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Abstract: Microwave ablation (MWA) is an effective treatment for liver cancer (LC), but its impact on
distant tumors remains to be fully elucidated. This study investigated the abscopal effects triggered by
MWA treatment of LC, at different power levels and with or without combined immune checkpoint
inhibition (ICI). We established a mouse model with bilateral subcutaneous LC and applied MWA
of varied power levels to ablate the right-sided tumor, with or without immunotherapy. Left-sided
tumor growth was monitored to assess the abscopal effect. Immune cell infiltration and distant
tumor neovascularization were quantified via immunohistochemistry, revealing insights into the
tumor microenvironment and neovascularization status. Th1- and Th2-type cytokine concentrations
in peripheral blood were measured using ELISA to evaluate systemic immunological changes. It
was found that MWA alone, especially at lower power, promoted distant tumor growth. On the
contrary, combining high-power MWA with anti-programmed death (PD)-1 therapy promoted CD8+

T-cell infiltration, reduced regulatory T-cell infiltration, upregulated a Th1-type cytokine (TNF-α) in
peripheral blood, and inhibited distant tumor growth. In summary, combining high-power MWA
with ICI significantly enhances systemic antitumor immune responses and activates the abscopal
effect, offering a facile and robust strategy for improving treatment outcomes.

Keywords: liver cancer; abscopal effect; microwave ablation; PD-1; immunotherapy

1. Introduction

Liver cancer (LC) is a global health crisis, ranking as the sixth most common cancer
by incidence and the third leading cause of cancer-related deaths worldwide [1]. Surgical
radical treatment is recommended for only a minority of patients in the early disease
stage [2]. In response to this daunting challenge, ablation has emerged as a cornerstone of
clinical practice, offering an attractive option for localized LC treatment. Among ablation
techniques, microwave ablation (MWA) has been consolidated as a first-line option for
clinicians due to its safety and minimally invasive nature [3–5].

While MWA represents a promising approach in the domain of localized tumor control,
particularly within the context of hepatocellular carcinoma (HCC), its impact on distant
micrometastatic lesions, situated beyond the confines of the primary tumor milieu, remains
enigmatic. Hepatocellular carcinoma (HCC), as a primary type of LC, is characterized by
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multifocal tumor development and micrometastases, factors that significantly complicate
patient prognoses [6]. Facciorusso et al. demonstrated that even in patients with HCC in the
early/intermediate stage, with the adoption of radiofrequency ablation (RFA) for curative
purposes, the survival rate was only 52% at 5 years. The median post-recurrence survival
(PRS) was 22 months. The median time to recurrence (TTR) from the first RFA performed
was 38 months. There were 64 recurrence cases out of 103 treated patients, and only 34.3%
were contiguous to or within the treated area. This means that the majority of recurrences
should be recognized as “de novo” tumors rather than residuals of the initial ablated
lesion. In other words, those undetected microscopic lesions have a profound impact
on postoperative recurrence and overall prognosis [7]. Local therapy, as a monotherapy,
depends mainly on the abscopal effect to produce the inhibition of non-treated lesions. This
enigma stems from the intricate interplay between the local thermal ablative mechanisms
of MWA and the intricacies of the ensuing immune responses. Upon administration, MWA
instigates a sequence of coagulative necrosis, culminating in the demise of neoplastic cells,
while concomitantly engendering a cascade of antigenic release at the ablation site [4,7,8].
The recruitment of antigens holds the key to the hypothesis that the activation of antitumor
immune responses is potentially endowed with the capacity to exert a distal influence on
micrometastatic lesions. It is a proposition that portends transformative implications for
the oncological therapeutic landscape. However, there are counterargument suggestions
regarding the inflammatory factors produced during thermal ablation, such as interleukin-6
(IL-6) and vascular endothelial growth factor (VEGF) [9,10]. Therefore, the abscopal effect
induced by locoregional treatments, such as ablation or radiation therapy, becomes pivotal
to the issue of whether the overall benefit can be achieved by choosing a localized treatment
for HCC. Paradoxically, these immune effectors, though central to orchestrating immune
responses, can inadvertently foster tumor progression. Thus, it becomes a dilemma that
while MWA administration can set the stage for immune-mediated tumor quiescence, it
also harbors the potential to inadvertently stoke the flames of neoplastic growth.

