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Abstract: An active fraction of S. crispus, F3, and its bioactive compounds (lutein, β-sitosterol, and
stigmasterol) were reported to have anti-glycolytic activities in MDA-MB-231 cells. Since glycolysis
can also regulate metastatic activities in cancer cells, this study investigated the mechanism underly-
ing the anti-glycolytic and anti-metastatic activities induced by F3 and its bioactive compounds on
MDA-MB-231 cells. The cells were treated with IC50 concentrations of F3, lutein, β-sitosterol, and
stigmasterol. GLUT1 protein expression and localization were then observed using a fluorescence
microscope. We found that F3, lutein, and β-sitosterol inhibit localization of GLUT1 to the cell
membrane, which causes the decrease in glucose uptake. This is supported by a reduction in PKC
activity, measured using a spectrophotometer, and increased TXNIP protein expression detected
by Western blotting. Both TXNIP and PKC are involved in GLUT1 activation and localization. The
expression of signaling proteins involved in the PI3K/AKT pathway was also measured using a flow
cytometer. Results show that F3, lutein, β-sitosterol, and stigmasterol reduced the expression of AKT,
pAKT, mTOR, and HIF1α in MDA-MB-231 cells. Transwell migration assay was used to measure
migration of the MDA-MB-231 cells. A reduction in fibronectin protein expression was observed by
fluorescence microscopy, after treatments with F3 and its bioactive compounds, leading to a reduction
in the MDA-MB-231 cells’ migratory abilities. As a conclusion, F3 acts as a metabolic inhibitor by
inhibiting metabolic rewiring in the promotion of cancer metastasis, potentially due to the presence
of its bioactive compounds.
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1. Introduction

Cancer is a complex disease, with increased glucose uptake and lactate production
even under aerobic conditions [1]. This occurs via aerobic glycolysis, also known as the
Warburg effect [2], in which the main function is to provide rapid energy production to
support highly proliferated cancer cells [3]. Evidence shows that tumor initiation and
progression require increased production of ATP and macromolecules by strongly relying
on the reprogramming of cell metabolism [4]. Furthermore, alteration of metabolic enzymes
such as hexokinase 2 (HK2), pyruvate kinase type M2 (PKM2), and lactate dehydrogenase
(LDH), as well as glucose transporters (GLUTs) and lactate transporters (monocarboxylate
transporters, MCTs), have been observed in the Warburg effect [5–8]. Therefore, targeting
tumor cell metabolism to achieve therapeutic benefits in cancer treatments has garnered
interest among researchers.

Besides enhancing cellular proliferation, the Warburg effect promotes cancer metasta-
sis. During metastasis, malignant cells disseminate from their primary sites and grow in
distant organs [9]. Restraining oxidative metabolism enables cancer cells to avoid excess
reactive oxygen species (ROS) generation, thus, increasing their survival during metas-
tasis [10]. Low ROS production can protect cancer cells from ROS-mediating anoikis,
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which is a form of cell death that occurs when the cells lose contact with their neigh-
boring cells and the extracellular matrix [11,12]. Over 90% of breast cancer deaths are
related to metastasis [13]. Multiple steps are known to be involved during metastasis:
(1) Epithelial-mesenchymal transitions (EMT), whereby the epithelial cells lose their polar-
ity and gain mesenchymal phenotypes causing them to become highly mobile and invasive.
This invasiveness of the cells facilitates their migration from their primary site to the distal
site [14]; (2) Tissue invasion through the degradation of the extracellular matrix (ECM);
(3) Intravasation and penetration of the cancer cells to the blood vessel wall and entry into
the circulation as circulating tumor cells (CTCs); (4) Homing and survival of the CTCs
within the circulation; (5) The extravasation of cancer cells passes through the vascular
wall and exits the bloodstream of the distant organ; (6) Formation of a metastatic niche via
angiogenesis (formation of new blood vessels) [15].

The PI3K/AKT/mTOR signaling pathway is important in driving tumorigenesis and
the progression of cancer cells. Conversely, activation of mTOR signaling has been reported
to drive changes in cancer cell metabolism by promoting several metabolic pathways
such as glucose, amino acid, nucleotide, fatty acid, and lipid metabolism [16]. During
glucose metabolism, activation of mTOR signaling in cancer cells can enhance the ex-
pression of genes related to glucose uptake and glycolysis through upregulation of the
hypoxia-inducible factor 1α (HIF1α) [17]. The function of this transcription factor is to
regulate more than 1000 target genes that are important for the survival of cancer cells
including proliferation, angiogenesis, EMT, invasion, metastasis, and metabolic reprogram-
ming [18]. High expression of HIF1α has been related to poor prognosis in breast cancer
patients [19,20]. One of the potent negative regulators for glucose uptake and aerobic
glycolysis is the thioredoxin-interacting protein (TXNIP) [21]. TXNIP suppression has been
shown to increase glucose metabolism in triple negative breast cancer cells (TNBC), thereby
promoting the growth and survival of this aggressive breast cancer subtype [22].

