly on the components of the im-
mune system, targeted studies were carried out. The control of the infection and disease
progression caused by Leishmania sp. is associated with the generation of pro-inflammatory
and anti-inflammatory immune responses. Stimulation of a Th1 response and the down-
modulation of a Th2 response promotes macrophage activation and, consequently, assists in
the host control of Leishmania parasite burden and clinical cure [18,60]. The results obtained
in response to Th2 demonstrated a significant decrease in the expression of IL-10 and IL-6
cytokines, thus contributing to an antileishmanial effect. These results corroborate with the
aforementioned studies and may justify the macrophage’s ability to perform a microbicidal
effect against Leishmania. However, these results are not sufficiently conclusive, since there
is also a significant decrease in TNF-α expression, which, on the other hand, exerts a
pro-leishmania effect. Thus, the effect accomplished by reducing TNF-α is antagonistic to
the one obtained by decreasing IL-10 and IL-6.

Similarly, macrophage activation promotes the production of reactive oxygen and
nitrogen species to induce oxidative damage to the parasite [20]. However, the results did
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not demonstrate an alteration in these components that would justify the performance of
an immunomodulatory activity by ACW-02 at the concentrations evaluated (2–8 µg mL−1).
Thus, due to the lack of results that establish the immunomodulatory effect as justification
for the entirety of the antileishmanial activity, other pharmacological targets were evaluated
in silico and in vitro.

The acridine nucleus, present in the structure of the compound ACW-02, stands out as
a potential scaffold. Its biological activity can be attributed to the planarity of its aromatic
structures, which can interact by intercalation or interactions with the DNA grooves alone,
interfering in cellular properties [61–63]. In view of this potential mechanism of action of
acridine compounds, the interaction of the compound ACW-02 with DNA was evaluated.

The presence of aromatic groups without substituents may favor the interaction of the
complex through strong hydrophobic or non-covalent interactions between the electron
states of the chromophore and DNA base pairs, leading to a decrease in the transition
energy π→ π*. However, despite the acridine ring possible interactions, the hyperchromic
effect observed in this compound may be due to the additional electrostatic interactions of
the methoxyl (–OCH3), of the acridine ring, which has σ+ and π- effects, and of the chlorine
atom (–Cl), which has σ+ and π+ effects, resulting in a reduction of the stacking of bases of
this biomolecule [64–66].

In general, the non-substituted acridine nucleus presents intercalating activity [67,68]
through π-π interactions with DNA base pairs. The insertion of the triazolidine nucleus,
presenting electron acceptor groups (C=S) and electron donors/acceptors (–NH), may
favor the stabilization of the supramolecular DNA-ligand complex, through electrostatic or
non-covalent interactions [69–71]. Thus, favoring a possible intercalation and interaction
with DNA grooves.

In silico molecular docking studies were used as a strategy to reaffirm the interaction
with DNA through studies on the ellipticine-complexed DNA target (PDB ID: 1Z3F),
demonstrating an ACW-02 score proximate to that of the ellipticine standard (71.77 and
75.68, respectively).

Aiming to elucidate possible molecular mechanisms that could contribute to the en-
tirety of the antileishmanial action of the compound ACW-02 and justify its selectivity for
the parasite, theoretical studies of molecular docking were performed in pharmacological
targets exclusive and essential to the Leishmania (TryR, Topo I, CPBLa, and CYP51). The
results demonstrated the in silico affinity of the compound to the targets and interactions
with essential amino acid residues capable of propagating a tissue response. In view of
these findings, important interactions of the compound ACW-02 are observed, especially
against the topoisomerase I target, in which the compound presented a score value compa-
rable to the control compound Camptothecin (60.34 and 63.98, respectively). This enzyme
is responsible for the relaxation of supercoiled DNA that occurs during DNA replica-
tion and transcription processes, and its blockage can lead to cell death [72]. Therefore,
topoisomerase I is a promising target for antileishmanial compounds since the enzyme
is overpressed during Leishmania’s rapid life cycle and is structurally distinct from the
human topoisomerase I [37].