Meanwhile, recent investigations have spotlighted a pivotal variable regarding the
power and temporal parameters characterizing MWA administration [9]. Their findings
illustrate an intriguing revelation that the specific combination of the MWA power level
and the duration of administration may serve as a decisive modulator in the generation
of inflammatory mediators. Intriguingly, their observations suggest the potential of a
resolution: high-power combined with abbreviated-duration MWA methodologies might
offer a cogent strategy for mitigating this undesired phenomenon, offering promise in the
complex landscape of considerations [9].

The abscopal effect, a phenomenon initially discovered in radiotherapy, holds the
remarkable ability of localized treatments to induce regressions in distant metastases, a
process intricately tied to immune responses [8,9]. This effect holds the potential to revolu-
tionize the treatment of distant micrometastases. Prior studies have successfully unveiled
the abscopal effect of thermal ablation in the treatment of malignancies, such as RFA and
cryoablation [4,10,11]. However, the abscopal effect generated by MWA has remained
elusive, primarily due to MWA’s limited capacity to induce immune responses [10]. On
the other hand, the sublethal thermal effect from thermal ablation has been shown to
be an important factor in promoting tumor proliferation and metastasis [12]. Thus, the
existing literature presents conflicting evidence regarding the impact of ablation. While
ablation can potentially induce immune-mediated tumor quiescence, it also carries the risk
of unintentionally promoting neoplastic growth, particularly in studies involving MWA.
Consequently, the effectiveness of MWA in multifocal tumors remains a dilemma.

In the landscape of cancer treatment, the advent of programmed death receptor-
1 (PD-1) inhibitors has heralded a new era of promise in recent years [13,14]. These
inhibitors function by enhancing the cytotoxic capabilities of T lymphocytes through
the alleviation of immune cell inhibition within tumors [15]. The effectiveness of PD-1
blockade therapy is closely correlated with the level of antitumor T-cell immune responses
within the tumor microenvironment [16,17]. Specifically, PD-1 blockade therapy boosts
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the activity of CD8+ T cells, which are essential for attacking cancer cells, and mitigates
the suppressive effects of regulatory T cells (Tregs) [18]. This dual effect can contribute
to a more favorable immune microenvironment for antitumor responses. However, in
HCC, the outcomes have not been as promising. The Keynote-240 clinical trial showed
some benefit in terms of overall survival, but the response rate was relatively low [19].
The CheckMate-459 trial demonstrated the benefit did not reach statistical significance
compared to sorafenib [20]. Many experts attribute the unsatisfactory performance of
ICI monotherapy to the unique and incoherent immune microenvironment of HCC [21].
Contrastingly, following the remarkable success of the combination of atezolizumab and
bevacizumab in the IMBrave150 study, treatment strategy has been trending to a pattern of
“ICI+” [22]. Clinical trials with high impact include LEAP002 (lenvatinib + pembrolizumab),
the Himalaya study (durvalumab + tremelimumab), the EMERALD-1 study (TACE +
durvalumab), and IMbrave 050 (atezolizumab plus bevacizumab after resection/ablation),
and inspiring results have been achieved [23–26].

Therefore, combining PD-1 blockade therapy with MWA in the treatment of HCC is
grounded in a carefully considered rationale that draws upon the complementary mech-
anisms of the two modalities. When administered alongside MWA, PD-1 inhibitors can
augment the activity of immune cells that have been primed by the released tumor anti-
gens [18]. This combination unleashes a more potent and coordinated antitumor immune
response. The synergy between MWA and PD-1 blockade therapy has also been demon-
strated to hold the potential to induce the elusive abscopal effect [27]. Although MWA
alone has not traditionally been associated with inducing the abscopal effect due to its
limited immune-inducing capacity, the addition of PD-1 inhibitors may tip the balance
in favor of immune-mediated responses [10,27]. Meanwhile, recent investigations have
spotlighted a pivotal variable regarding the power and temporal parameters characterizing
MWA administration [28]. However, it is important to note that comprehensive studies
specifically examining the combined impact of thermal ablation, particularly MWA, at
different powers with anti-PD-1 therapy remain relatively scarce in the current literature.