Strobilanthes crispus (L.) Blume (S. crispus) is a Malaysian medicinal plant that
has been reported to have anticancer activity on several cancer cell lines [23–25], in-
cluding caspase-dependent apoptosis and cell cycle arrest in human breast cancer cell
lines with no effects on the non-malignant cells [25,26]. F3, a bioactive subfraction
extracted from S. crispus leaves, can significantly cause tumor regression, and inhibit
metastasis in N-Methyl-N-nitrosourea (NMU) induced rat tumor models [27,28]. High-
performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR)
identified six bioactive compounds in the F3 including lutein, β-sitosterol, and stigmas-
terol (Figure 1) [29]. Along with F3, lutein, and β-sitosterol also caused a reduction in
tumor growth and prevented secondary tumor development in the 4T1-induced mouse
mammary carcinoma model [30].
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S. crispus is traditionally used to treat diabetes, and daily consumption of S. crispus tea
has been shown to reduce blood glucose in hyperglycemic rats [31]. Since cancer cells depend
on glucose for energy production, we examined the effects of F3 on the glucose metabolism
of TNBC, MDA-MB-231. Interestingly, our latest findings showed that F3 inhibited glucose
uptake and lactate production in breast cancer cells via its bioactive compounds [32]. The
current study focused on the effects of F3 and its bioactive compounds on anti-glycolytic
and anti-metastatic activities by investigating their effects on glucose transporter 1 (GLUT1)
localization and the expression of glycolytic and metastatic regulatory molecules in the MDA-
MB-231 cells. MDA-MB-231 cells are characterized by GLUT1 overexpression and high
glucose consumption [33] activated by the PI3K/AKT/mTOR pathway.

2. Results
2.1. Effects of F3, Lutein, β-sitosterol, and Stigmasterol on GLUT1 Protein Expression and Localization

GLUT1 protein expression in MDA-MB-231 cells was unaffected by F3 and its bioactive
compounds after being treated for 24 h (Figures 2a and S1). However, only apigenin-
treated cells showed a significant reduction in GLUT1 protein expression in MDA-MB-231
cells (Figure 2b). Meanwhile, localization of GLUT1 to the cell membrane was observed
using fluorescent microscopy (Figure 3). The fluorescent microscopy results show high
green intensity prominently in the plasma membrane area of untreated cells, indicating
localization of GLUT1 (Figure 3). For MDA-MB-231 cells treated with F3 (Figure 3b),
lutein (Figure 3c), and β-sitosterol (Figure 3d) for 24 h, the green fluorescence of GLUT1
appears as punctate structures distributed in the cytoplasm and nuclear region of the cells
compared to the control (Figure 3a) where more green fluorescence was observed in the
plasma membrane area. MDA-MB-231 cells treated with stigmasterol (Figure 3e) show
green intensity comparable to the control cells with less green punctate observed in the
nucleus and cytoplasm area.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 3 of 18 
 

 

 
Figure 1. The chemical structures the bioactive compounds isolated from F3: (a) lutein; (b) β-sitos-
terol and (c) stigmasterol. 

2. Results 
2.1. Effects of F3, Lutein, β-Sitosterol, and Stigmasterol on GLUT1 Protein Expression and 
Localization 

GLUT1 protein expression in MDA-MB-231 cells was unaffected by F3 and its bioac-
tive compounds after being treated for 24 h (Figures 2a and S1). However, only apigenin-
treated cells showed a significant reduction in GLUT1 protein expression in MDA-MB-
231 cells (Figure 2b). Meanwhile, localization of GLUT1 to the cell membrane was ob-
served using fluorescent microscopy (Figure 3). The fluorescent microscopy results show 
high green intensity prominently in the plasma membrane area of untreated cells, indi-
cating localization of GLUT1 (Figure 3). For MDA-MB-231 cells treated with F3 (Figure 
3b), lutein (Figure 3c), and β-sitosterol (Figure 3d) for 24 h, the green fluorescence of 
GLUT1 appears as punctate structures distributed in the cytoplasm and nuclear region of 
the cells compared to the control (Figure 3a) where more green fluorescence was observed 
in the plasma membrane area. MDA-MB-231 cells treated with stigmasterol (Figure 3e) 
show green intensity comparable to the control cells with less green punctate observed in 
the nucleus and cytoplasm area.  