On the other hand, ACW-02 reveled the best interaction against the CPBLa by molecu-
lar docking (fit score of 50.97 and 47.77 for the standard) and interactions with key residues
(Cys153, His289, and Gly151). Similar to other cysteine protease inhibitors [73], the inter-
actions with key residues are related to inhibiting the enzyme’s catalytic functions and
preventing the parasite’s life cycle [74,75]. In addition, the best stability in MD simulations
and great ∆Gbind through MM-PBSA calculations (−103.13 KJ/mol) propose the CPBLa as
a possible drug target. Others works highlight these methods as essential to predict drug
targets of leishmaniasis [76,77]. Furthermore, these findings are in agreement with other
works that underline the acridine derivatives as promising cysteine protease inhibitors [78].

Moreover, these findings corroborate with in silico and in vitro results of interaction
with DNA, suggesting the possibility of the compound performing a dual pharmacological
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activity, that is, being able to intercalate with DNA bases and inhibit the activity of the
Leishmania topoisomerase I enzyme and CPBLa.

Therefore, further studies that support in the mechanistic elucidation that can justify
the leishmanicidal effect of the compound, whether in silico, in vitro, or in vivo, are envi-
sioned by our research group, especially aiming to clarify its activity against topoisomerase
I and CPBLa from Leishmania, as well as the expansion of the chemical series to obtain new
derivatives that may present more favorable results.

4. Materials and Methods
4.1. General Procedure for the Synthesis of Triazolidine Acridine Derivative

The intermediate N-phenylhydrazine-carbothioamide (3) was obtained through a
nucleophilic addition reaction between thiosemicarbazide (2) and isothiocyanate (1), in
ethanol at 50 ◦C. Then, 6,9-dichloro-2-methoxy acridine (Sigma Aldrich, Saint Louis, MO,
USA) (4) was coupled to the intermediate N-phenylhydrazine-carbothioamide by an aro-
matic nucleophilic substitution reaction at 78 ◦C in ethanolic medium and acid, followed by
spontaneous cyclization according to Scheme 1. The reaction was monitored by Analytical
Thin Chromatography (CCDA), determining the end of the reaction. The reaction was
filtered and the obtained crystals were washed with ice-cold distilled water, and then re-
crystallized in ethanol. The product was then analyzed by 1H and 13C NMR (Agilent NMR
spectrometer, mod. Mercury Plus 500 MHz, OXFORD 300 magneto-NMR, Santa Clara, CA,
USA), infrared spectroscopy (IRPrestige-21 Spectrophotometer, Shimadzu, Kyoto, Japan)
and mass spectrometry (Shimadzu® AXIMA series MALDI-TOF/MS, Kyoto, Japan).

4-(6-Chloro-2-methoxyacridin-9-yl)-1,2,4-triazolidine-3,5-dithione (ACW-02)

Orange crystals. Formula: C16H11ClN4OS2; M.W.: 374.8610 g mol−1; Yield: 50%;
Melting point: 282–284 ◦C; Rƒ: 0.50 (n-hexane/EtOAc 7:3). 1H NMR (500 MHz, DMSO-d6):
δ 3.88 (3H, s, OCH3); 7.36 (1H, dd, J = 2.05 Hz; J = 9.05 Hz, H-12); 7.52 (1H, dd, J = 2.9 Hz;
J = 9.05 Hz, H-01); 7.62 (1H, d, J = 9.1 Hz, H-06); 7.65 (1H, d, J = 2 Hz, H-14); 8.25 (1H, d,
J = 2.9 Hz, H-03); 8.83 (1H, d, J = 2.9 Hz, H-11); 12.79 (2H, s, NH). 13C NMR (100 MHz,
DMSO-d6): δ 194.64 (C-19, C-16); 156.34 (C-13); 138.50 (C-4); 136.27 (C-8); 132.48 (C-3);
131.33 (C-2); 130.46 (C-5); 127.57 (C-9); 126.32 (C-6); 126.96 (C-12); 120.90 (C-1); 117.82 (C-11);
108.43 (C-14); 55.86 (OCH3). IR (KBr, cm−1): 3242–3147 (N-H); 3085–3056 (C-HAr); 1621–
1482 (C=CAr); 1482 (N-C=S); 1208 (C=S); 1197 (C=C-O). MALDI-TOF MS m/z [M+H]+:
calculated = 374.0063; found = 375.0096.