Consequently, these revelations underscore the urgent need to untangle the intricate
web of MWA’s influence on distant tumors. By investigating the intricate interplay between
MWA and the immune system, particularly the potential impact on distant micrometastases,
we aim to unravel the enigmatic relationship between localized tumor control and systemic
antitumor immune responses. Through careful examination of MWA power levels and
duration, we intend to determine optimal parameters that could minimize any unintended
tumor-promoting effects while harnessing its antitumor potential. Moreover, we seek to
explore the elusive abscopal effect in the context of MWA, which holds the promise of
revolutionizing the treatment of distant micrometastases, often considered a significant
challenge in liver cancer management. Additionally, by integrating PD-1 inhibitors into
the treatment paradigm, we aim to enhance the immune-mediated response, potentially
triggering the abscopal effect. The anticipated impact of this research lies in its potential
to refine liver cancer treatment strategies, providing clinicians with valuable insights
into optimizing MWA and PD-1 therapy combinations for improved patient outcomes,
especially in cases involving multifocal tumors and micrometastases. Ultimately, this
research has the potential to pave the way for innovative and more effective approaches for
enhancing LC treatment outcomes and addressing this global health crisis.

2. Results
2.1. Enhanced Efficacy of High-Power MWA with Anti-PD-1 Treatment in Suppressing Distant
Tumor Growth

In this study, we employed a murine model featuring bilateral subcutaneous tumors
induced by hepa1-6 injection. The experimental protocol adhered to the scheme illustrated
in Figure 1A,B. Figure 1C depicts the left tumor growth curve of each mouse in each group.
The growth curve of the left tumor showed that there was no significant difference between
the six groups on day 0 (Figure 1D). On day 12, the tumor volume of the 5W group was
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significantly larger than that of the Sham group (1961.55 ± 906.90 vs. 1128.87 ± 407.64,
p = 0.035) (Figure 1E,F). Although the tumor volume of the 10W group was larger than
that of the Sham group, the difference was not statistically significant (1586.58 ± 1036.20 vs.
1128.87 ± 407.64, p = 0.278). There was no significant difference between the 5W and 10W
groups (1961.55 ± 906.90 vs. 1586.58 ± 1036.20, p = 0.399).
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Figure 1. The schedule of the experiment and the growth curve of the left-sited tumor after MWA at
different powers with or without anti-PD−1. (A) The schedule of the experiment. (B) The right-sited
tumor was ablated, and the left-sited tumor was measured at three-day intervals. (C) The growth
curve of the left-sited tumor of each mouse in each group from day 0 to 12; (D) the total growth curve
of the left-sited tumor in each group from day 0 to 12; (E,F) the volume of the left-sited tumor on day
12. * indicates p < 0.05, ** indicates p < 0.01. MWA: microwave ablation; red lightning represents
MWA; right-sided tumor with red represents the change after MWA; PBS: phosphate-buffered saline;
ip: intraperitoneal injection.

After combined treatment with anti-PD-1, it was found that the distant tumor growth
was significantly inhibited in all combination groups (Figure 1D). On day 12 (Figure 1E,F),
the distant tumor volume of the 10W + PD-1 group was significantly smaller than that of the
Sham + PD-1 group (83.36 ± 22.88 vs. 419.44 ± 350.73, p = 0.037). There was no significant
difference between the 10W + PD-1 group and the 5W + PD-1 group (83.36 ± 22.88 vs.
364.33 ± 707.48, p = 0.350). Moreover, the variations in the p-values pertaining to left tumor
volume on day 12 post-ablation, as presented in Table S1, suggest that the introduction
of PD-1 antibodies resulted in consistently diminished distant tumor volumes across all
combination groups, in contrast to the control groups receiving PBS administration.
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2.2. Enhanced CD8+ T-Cell Infiltration in Distant Tumors with High-Power MWA and
Anti-PD-1 Therapy

Our data acquired in the immunohistochemical analysis showed the number of infil-
trating CD8+ T lymphocytes in the 10W group was significantly higher than that in the
Sham group (110.75 ± 29.04 vs. 56.03 ± 30.89, p = 0.036), but there was no significant differ-
ence between the 5W group and the Sham group (82.56 ± 25.22 vs. 56.03 ± 30.89, p = 0.197).
There was no significant difference between the 10W and 5W groups in the number of CD8+