 
Figure 2. GLUT1 protein expression. (a) Representative image of Western blot analysis of MDA-
MB-231 cells treated with the indicated concentrations of (2) F3, (3) lutein, (4) β-sitosterol, (5) stig-
masterol, and (6) apigenin (positive control), while (1) untreated as a negative control for 24 h. (b) 

Figure 2. GLUT1 protein expression. (a) Representative image of Western blot analysis of MDA-MB-231
cells treated with the indicated concentrations of (2) F3, (3) lutein, (4) β-sitosterol, (5) stigmasterol, and
(6) apigenin (positive control), while (1) untreated as a negative control for 24 h. (b) Results are presented
as an average fold change in the level of each protein normalized to β-actin± SD (n = 3). *** p < 0.001.
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Figure 3. Localization of GLUT1 to the cell membrane. MDA-MB-231 cells were untreated (neg-
ative control; (a) or treated with the indicated concentrations of (b) F3, (c) lutein, (d) β-sitosterol,
(e) stigmasterol, and (f) apigenin (positive control) for 24 h. GLUT1 expression and localization to
the cell membrane was observed under a fluorescence microscope at 400×magnification. Red arrows
show an abundance of green punctate in the nucleus and cytoplasm area of treated cells. White circles
show GLUT1 localization at the plasma membrane.

2.2. Effects of F3, Lutein, β-sitosterol, and Stigmasterol on PKC Activity

To elucidate the effect of F3 and its bioactive compounds on PKC activity, the cells
were treated with F3, lutein, stigmasterol, and β-sitosterol for 24 h. The cell lysates were
collected and assessed for PKC activity by in vitro kinase assay. The PKC activity was
significantly reduced in all treated cells, except for stigmasterol, compared to the untreated
control after 24 h incubation (Figure 4).
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Figure 4. PKC activity. MDA-MB-231 cells were treated with IC50 concentrations of F3, lutein,
β-sitosterol, and stigmasterol for 24 h. The PKC activity in treated cells was measured using a
spectrophotometer. Data are presented as the mean ± SD (n = 3). * p < 0.05; ** p < 0.01; *** p < 0.001.
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2.3. Effects of F3, Lutein, β-sitosterol, and Stigmasterol on TXNIP and HK2 Protein Expressions

Western blot images and relative fold changes in the TXNIP protein expression in
MDA-MB-231 cells are presented in Figure 5a,b and Figure S2, respectively. TXNIP ex-
pression was significantly increased in cells treated with F3 (4-fold) and lutein (5-fold)
compared to the untreated control (Figure 5b). The level of HK2 protein expression in
MDA-MB-231 cells was determined by flow cytometry. Results show that the expression of
HK2 was not affected by F3, lutein, β-sitosterol, and stigmasterol treatments (Figure 6).
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Figure 5. TXNIP protein expression. MDA-MB-231 cells were treated with the indicated concentra-
tions of (2) F3, (3) lutein, (4) β-sitosterol, and (5) stigmasterol for 24 h. The protein expression was then
determined by Western blotting. (a) Representative image of TXNIP protein expression. Tamoxifen
was used as a positive control, while untreated cells were used as negative control. (b) Results are
presented as an average fold change in the level of each protein normalized to β-actin ± SD (n = 3).
* p < 0.05; ** p < 0.01.
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2.4. Effects of F3, Lutein, β-sitosterol, and Stigmasterol on Glucose Metabolism Regulatory Proteins

Compared to the untreated control, a significant reduction in AKT expression (Figure 7a)
was observed in MDA-MB-231 cells after being treated with F3, lutein, β-sitosterol, and
stigmasterol for 24 h. Figure 7b further shows that the expression of phosphorylated AKT
(pAKT) was significantly decreased compared to the untreated control, indicating the absence
of the full activation of AKT. The protein expression of mTOR was also significantly reduced
in MDA-MB-231 cells by F3 and its bioactive compounds. The reduction could be observed
in as early as 8 h of treatments, with further reduction seen after 24 h (Figure 7c). Similarly,
the expression of HIF1α was significantly reduced when MDA-MB-231 cells were treated
for 24 h with F3, lutein, β-sitosterol, and stigmasterol, compared to the untreated control
(Figure 7d). Our results also show that tamoxifen significantly inhibits the expression of AKT,
pAKT, mTOR, and HIF1α proteins in MDA-MB-231 cells (Figure 7a–d).
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2.5. Effects of F3, Lutein, β-sitosterol, and Stigmasterol on Metastatic-Related Activities