4.2. Antileishmanial and Cytotoxic Activity
4.2.1. Cultures of L. amazonensis

The amastigote cultures of L. amazonesis MHOM/BR/pH8 strain were kept under
cryopreservation until transferred to NNN medium (Novy–MacNeal–Nicolle) and cultured
at 26 ◦C until the parasites reached the log growth phase. Then, the suspension was trans-
ferred to Schneider culture medium (Sigma-Aldrich, St. Louis, MO, USA), supplemented
with 10% inactivated fetal bovine serum and 0.2% gentamicin sulfate, at 26 ◦C, so that the
parasites returned to the log phase of growth. After that stage, the promastigote forms were
incubated at 37 ◦C, producing a growth curve and the formation of the axenic amastigote
strains [79].

The promastigote forms of L. amazonensis MHOM/BR/pH8 strain were preserved
in Schneider medium (Sigma-Aldrich, St Louis, MO, USA) supplemented with 20% fetal
bovine serum (FBS) and 1% streptomycin/penicillin, at 26 ◦C, in a B.O.D incubator—J.
Prolab, São José dos Pinhais, Brasil, model JP. 100 (LBCM/CPAM). The promastigote forms
were used in the exponential growth phase in all stages of the experiment [80].

4.2.2. Macrophage Cultive

The macrophages J774A.1 strain (ATCC TIB-67) was kept under cryopreservation. The
thawing process started with the transfer of the cryopreserved content to a Falcon tube
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containing 5 mL of DMEM culture medium (Gibco®, Billings, MT, USA), supplemented
with 10% inactivated fetal bovine serum, in addition to 1% non-amino acids essential oils
and 1% gentamicin sulfate. The tube was centrifuged, and the cells were resuspended and
transferred to a culture bottle kept in an incubator at 37 ◦C with 5% CO2 [81].

4.2.3. Determination of the Inhibitory and Cytotoxic Effects in L. amazonensis and JJ74
Macrophage Cultures

To assess inhibitory or cytotoxic concentrations of the synthesized compound capable
to eliminate 50% of the cells in the cultures of L. amazonensis amastigotes (IC50) and cytotoxic
concentrations in JJ74 macrophage cultures (CC50), MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide] (Sigma-Aldrich) method was used [80]. In a 96-well-plate,
the compound was diluted in the following concentrations: 0, 0.5, 1, 2, 4, 8, 16, 32, 64, 128,
256 µg mL−1. In parallel, 2.0× 105 axenic amastigotes and 1.0× 105 JJ74 macrophages were
distributed per well, according to the assay in question. The plates were incubated for 24 h
and 2 h, respectively, at 37 ◦C with 5% CO2. Then, 10 µL of MTT was added per well and
the cultures were re-incubated for a period of 4 h. Subsequently, after the incubation time,
50 µL of DMSO was added to each well for the solubilization of the formazan crystals. The
absorbances were read on a SpectraMAX GeminiXS ® plate spectrophotometer (Molecular
Devices LLC, San Jose, CA, USA) at a wavelength of 570 nm [82].