T lymphocytes (110.75 ± 29.04 vs. 82.56 ± 25.22, p = 0.212) (Figure 2). When combined with
anti-PD-1, the number of infiltrating CD8+ T lymphocytes in each combination group was
further increased, and the number of infiltrating CD8+ T lymphocytes in the 10W + PD-1
group was significantly higher than that in the Sham group and the Sham + PD-1 group
(130.74 ± 44.38 vs. 56.03 ± 30.89, p = 0.009; 130.74 ± 44.38 vs. 85.66 ± 23.53, p = 0.048). The
difference in the number of infiltrating CD8+ T lymphocytes between the 10W + PD-1 and
10W groups was not statistically significant (130.74 ± 44.38 vs. 110.75 ± 29.04, p = 0.484).
The number of infiltrating CD8+ T lymphocytes in the 5W + PD-1 group (114.97 ± 57.17)
was higher than that in the Sham group, the 5W group, and the Sham + PD-1 group, but
the difference was not statistically significant (p = 0.062, p = 0.304, p = 0.268). There was no
significant difference in the number of CD8+ T lymphocytes between the 10W + PD-1 and
5W + PD-1 groups (p = 0.603) (Figure 2).
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Figure 2. CD8+ T lymphocytes were detected by immunohistochemistry in the left tumor. Hema-
toxylin staining resulted in blue-colored nuclei, while positive staining showed a brown color. (A) The
immunohistochemical images at 100× and 200× magnification. (B) A comparison of the number
of CD8+ T lymphocytes in each high-magnification field in different groups. * indicates p < 0.05,
** indicates p < 0.01.

2.3. Combination Therapy Significantly Diminishes Treg Infiltration in Distant Tumors

The extent of Treg infiltration within the Sham group (18.37 ± 10.20), the 5W group
(13.80 ± 3.98), and the 10W group (12.15 ± 2.87) exhibited no statistically significant
distinctions (p > 0.05), as depicted in Figure 3.

However, the number of Treg infiltrations was reduced when combined with anti-
PD-1. The number of Treg infiltrations in the Sham + PD-1 group was significantly lower
than that in the Sham group (8.77 ± 1.83 vs. 18.37 ± 10.20, p = 0.042) and the 5W group
(8.77 ± 1.83 vs. 13.80 ± 3.98, p = 0.023). The number of Tregs in the 5W + PD-1 group was
also significantly lower than that in the 5W group (9.54 ± 1.38 vs. 13.80 ± 3.98, p = 0.038).
There was no significant difference between the 10W + PD-1 group and the Sham group
(9.97 ± 1.39 vs. 18.37 ± 10.20, p = 0.068) and the 10W group (9.97 ± 1.39 vs. 12.15 ± 2.87,
p = 0.146) (Figure 3).
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Figure 3. Regulatory T cells (Tregs) were detected by immunohistochemistry in the left tumor.
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(A) The immunohistochemical images at 100× and 200× magnification. (B) A comparison of the
number of Tregs in each high-magnification field in different groups. * indicates p < 0.05.

2.4. Low-Power MWA Increases Tumor Microvessel Density in Distant Tumors

The number of microvessels in the 5W group was significantly higher than that in the
Sham group (24.96 ± 8.71 vs. 15.36 ± 4.62, p = 0.048). There was no significant difference
between the 10W group and the Sham group in the number of microvessels (25.80 ± 11.80
vs. 15.36 ± 4.62, p = 0.093) (Figure 4). Microvessel counts remain unaffected in response to
combination with anti-PD-1 therapy. The number of microvessels in the 5W + PD-1 group
was also significantly higher than that in the Sham group (25.83 ± 8.30 vs. 15.36 ± 4.62,
p = 0.025), and there was no significant difference between the 5W + PD-1 group and the
5W group (25.83 ± 8.30 vs. 24.96 ± 8.71, p = 0.881). In a similar vein, the 10W + PD-1
group displayed comparable microvessel counts to both the Sham group (23.31 ± 8.37 vs.
15.36 ± 4.62, p = 0.064) and the 10W group (23.31 ± 8.37 vs. 25.80 ± 11.80, p = 0.722), with
no statistically significant differences observed. Furthermore, no statistically significant
differences in MVD were noted when comparing the Sham + PD-1 group with the other
groups (p > 0.05) (Figure 4).
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Figure 4. Microvascular density (MVD) was detected by immunohistochemistry in the left tumor.
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microvessels. (A) The immunohistochemical images at 100× and 200× magnification. (B) A compari-
son of the number of microvessels in each high-magnification field in different groups. * indicates
p < 0.05.
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2.5. Enhanced TNF-α Levels in Peripheral Blood Achieved with Combined High-Power MWA and
Anti-PD-1 Therapy

MWA alone has a limited impact on peripheral blood cytokine levels detected by ELISA.
MWA monotherapy did not lead to significant alterations in the concentrations of Th1-type
cytokines, TNF-α and IFN-γ, or Th2-type cytokines, IL-4 and IL-10, in peripheral blood.