The relative number of migrated cells in the Transwell migration assay were quantified
using the ImageJ software. As seen in Figures 8 and 9, F3 and its bioactive compounds as
well as tamoxifen significantly decreased the migration abilities of MDA-MB-231 after 24 h
of treatment. GSK3β is known to mediate invasive phenotypes in cancer cells [34], therefore,
GSK3β expression was then determined in the cells using Western immunoblotting as shown
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in Figures 10 and S3. F3 and its bioactive compounds have no effects on the expression of
GSK3β in the MDA-MB-231 cells, however. On the other hand, the expression of fibronectin,
an EMT marker [35], was reduced after the treatment of MDA-MB-231 cells with F3, lutein,
β-sitosterol, stigmasterol, and tamoxifen (Figure 11). This is evident by the reduction in the
intensity of green fluorescence observed in the treated cells compared to the control (untreated
cells) that showed high green intensity. Meanwhile Figure 12, showed significant reduction in
mean fluorescence intensity in all treated cells when compared to control.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 7 of 18 
 

 

2.5. Effects of F3, Lutein, β-Sitosterol, and Stigmasterol on Metastatic-Related Activities 
The relative number of migrated cells in the Transwell migration assay were quanti-

fied using the ImageJ software. As seen in Figures 8 and 9, F3 and its bioactive compounds 
as well as tamoxifen significantly decreased the migration abilities of MDA-MB-231 after 
24 h of treatment. GSK3β is known to mediate invasive phenotypes in cancer cells [34], 
therefore, GSK3β expression was then determined in the cells using Western immunob-
lotting as shown in Figures 10 and S3. F3 and its bioactive compounds have no effects on 
the expression of GSK3β in the MDA-MB-231 cells, however. On the other hand, the ex-
pression of fibronectin, an EMT marker [35], was reduced after the treatment of MDA-
MB-231 cells with F3, lutein, β-sitosterol, stigmasterol, and tamoxifen (Figure 11). This is 
evident by the reduction in the intensity of green fluorescence observed in the treated cells 
compared to the control (untreated cells) that showed high green intensity. Meanwhile 
Figure 12, showed significant reduction in mean fluorescence intensity in all treated cells 
when compared to control.  

 
Figure 8. Determination of cancer cell migration by transwell migration assay observed under a 
microscope at 200× magnification.  

 

Figure 9. The percentage of migrated MDA-MB-231 cells, treated with IC50 concentrations of F3, 
lutein, β-sitosterol, and stigmasterol for 24 h, compared to control (untreated). Data are presented 
as the mean ± SD (n = 3). ** p < 0.01; *** p < 0.001; **** p < 0.0001. 

Figure 8. (a) Untreated; (b) F3 (100 µg/mL); (c) Lutein (20 µM); (d) β-sitosterol (25 µM); (e) Stigmas-
terol (90 µM); (f) Tamoxifen (20 µM). Determination of cancer cell migration by transwell migration
assay observed under a microscope at 200×magnification.
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Figure 11. Fibronectin protein expression. The representative fluorescence image of MDA-MB-231 cells
treated with the indicated concentrations (b) F3, (c) lutein, (d) β-sitosterol, and (e) stigmasterol for 24 h
was compared to (a) control (untreated cells). Tamoxifen (f) was used as a positive control. Cells were
observed at 400×magnification.
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3. Discussion

Aggressive and highly metastatic types of cancer cells show a high expression level of
GLUT1 and GLUT3 [36]. This is because these cancer cells have a high glucose metabolism
rate and, thus, require an enormous amount of energy from the uptake of glucose through
GLUTs [37]. MDA-MB-231 cells are highly invasive breast cancer cells that overexpress
GLUT1 [38,39]. These cells have been shown to exhibit the characteristics of Warburg effects
based on the correlation between the acidification of the external tumor microenvironment
and lactic acid production [40]. Interestingly, in comparison to MCF-7 cells (non-metastatic
breast cancer cell line), MDA-MB-231 cells internalize a significant amount of glucose [37].
Based on our previous findings, F3 inhibits glucose uptake in MDA-MB-231 cells [32]. The
inhibition of glucose uptake by F3 was reported to be due to the presence of lutein and
β-sitosterol as those two compounds were found to inhibit glucose uptake activity in the
MDA-MB-231 cells.