On the other hand, the methodology for evaluating the antipromastigote activity in
L. amazonensis strains was based on the Neubauer chamber method, as described by Serafim
et al. [12]. Promastigotes in the logarithmic growth phase were collected, counted, and
diluted in Schneider medium (Sigma-Aldrich, St. Louis, MO, USA) supplemented with
20% FBS in a concentration of 1 × 106 cells mL−1. Subsequently, the cells were incubated
with different concentrations of the compound (10; 5; 2.5, 1.25; and 0.625 µg/mL). The
negative control consisted of cells incubated only in Schneider medium, while the positive
control comprehended the use of the commercial drug Amphotericin B® (Cristália, Itapira,
SP, Brazil). Culture growth was observed after 72 h of incubation at 25 ◦C by counting
viable cells using a Neubauer chamber, and calculated using the following Equation (1):

No. Leishmania/mL = No. of cells counted × No. of Neubauer chamber
quadrants × the dilution used × 104 (Neubauer chamber correction factor)

(1)

The concentration that inhibits 50% of parasite growth (IC50) was the parameter used
to estimate growth inhibition. Therefore, IC50 was determined after 72 h of cultivation by
linear regression analysis with SPSS 8.0 software for Windows. Each test was performed in
2 independent experiments, with different cultures, and in technical triplicate.

4.2.4. Cytotoxicity Evaluation in Macrophages by Annexin V-FITC/PI Double
Staining Assay

The cytotoxicity assay in JJ74 macrophages was performed the molecule through the
method of Annexin V-FITC/PI double staining assay by flow cytometer BD LSRFortessaTM

(BDBiosciences, San Jose, CA, USA). This assay is based on the ability of annexin V to bind
to phosphatidylserine, which is externalized in apoptotic events, and propidium iodide
to bind to the DNA of cells that have lost membrane integrity. Thus, this study allows
the detection of viable cells (Annexin–/PI–), early apoptotic cells (Annexin+/PI–), late
apoptotic cells (Annexin+/PI+) and necrotic cells (Annexin–/PI+) [83,84].

The analyses took place in 96-well plates, and 4 × 104 macrophages were distributed
per well, with the addition of the molecule in concentrations of 1, 16 and 32 µg mL−1. These
were incubated in DMEM (Gibco®, Billings, MT, USA) medium for two hours at 37 ◦C with
5% CO2. Subsequently, 2 µL of annexin + 2 µL PI was added to each well, followed by
ten minutes of incubation. Lastly, the plates were centrifuged, with the removal of 100 µL
of the supernatant and the addition of 200 µL of saline. Fluorescence-activated cells were
analyzed in a flow cytometer. The analyses were performed in sextuplicate [85].
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4.2.5. Microbicidal Assay

The J774 macrophage cells were quantified and distributed (1.5× 105 cells/excavation)
in 24 excavation-plates in DMEM medium, adding coverslips previously washed in each
well to promote cell adhesion. The cells were incubated for 2 h at 37 ◦C with 5% CO2. Sub-
sequent to the cell adhesion process, the excavations were washed with STF pH 7.2; 37 ◦C,
followed by the addition of the amastigote forms of L. amazonensis (1.5 × 106/excavation).
To promote macrophage infection, these were incubated for 12 h at 37 ◦C with 5% CO2, in
DMEM medium added with 10% Bovine Fetal Serum (Sigma Aldrich, St. Louis, MO, USA).

To remove the non-phagocyted Leishmanias, the excavations were washed three
times with sterile FTS at 37 ◦C. The molecule was then incubated at the before-mentioned
concentrations during a 2 h treatment period. Finally, the surplus medium was removed,
the excavations were exposed to drying and fixed in methanol, being later stained with
Giemsa 10% solution and evaluated by optical microscopy (1000×).

The microbicidal effect was evaluated by determining infection in 200 macrophages,
being expressed as a product of the mean of phagocyted Leishmanias by the percentage of
infected macrophages. To determine the estimated percentage of macrophages adhered to
the coverslips, the cells present in 10% of the coverslips were quantified with the assistance
of optical microscopy (400×) [86].