However, following the combination of MWA with anti-PD-1 therapy, it is note-
worthy that only the 10W + PD-1 group demonstrated a statistically significant increase
in the concentration of TNF-α in peripheral blood when compared to the Sham group
(422.09 ± 83.93 vs. 510.63 ± 38.04, p = 0.033). In contrast, there were no significant differ-
ences observed among the 10W group, Sham + PD-1 group, 5W group, 5W + PD-1 group,
and Sham group. There were no significant differences in the concentrations of Th1-type
cytokine IFN-γ and Th2 cytokines IL-4 and IL-10 in peripheral blood among the three
groups (Figure 5).
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3. Discussion

The observation of low expression of PD-1/PD-L1 in LC has significant implications
for the effectiveness of PD-1/PD-L1 inhibition as a monotherapy strategy [21]. PD-1/PD-
L1 inhibition has demonstrated remarkable success in various cancer types, especially
those with high expression of these immune checkpoint molecules, including non-small-
cell lung cancer and melanoma [29,30]. However, in LC, the outcomes have not been
as promising, and this discrepancy is evident in the results from clinical trials like the
KEYNOTE and CheckMate trials. The Keynote-240 clinical trial investigated the use of
pembrolizumab, a PD-1 inhibitor, in patients with advanced HCC who had previously been
treated with sorafenib [19]. While the trial showed some benefit in terms of overall survival,
the improvement was modest, and the response rate was relatively low. Similarly, the
CheckMate-459 trial evaluated nivolumab, another PD-1 inhibitor, as a first-line treatment
for advanced HCC [20]. While this trial demonstrated a trend toward improved survival
compared to sorafenib, the benefit did not reach statistical significance. Together, these trials
revealed that nearly 80% of patients with HCC did not respond effectively to anti-PD-1
monotherapy [19,20]. Recent preclinical studies have also confirmed that nearly 70% of
HCC can be categorized as “non-inflamed class”, which means that these types of HCC have
various degrees of immune escape and immune tolerance by different mechanisms [21,31].
Our experiment data appear to diverge from the findings of these phase III clinical studies;
the Sham + PD-1 group exhibited more significant inhibition of distant tumor growth
compared to the Sham group, which corresponds with the outcomes of an earlier study.
Interestingly, the results from a phase 1/2 trial known as CheckMate-040 showed the safety
and efficacy of nivolumab in patients with HCC [32]. To some extent, our study aligns
with the findings of this trial. This implies that these variances might not always manifest
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as tangible clinical advantages, notwithstanding the statistical distinctions observed in
treatment responses. From bench to bedside, numerous factors can influence the realization
of clinical efficacy, including many cytokines. These cytokines include TNF-α, IFN-γ, IL-4,
and IL-10. Even slight fluctuations in their concentrations and ratios can either enhance
or impede the efficacy of anti-PD-1 treatments. In conjunction with our non-significant
findings pertaining to CD8+ T cells, Treg infiltration, MVD, and the concentrations of
TNF-α, IFN-γ, IL-4, and IL-10, these results underscore the challenges of using PD-1
inhibition as a monotherapy in LC, where low PD-1/PD-L1 expression may limit the
ability of the immune system to mount an effective antitumor response. Consequently, it
becomes imperative to investigate methodologies of greater clinical significance to attain the
overarching objective of enhancing patient survival. Also, the immune microenvironment
in HCC, characterized by low PD-1/PD-L1 expression, may considered as a restriction
factor for the immune system to mount an effective antitumor response. Therefore, in
order for PD-1 or PDL-1 inhibitors to be effective in boosting the T-cell immune response
against HCC cells, it is necessary to combine them with other means to pursue the goal of
amplifying the immunotherapeutic effect, for example, by evoking immunogenic cell death
(ICD) to achieve the modification of the immune microenvironment. The modification of
the tumor microenvironment in HCC is regarded as the trigger for the booster effect of PD-1
or PDL-1 inhibitors, and locoregional therapy has been proven to be an effective means of
evoking ICD [33,34]. Therefore, MWA, despite being considered as having a relatively poor
capacity for immune stimulation, can still remain a worthwhile option for research [35].