Inhibition of glucose transporters may become a potential therapeutic approach for
cancer disease because it leads to the inhibition of glucose uptake into the cells [41]. There
are several methods for the inhibition of glucose transporters such as the use of drug
inhibitors, antibodies that specifically target the glucose transporter, and siRNA [41]. Ex-
amples of glucose transporter inhibitors that have been reported on cancer cells are STF31
(a small molecule that belongs to the second class in the group of pyridyl aniline thia-
zoles compounds) [42], WZB117 (resveratrol, a phytochemical present in various fruits
including grapes) [43], phloretin (a natural phenol in apple leaves) [44], and many more.
Changes in the individual transporter efficiency and the number of transporters at the
plasma membrane can influence the uptake of glucose through GLUTs [45,46]. Other than
the increased expression of GLUT1, the transportation of vesicles containing GLUT1 from
the intracellular components into the cell membrane also increased when the cells were in
hypoxic conditions [47]. Another major form of GLUT1 regulation is through the subcellu-
lar trafficking between the internal vesicular compartment and the cell membrane [48]. The
enhancement of GLUT1′s membrane localization requires phosphorylation of GLUT1 at
the S226 site, whereas GLUT1 cell surface trafficking can be disrupted by deletion of the
PDZ binding motifs [49,50]. Furthermore, the internalization of GLUT1 can occur via the
early endosomes (EE) and late endosomes (LE), which can then be transported into the
lysosome, via the endolysosomal pathway, where it will be destroyed. However, GLUT1
can be recycled back to the cell membrane through the recycling endosome (RE) [51,52].
Thus, the trafficking activity of GLUT1 from the cytosol to the cell membrane may play a
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role in glucose uptake in cancer cells. In the current study, the inhibition of glucose uptake
in MDA-MB-231 cells by F3 and its bioactive compounds (lutein and β-sitosterol) was not
accompanied with a downregulation in the expression of GLUT1. However, fluorescence
microscopy analysis showed that localization of GLUT1 to the cell membrane was inhibited
by F3, lutein, and β-sitosterol. Interestingly, our current study also shows that stigmasterol
did not inhibit localization of GLUT1 to the cell membrane, which supported the lack of
inhibition of glucose uptake by stigmasterol reported previously [32].

For over 30 years, PKC activation has been known to rapidly initiate glucose uptake by
phosphorylating GLUT1 at serine 226 [50,53]. This S226 is located in a conserved sequence
in the large intracellular loop, together with the C-terminal tail of GLUT1, to regulate
its trafficking and activity [54]. By using phorbol esters to activate PKC, Lee and his
colleagues [50] demonstrated that this activation caused an increase in the phosphorylation
of GLUT1 S226 and later increased GLUT1 localization to the cell surface. Hence, decreased
PKC activity observed in the current study provides support for the inhibition of GLUT1
localization to the MDA-MB-231 cell membrane by F3, lutein, and β-sitosterol.

TXNIP is another regulator for GLUT1 plasma membrane localization [55]. TXNIP
expression is often downregulated in cancer cells and the suppression of TXNIP expression
in normal cells increases the risk of cancer [56]. In our study, TXNIP protein expression
increased when MDA-MB-231 cells were treated with F3, lutein, β-sitosterol, or stigmasterol.
An increased TXNIP protein expression has been reported to negatively regulate glucose
metabolism in the cells by binding to GLUT1 and facilitating its endocytosis via clathrin-
coated pits (CCP) [21]. This further supports our finding that the inhibition of glucose
uptake in the TNBC cells by F3, lutein, and β-sitosterol is attributed to the inhibition of
GLUT1 plasma membrane localization.

An increased level of TXNIP expression is correlated with the inhibition of the
P13K/AKT/mTOR pathway [57,58]. The P13K/AKT signaling pathway is known for
its role in tumorigenesis and it can activate many downstream proteins involved in the
proliferation, survival, and apoptosis of cancer cells [59]. Furthermore, it is also involved in
the reprogramming of cancer cell metabolism [60]. Increased expression of AKT activity
will increase the rate of glycolysis in the cancer cells. This is mainly due to the function of
activated AKT in regulating the localization of the GLUT1 to the plasma membrane [61–63]
as well as regulating hexokinase expression and its activity [64]. In order for the AKT to
be fully activated, phosphorylation at S473 and T308 sites by mTORC2 and PDK1, respec-
tively, is required [65–67]. We show that treatments with F3 or its bioactive compounds
significantly decreased the expression of both AKT and pAKT (at the S473 site) at 24 h, as
compared to the untreated control.

During glycolysis, glucose is phosphorylated to glucose-6-phosphate by HK2. Re-
cent reports showed that blocking the PI3K/AKT signaling pathway could suppress
HK2 expression in both hepatocellular carcinoma and breast cancer cells [68,69]. AKT
activation promotes HK2 association with the outer mitochondria membrane and inter-
action with the voltage-dependent anion channel (VDAC) for immediate access to the
ATP [70,71]. However, when the level of glucose-6-phosphate increases, HK2 will be
translocated into the nucleus, which leads to the inhibition of HK2 activity as well as
autophagic effects [72,73]. The translocation of HK2 to the nucleus also occurs when the
level of AKT expression in the cells decreases due to VDAC phosphorylation. This causes
dissociation of HK2 from the mitochondria [74], which promotes apoptosis in cancer
cells [75]. In this study, F3 and its bioactive compounds did not inhibit the expression
of HK2 in the MDA-MB-231 cells. Nevertheless, the reduced expression of pAKT could
lead to an inhibition of HK2 activity.