4.2.6. Assessment of Cytokine Production by Macrophages

The quantification of cytokines IL-2, IL-4, IL-6, IL-10, IL-17A, INF-γ, and TNF-αwas
performed in the supernatant of cell cultures of J774 macrophages infected with L. ama-
zonensis amastigotes, by cytometry bead array (CBA), according to the manufacturer’s
instructions (BD Bioscience, Franklin Lakes, NJ, USA). Macrophages were adhered to
a plate infected with L. amazonensis and treated with the compound under analysis at
concentrations of 2, 4, and 8 µg mL−1. Uninfected and untreated macrophages were
used as the negative control, while the untreated macrophages infected with L. amazo-
nensis were used as the positive control. After the 24-h treatment period, 50 µL of the
supernatant from each well was transferred to a conical tube, followed by the addition
of 50 µL of the capture bead mixture and 50 µL of the detection reagent. A calibration
curve containing the following concentrations of each cytokine was added to the exper-
iment: 0 pg mL−1, 20 pg mL−1, 40 pg mL−1, 80 pg mL−1, 156 pg mL−1, 312.5 pg mL−1,
625 pg mL−1, 1250 pg mL−1, 2500 pg mL−1 and 5000 pg mL−1. The fluorescence inten-
sity in each sample was captured on the BD LRS II FORTESSA flow cytometer using the
DIVA program version 7 (BD Bioscience), and the fluorescence data were processed using
the FCAP array program version 3 (BD Bioscience). The experiments were performed in
triplicate [86].

4.2.7. Evaluation of the Production of Reactive Oxygen and Nitrogen Species

The quantification of ROS and RNS was performed using the probe 2′,7′-
dichlorodihydrofluorescein diacetate (DCF-DA) and 4-amino-5-methylamino-2′,7′-
difluorofluorescein diacetate (DAF-FM diacetate), which produce, in the presence of reac-
tive species, 2-7-dichlorofluorescein (DCF) and 4-amino-5-methylamino-2′,7′-
difluorofluorescein (DAF-FM), respectively, which fluoresce and remain inside the cell.
Macrophages were adhered to a plate infected with L. amazonensis and treated with the
compound under analysis at concentrations of 2, 4, and 8 µg mL−1. Uninfected and un-
treated macrophages were used as the negative control, while the untreated macrophages
infected with L. amazonensis were used as the positive control. After the 24-h treatment
period, the plates were incubated for 30 min with the DCF-DA probe diluted in saline pH
7.2 and 1 h with the DAF-FM diacetate probe diluted in saline pH 7.2, respectively, in a
humid chamber at 37 ◦C with 5% CO2, protected from light. Then, the cells were washed
with saline, pH 7.2, at room temperature and resuspended with 200 µL of saline under the
same conditions. The fluorescence intensity in each sample was captured on the BD LRS
II FORTESSA flow cytometer using the DIVA program version 7 (BD Bioscience) and the
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mean fluorescence intensity (MFI) was obtained after processing the data in the FlowJoTM
version 10.6.1. The experiment was performed in triplicate and the results were calculated
as the difference in MFI in each group [86].

4.3. ctDNA Interaction Evaluation by UV–vis Absorption

The interaction in vitro of ACW-02 and calf thymus DNA (ctDNA) (Sigma Aldrich,
Saint Louis, MO, USA) was conducted in 10 mM Tris-HCl buffer (pH 7.6), in a rectangular
quartz cuvette with 1 cm path length at 25 ◦C. CtDNA concentration in Tris-HCl was
defined as micromolar equivalents of the base pairs [87]. The derivative stock solution was
prepared in DMSO (1 mM), and subsequently, diluted in Tris-HCl buffer, on concentrations
ranging from 10 to 100 µM. Afterward, the absorption spectral titration experiment was
performed by keeping the compound in a constant concentration (50 µM) and modifying
DNA concentration (0–100 µM bp). The intrinsic binding constant (Kb) of the compound
with ctDNA was calculated by fitting the data to Equation (2), in which coefficients of
apparent (εa), bound (εb) and free extinction (εf) were used [22]:

[DNA]/(εa − εf) = (DNA)/(εb − εf) + 1/Kb(εb − εf) (2)

The data were fitted by using the software SigmaPlot 10.0. Plot fitting of [DNA]/
(εa − εf) vs. [DNA] utilized the Kb acquired from the percentage of the slope to the Y
intercept [88].