The clinical preference for MWA as a first-line treatment in LC stems from its well-
established safety profile and minimally invasive nature [4]. MWA offers several advan-
tages compared to other thermal ablation methods, including enhanced convection profiles,
consistent intratumoral temperature control, faster ablation durations, and the capacity to
simultaneously treat multiple lesions using multiple probes. MWA should be considered
as the technique of choice when the tumor is ≥3 cm in diameter or is close to large vessels,
independent of its size [36]. However, the clinical landscape of LC is characterized by its
multifocal nature, with tumors often appearing at multiple sites within the liver [6]. Any
locoregional therapy utilized in the clinic, including MWA, can only treat detectable foci
and cannot target all multicentric lesions. Sequential progression of these multifocal lesions
after ablation became the major source of relapse after the initial intervention. The PRS
of distant site type were also proved to be significantly shorter than it of the treated site
type [7].

Notably, in the case of nasopharyngeal carcinoma, despite the low expression of
PD-1/PD-L1, local radiotherapy has been observed to induce the shrinkage or regression
of distant metastases, a phenomenon known as the abscopal effect [37]. A study of sur-
gical specimens of HCC revealed a significantly higher incidence of both microvascular
invasion and micrometastases in tumors when the tumor size is >5 cm. This finding im-
plied that most patients with HCC already have experienced microvascular invasion or
micrometastases at the time of diagnosis [38]. Therefore, whether the abscopal effect can be
triggered by locoregional therapy becomes pivotal to the therapeutic benefit. The abscopal
effect occurs when local therapy not only shrinks the targeted tumor but also leads to the
shrinkage of untreated tumors elsewhere in the body. Although the precise biological mech-
anisms responsible for the abscopal effect are still being investigated, the immune system is
thought to play an important role [39]. Corresponding to the macro-physiological abscopal
phenomenon is the micro-mechanistic ICD, and many locoregional treatments have been
shown to induce the ICD effect, such as TACE and ablation [40]. However, in previously
published studies, MWA was found to only induce such indirect effects and antitumor
immune response in rare cases. A review of preclinical studies showed that the abscopal
effect of RFA alone was seen in two of nine studies, while the abscopal effect of MWA alone
was not seen in either of the two studies [41]. Huang et al. found that MWA alone failed to
produce a significant abscopal effect, but the combination of MWA and immunotherapy
resulted in the inhibition of distant tumor growth and reduced recurrence [27]. On the
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other hand, Yu reported that MWA not only suppressed tumor growth in the primary
tumors but also stimulated an abscopal effect in CT26-bearing mice via the improvement of
systemic and intratumoral antitumor immunity [42]. These studies implied that although
MWA, like other ablative therapies, has an increase in interleukin-1 and heat shock proteins
during cancer cell death via thermal injury, MWA is less inducible compared to radiofre-
quency ablation and cryoablation [35,43]. Moreover, Takaki et al. demonstrated that MWA
possesses the capacity to inadvertently promote neoplastic growth [44]. Partially consistent
with these statements, in this study, 5W MWA mice experienced significantly larger tumor
growth than the control group, while there was no notable difference observed in the 10W
group compared to the control. This seemingly contradictory information stems from the
complex interplay between the localized thermal ablation mechanism of MWA and the
ensuing complex immune response. Upon administration, MWA instigates a sequence of
coagulative necrosis, culminating in the demise of neoplastic cells, while concomitantly
engendering a cascade of cytokine release at the ablation site [4,33,45]. The release of
various cytokines and its subsequent triggering of antigenic recruitment are key to the
hypothesis that the activation of antitumor immune responses is potentially endowed with
the capacity to exert a distal influence on micrometastatic lesions. However, there are
arguments that cytokines produced during thermal ablation, such as interleukin-6 (IL-6)
and vascular endothelial growth factor (VEGF), promote tumor proliferation and metasta-
sis [28,46]. Thus, paradoxically, these immune effectors, though central to orchestrating
immune responses, can inadvertently foster tumor progression. This inherent complexity
poses a significant challenge, as MWA primarily serves as a locoregional treatment and
cannot independently address the multifocal tumor development and micrometastases.