The mammalian target of rapamycin complex (mTORC) is a downstream target for
the PI3K/AKT pathway. mTOR is known as a master regulator in diverse biological pro-
cesses such as cell proliferation, survival, autophagy, and metabolism [76,77]. Hong and
his colleagues [57] reported that constitutive activation of PI3K/AKT/mTOR signaling
leads to TXNIP downregulation. Downregulation of mTOR protein expression in the
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MDA-MB-231 cells was observed after treatment with F3 and its bioactive compounds,
which, hence, leads to the increased expression of TXNIP in the treated cells. Another regu-
lator for aerobic glycolysis in cancer cells is HIF1α, and this protein is positively enhanced
by the activation of mTOR [78]. The expression of HIF1α can induce the expression of genes
that encode glycolytic enzymes and regulate the uptake of glucose through GLUTs [79–81].
In the current study, downregulation of mTOR by F3 and its bioactive compounds also
caused a reduction in the expression of HIF1α. The downregulation of HIF1α expression in
cells treated with F3, lutein, β-sitosterol, and stigmasterol can explain the ability of these
compounds to reduce lactate concentration in the MDA-MB-231 cells [32] as HIF1α can
regulate the expression of LDHA [82]. Although HIF1α expression is not associated with
the total GLUT1 expression, the membrane level of GLUT1 seems to be regulated by HIF1α
as reported in thyroid cancer cells [83].

Lactate that is produced by cancer cells during the Warburg effect will be exported into
the extracellular space via monocarboxylic transportation (MCT) and generates microenvi-
ronmental acidosis with a pH lower than 6.0 [69,84]. This condition has been demonstrated
to modulate the expression of epithelial mesenchymal transition (EMT) related proteins as
well as affect the stability of the tissue structure [85]. Furthermore, the dysregulation of pH
in cancer cells is described to promote the proliferation, metastasis, and evasion of apop-
tosis [86]. Based on our Transwell migration assay, F3 and its bioactive compounds were
shown to reduce the percentage of migrated cells. The results are concomitant with other
findings that proved lutein inhibits migration of breast cancer cells and reduces the expres-
sion of EMT-related proteins [87]. β-sitosterol reduces invasion of MDA-MB-231 cells, and
protects against metastasis [88], and stigmasterol exerts anti-migratory effects on ovarian
and gastric cancer cells [85,86,89,90].

GSK3β, a serine/threonine protein kinase, can act as a tumor suppressor or tumor
promoter depending on the types of cancer cells [91]. In breast cancer cells, overexpres-
sion of GSK3β indicates poor prognosis and increases the risk of relapse [92]. Knock-
down of GSK3β in breast cancer cells has been shown to inhibit cellular proliferation [93].
MDA-MB-231 cells are TNBC cells that have undergone EMT and are in dominance with
the mesenchymal cell attributes [94]. Based on a study by Vijay and colleagues [95], GSK3β
inhibitors can inhibit the EMT and migratory properties of TNBC cells. However, our
findings show that F3 and its bioactive compounds have no effects on the expression of
GSK3β in the MDA-MB-231 cells, although anti-migratory activity was observed. Besides
showing morphological changes, cancer cells undergoing EMT also exhibit molecular al-
terations as demonstrated by the decreased expression of epithelial markers (for example,
E-cadherin, ZO-1, and occludin) and increased expression of mesenchymal markers (for
example, N-cadherin, vimentin, fibronectin, and fibroblast-specific protein) [96–98]. Previ-
ously, we demonstrated that F3 had anti-metastatic activity in breast cancer by reducing
the expression of N-cadherin, vimentin, MMP-9, MUC1, Twist, and VEGF, while increasing
the expression of E-cadherin [28]. In the current study, the expression of fibronectin was
also reduced. Fibronectin is a component and regulator of ECM that plays a role in cancer
progression such as migration, invasion, and metastasis [99–101]. Consequently, silencing
fibronectin expression in renal cancer cells was reported to decrease cell migration [102].
Similarly, F3, lutein, β-sitosterol, and stigmasterol were found to inhibit the migration of
MDA-MB-231 cells and reduce the expression of fibronectin. Fibronectin was also reported
to increase the migration and invasion of ovarian cancer cells through the activation of
focal adhesion kinase (FAK) and the increase of the signaling regulation of FAK, which is
the PI3K/AKT pathway [103]. Cell migration involves assembly and disassembly of focal
adhesion complexes, adhesion sites between cells, and ECM [104]. Hence, FAK becomes an
important regulator for cell migration as it controls the turnover of the adhesion sites [105].
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4. Materials and Methods
4.1. Cell Culture and Treatments

The MDA-MB-231 cell line was purchased from the American Type Culture Collection
(ATCC, Manassas, VA, USA) and cultured in Dulbecco’s modified Eagle’s medium (DMEM)
(Nacalai Tesque, Kyoto, Japan). The media was supplemented with 10% fetal bovine serum
(FBS) (Thermo Fisher Scientific, Shanghai, China), 100 IU/mL penicillin, and 100 µg/mL
streptomycin (Thermo Fisher Scientific, Shanghai, China).