4.4. Statistical Analysis

The normality of the variables was analyzed employing the Kolmogorov-Smirnov test
and the homogeneity of the variances, using the Bartlett test. Paired t-test or Wilcoxon
test were used to compare two normal or non-normal samples, respectively. For multiple
comparisons, the ANOVA test was employed, for parametric or non-parametric data,
respectively. Analyzes and graphical representations were performed using the Prism®

Software Package program (GraphPad ®, Boston, MA, USA, 1997). Differences were
considered significant at p value < 0.05 [89].

4.5. Homology Modeling

Because there is no crystallographic structure of the cysteine protease B from Leishma-
nia amazonensis (CPBla), it was decided to carry out a homology modeling and thus build the
model similar to other works [90,91]. Initially, the amino acid sequence for the required cys-
teine protease was obtained from the National Center for Biotechnology Information Search
database (NCBI, (https://www.ncbi.nlm.nih.gov/, accessed on 10 September 2022) [92],
under the code AAP21894, consisting of 353 amino acids. Then, a search for proteins with
structural identity was performed using the Basic local alignment search tool server (BLAST,
https://blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 10 September 2022) [93]. Thus, the
search revealed 100 homologous sequences, so the one with the best alignment was with
the cruzain from T. cruzi (PDB: 1aim) [94], used as a template. Finally, the model was
built using the Swiss-Model web software (https://swissmodel.expasy.org/, accessed on
10 September 2022) [95] and validated through the Ramachandran graph generated by the
SAVES web software (https://saves.mbi.ucla.edu/, accessed on 12 September 2022) [96].
Finally, the developed model was aligned with the original PDB (1aim) using the PyMol
software, and the Root Mean Square deviation (RMSD) value was calculated for the final
validation of the model [97].

4.6. Molecular Docking Studies

The studied structures were first treated based on the semi-empirical theory at the
PM6 level using the Spartan 14 software. After being optimized, they were submitted
to the study of molecular docking through the Gold 5.8.1 program. The structure of the
dodecamer (PDB ID: 1Z3F) was used as a DNA model, trypanothione reductase from
L. infantum (PDB ID: 4APN), topoisomerase I from L. donovani (PDB ID: 2B9S), and 14-

https://www.ncbi.nlm.nih.gov/
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://swissmodel.expasy.org/
https://saves.mbi.ucla.edu/
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alpha-ester demethylase from L. infantum (PDB ID: 3L4D) were selected and obtained from
the Protein Data Bank, in view of the homology between L. amazonensis, L. donovani and
L. infantum species genetic sequence [10,98–102]. To validate the study, redocking for targets
were performed with co-crystallized ligands. Through the docking results provided by
GOLD software, the intermolecular interactions were determined and used as a starting
point to measure the affinity of the ligand for the interaction site. The conformation with
the best score was analyzed using the Pymol 2.3.2 software, evaluating the distance and
connection with the receptor for the outcomes of molecular modeling studies [103].

4.7. Molecular Dynamics Simulations

The complexes of ACW-02 with TryR, Topo I, CYP51, and CPBLa obtained in molecular
docking were used in molecular dynamic (MD) simulations using the GROMACS® soft-
ware. Initially, charge and hydrogens were added, and water molecules were removed from
the complexes using the DockPrep available in Chimera® software. Next, the CHARMM36
force field and TIP3P solvation method were selected. At the same time, Ligand topolo-
gies were generated using the web software SwissParam (http://www.swissparam.ch/,
accessed on 29 September 2022) [104]. Then, a 1.0 nm triclinic box was created, and ions
and water were added in a physiological concentration (0.15 M). The system equilibrations
were started, with 10,000 steps by the conjugate gradient method, and subsequently, a total
minimization at 20,000 steps. With the minimization of system energy, the NvT (constant
Number of particles, Volume, and Temperature) and NpT (constant Number of particles,
Pressure, and Temperature) balances were employed in 300 K at 10 ns. Finally, the simula-
tion was performed at 100 ns with the system equilibrated. After obtaining the trajectory
files, the Root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), ra-
dius of gyration (Rg), and H-bond plots were generated using the Xmgrace® software. This
protocol is according to other works performed by our research team [105–107].