The cells were treated with 100 µg/mL F3, which was sourced from the Universiti
Sains Malaysia Centre for Drug Research. The F3 was prepared from pulverized freeze-
dried leaves of S. crispus as previously reported [29,30]. MDA-MB-231 cells were also
treated with 20 µM lutein, 25 µM β-sitosterol, or 90 µM stigmasterol (Cayman, MI, USA),
based on the IC50 concentrations obtained from the MTT assay [32]. Apigenin was used
as a positive control for the detection of GLUT1 because it has been shown to inhibit both
GLUT1 mRNA and protein expression [106,107]. Meanwhile, tamoxifen was used as a
positive control in all subsequent experiments because it has previously been reported to
decrease PKC activity and affect the PI3K/AKT pathway in MDA-MB-231 cells [108,109].

4.2. Immunofluorescence Analysis

MDA-MB-231 cells were grown on a chamber slide (Thermo Fisher Scientific, Waltham,
MA, USA) overnight, prior to 24 h treatments with F3, lutein, β-sitosterol, or stigmasterol.
The cells were then washed with phosphate-buffered saline (PBS) and fixed with 4%
paraformaldehyde (in PBS) at room temperature (RT) for 10 min. In order to permeabilize
and block the non-specific protein–protein interactions, cells were incubated for 1h with
1% BSA in 0.1% PBS-Tween 20. Cells were then washed once with PBS, followed by
incubation with either the anti-glucose transporter GLUT1 (ab652) (Abcam, Cambridge,
UK) (1:1000), or the fibronectin antibody (960632) (Novus Biologicals, Englewood, CO,
USA) (1:1000), in a blocking reagent overnight at 4 ◦C. Then, the cells were washed with PBS
and incubated with the secondary antibodies of Alexa Fluor and the Goat Anti-Rabbit IgG
(Abcam, Cambridge, UK) for 1h in the dark at RT. The cells were then washed with PBS and
the coverslips were mounted with Dako Fluorescent Mounting Medium containing DAPI
(Agilent Technologies, Santa Clara, CA, USA) prior to microscopy. Images were acquired on
40× objective using an OLYMPUS BX41 Fluorescent microscope (Olympus, Tokyo, Japan).
Representative images are shown in the figures at the same exposure, magnification, and in
merged color images.

4.3. Cell Lysis and Western Blot Analysis

Cells were lysed with 10× RIPA buffer (Cell Signaling Technology, Danvers, MA,
USA) and washed with PBS, before adding 1× RIPA buffer to the plate, and incubated
on ice for 5 min. The cells were collected and centrifuged at 14,000× g for 10 min. A
total of 20 µg of protein lysates were resolved in SDS-PAGE. Membranes were probed
overnight with primary antibodies of GLUT1 (1:1000) (Abcam, Cambridge, UK), TXNIP
Recombinant Rabbit mAb (1:500) (Thermo Fisher Scientific, Waltham, MA, USA), GSK-
3β antibody (1:500) (Novus Biological, Englewood, CO, USA), and β-actin Rabbit mAb
(Thermo Fisher Scientific, Waltham, MA, USA) (1:1000). The proteins were detected using
chemiluminescence (Alpha Innotec, Kasendorf, Bayern, Germany) after incubation with a
secondary antibody of Goat Anti-Rabbit IgG H&L HRP (Abcam, Cambridge, UK) for 1 h.

4.4. Flow Cytometric Analysis

MDA-MB-231 cells were seeded on a 6-well plate and treated with F3, lutein, β-sitosterol,
or stigmasterol for 8 and 24 h. Cells were harvested and washed with PBS. Cell Fixation and
Permeabilization Kits (Abcam, Cambridge, UK) were used for intracellular protein detection.
The harvested cells were fixed with a fixation medium (Reagent A) for 15 min, washed with PBS,
followed by a permeabilization medium (Reagent B) for 15 min. Next, the cells were washed
with PBS and stained with primary antibodies that had been diluted in 3% BSA/PBS for 2 h.
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The primary antibodies were AKT (pan) Rabbit mAb (Cell Signaling Technology, Danvers,
MA, USA), phospho-AKT Rabbit mAb (Cell Signaling Technology, Danvers, MA, USA), mTOR
Rabbit mAb (Cell Signaling Technology, Danvers, MA, USA), and HIF1α polyclonal (Thermo
Fisher Scientific, Waltham, MA, USA). The incubated cells were then washed with PBS and
the Goat Anti-Rabbit IgG H&L (Alexa Fluor) (Abcam, Cambridge, UK) secondary antibody
(diluted in 3% BSA/PBS) was added to the cells for 1h. Lastly, the cells were washed with PBS
and analyzed using flow cytometry with 10,000 cells per sample detected.