4.8. MM-PBSA Calculations

After the molecular dynamic simulations, the trajectory files were used to calculate
the free binding energy of the ligand in complex with the macromolecule through the
Molecular Mechanics/Poisson–Boltzmann Surface Area (MM-PBSA) method. This method
is used frequently in high-throughput virtual screenings to reduce the incidence of false
positives [108]. In this way, it’s possible to calculate the Gibbs free-biding energy (∆Gbinding)
during the simulation, using van der Waals and electrostatic (unbound) interactions [109].
The difference between the free energy of complex protein-ligand (Gcpx) and unbound
protein and ligand (Grec) are used to calculate the ∆Gbinding. Finally, this value is calculated
based on the sum of the changes in the solvation entropy (−T∆Ssol), binding energy
(∆Ebind), and conformational entropy (−T∆Sconf) (Equation (3)) [110]. Thus, ∆Gbinding and
interactions parameters calculated by MM-PBSA were performed using the g_mmpbsa
tool [108] accoupled in the GROMACS® software with the trajectory files of the molecular
dynamics simulation. The ∆Gbinding values were obtained as the average free-interaction
and solvation energies [109].

∆Gbinding = Ebinding − T∆Ssol − T∆Sconf (3)

5. Conclusions

In conclusion, a novel active antileishmanial compound has been synthesized, with
high selectivity for amastigote forms of L. amazonensis and non-toxicity for macrophages
up to the highest concentration tested. Additionally, the compound appeared to perform
immunomodulatory activity toward macrophages’ infection management due to the down
expression of the pro-Leishmania cytokines IL-10 and IL-6. Furthermore, evaluated in silico
and in vitro, the compound ACW-02 presented the ability to bind with DNA, suggesting
this as one of the potential targets responsible for the activity performed. Additional theo-
retical studies of molecular docking, dynamics and MM-PBSA calculations in Leishmania

http://www.swissparam.ch/
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targets contributed to a possible mechanistic elucidation and justification of the selectivity
of the compound for the parasite cell by topoisomerase IB and CPBLa inhibition. Therefore,
this preliminary study supports the potential antiparasitic action of this acridine compound,
encouraging further studies involving this proposal.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ph16020204/s1, Figure S1: 1H NMR spectrum of ACW-02
(500 MHz, DMSO-d6); Figure S2: 13C NMR spectrum of ACW-02 (125 MHz, DMSO-d6); Figure S3: Ex-
tended Mass spectrum of ACW-02 by MALDI-TOF; Figure S4: Infrared (IR) of ACW-02; Figure S5: An-
nexin V-FITC/PI assay with control group; Figure S6: Effect of compound ACW-02 on macrophages.
B7–B12—1 µG mL−1. C1–C6—16 µG mL−1. C7–C12—32 µG mL−1; Table S1: Descriptive statistics
of ACW-02 in vitro experiments; Figure S7: Molecular docking of ACW-02 (A) on trypanothione
reductase from L. infantum (PDB ID: 4APN); Figure S8: Molecular docking of ACW-02 (A) on sterol
14-alpha demethylase (CYP51) from L. infantum (PDB ID: 3L4D); Figure S9: Molecular docking of
ACW-02 on topoisomerase 1 (TOP I) from L. donovani (PDB ID: 2B9S); Figure S10: Molecular docking
of ACW-02 on cysteine protease B from L. amazonensis (CPBLa).
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