4.5. PKC Activity Analysis

Protein kinase C activity in treated MDA-MB-231 cells was measured using the ADI-
EKS-420A assay kit (Enzo Life Sciences, Farmingdale, NY, USA). Cells were first lysed
using 10× RIPA buffer (Cell Signaling Technology, Danvers, MA, USA). Following the
manufacturer’s protocol, 30 µL of lysate per sample was used to measure the PKC activity
at a 450 nm wavelength using a spectrophotometer (Molecular Devices, San Jose, CA, USA).
The result was expressed as a relative activity of PKC.

4.6. Migration Assay

Transwell migration assay was performed by seeding MDA-MB-231 cells (5× 105 cells/well)
in the cell culture insert (8.0 µm pore size) (SPL Life Sciences, Gyeonggi-do, Korea) containing
1% FBS with or without treatment. To create a chemoattractant gradient to the cells, 10% FBS
(with or without treatment) was added to the bottom of the Transwell system. After 24 h, cells that
migrated through the membrane in response to chemoattractant were then fixed with methanol
for 10 min followed by staining with 0.05% crystal violet solution for 15 min. The excess staining
solution was rinsed with distilled water. The results are reported as average numbers of stained
cells counted in ten random fields (200×magnification) under a light microscope.

4.7. Statistical Analysis

Statistical significance was determined using either One-Way ANOVA or Two-Way
ANOVA analyzed with the GraphPad Prism version 6.01 (Boston, MA, USA) soft-
ware. Results were obtained from three independent experiments and presented as
means ± standard deviations (SD).

5. Conclusions

The S. crispus subfraction F3 exerts its anti-cancer effects in breast cancer cells by
modulating the glycolytic and migratory activities via the inhibition of GLUT1 localization
to the cell membrane and the inhibition of the AKT/mTOR/HIF1α pathway that potentially
inhibits the expression of glycolytic-related molecules. Metabolic changes exerted by F3
modulate the expression of EMT-related proteins in the breast cancer cells. These anti-
cancer effects of F3 are attributed to the presence of its bioactive compounds such as lutein,
β-sitosterol, and stigmasterol. Since metabolic rewiring can induce cancer metastasis and
drug resistance, further studies are then required to know the effects of those compounds
on the EMT-induced drug resistance in MDA-MB-231 cells.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ph16020153/s1, Figure S1. Representative image of
(a) GLUT1 and (b) β-actin protein expression in MDA-MB-231 cells treated with the indicated
concentrations of (2) F3, (3) lutein, (4) β-sitosterol, (5) stigmasterol, and (6) apigenin (positive
control), while (1) untreated as a negative control for 24 h; Figure S2. Representative image of
TXNIP protein expression in MDA-MB-231 cells treated with the indicated concentrations of (2) F3,
(3) lutein, (4) β-sitosterol, and (5) stigmasterol for 24 h. Tamoxifen (6) was used as a positive con-
trol, while untreated cells (1) as a negative control; Figure S3. Representative image of (a) GSK3β
and (b) β-actin protein expression in MDA-MB-231 cells treated with the indicated concentrations
of (2) F3, (3) lutein, (4) β-sitosterol, (5) stigmasterol, and (6) tamoxifen (positive control), while
(1) untreated as a negative control for 24 h.

https://www.mdpi.com/article/10.3390/ph16020153/s1
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Abbreviations

GLUT glucose transporter
TXNIP Thioredoxin Interacting Protein
PKC protein kinase c
AKT Ak strain transforming
pAKT phosphorylated Ak strain transforming
mTOR mammalian target of rapamycin
HIF1α Hypoxia-inducible factor 1-alpha
HK2 hexokinase 2
PKM2 pyruvate kinase type M2
LDH lactate dehydrogenase
MCT monocarboxylate transporters
ROS reactive oxygen species
EMT epithelial-mesenchymal transitions
ECM extracellular matrix
CTC circulating tumor cells
TNBC triple negative breast cancer cells
NMU N-Methyl-N-nitrosourea
GSK3β Glycogen synthase kinase-3 beta
PDK1 Pyruvate dehydrogenase kinase 1
VDAC voltage-dependent anion channel
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