The abscopal effect has been noticed and studied as early as the 1950s, initially in the
field of radiation therapy [47]. In recent years, with the clinical application of immunother-
apy, the abscopal effect has regained emphasis. Since it is uncommon in part because cancer
cells have ways to prevent the immune system from finding and killing tumor cells, ICI
therapies exactly provide a means of overcoming the barriers to the immune response.
Intriguingly, despite the multifocal nature of liver cancer that necessitates locoregional
therapy to produce this effect, there was little evidence of ablation as a monotherapy in-
ducing the abscopal effect in previous reports, especially not for MWA. As we enter the
immunotherapy era, emphasizing the distinct challenges associated with LC treatment
regarding how to harness the latent potential of locoregional therapies to induce abscopal
effects becomes essential. Recognizing the multifaceted challenges posed by LC, a com-
prehensive and multidisciplinary approach that combines MWA with other therapies is
imperative. In Table S2, the results of preclinical studies on locoregional therapy combined
with ICI for HCC in recent years are reviewed and presented. Among them, three studies
were on the combination of MWA and ICI. Although these studies differed in ablation
power and degree of necrosis, they all showed that local therapy combined with ICI could
significantly enhance the response of distal tumor inhibition. On the one hand, this demon-
strates that ICI therapy is the cornerstone of the effective control of distant tumors, and
on the other hand, it also implies that MWA is a possible means that can be considered to
promote and enhance immune effects. In this study, we found that combining MWA with
ICI strategies, PD-1/PD-L1 inhibitors, holds the promise to enhance the systemic antitumor
immune responses required for distant tumor control. In contrast to the control groups,
the introduction of anti-PD-1 resulted in consistently diminished distant tumor volumes
across all combination groups. Furthermore, it is worth noting that the existing literature
has proposed that the optimization of MWA parameters, particularly regarding timing
and power, may potentially impede the growth of distant tumors [28]. These findings
illustrate an intriguing revelation that the specific combination of the MWA power level
and the duration of administration may serve as a decisive modulator in the generation
of inflammatory mediators. Consequently, our study also delves into the investigation of
the potential impact of varied MWA power levels and durations on the abscopal effect.
We observed significantly reduced distant tumor volumes in the 5W + PD-1 and 10W +
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PD-1 groups compared to the Sham group, suggesting an augmented effect of anti-PD-1
therapy by MWA. However, while the distant tumor volume in the 5W + PD-1 group was
smaller than that in the 5W group, it did not significantly differ from the Sham + PD-1
group. Notably, a significant disparity in tumor volume was evident between the 10W +
PD-1 and Sham + PD-1 groups. These findings underscore the conditionality of enhancing
the anti-PD-1 effect through MWA. These observations suggest the potential of a resolution:
high-power plus abbreviated-duration MWA methodologies might offer a cogent strategy
for mitigating this undesired phenomenon, offering promise in the complex landscape of
considerations [28,48]. The choice of modality for locoregional therapy should be a pivotal
detail valued as a trigger for the enhanced abscopal effect of PD-1 blocker therapy.

As to the underlying mechanism of the abscopal effect induced by MWA + anti-PD1,
current studies have considered that ICD might be the explanation for the antitumor
impacts. In addition, MWA has also been reported to induce ICD in osteosarcoma and to
increase the proportion of CD8+ T cells. Furthermore, depletion of CD8+ T cells reversed
the antitumor effects of MWA, indicating that CD8+ T cells play a key role in reducing
osteosarcoma cells [49]. In addition, CTLA-4 and PD-1 are important checkpoint pathways
that maintain T-cell activation, and blocking these two pathways contributes to T-cell
reactivation and tumor rejection. When MWA is combined with anti-CTLA-4/PD-1 therapy,
an increase in the CD8+ T-cell population may facilitate the clearance of unablated tumor
cells, thereby protecting the host from tumor recurrence or neoplastic cells [50]. In our
immunohistochemistry assays, the significant role of CD8+ T lymphocytes in antitumor
immune responses was observed, with 10W MWA leading to a substantial increase in
their infiltration, aligning with previous reports of thermal ablation increasing CD8+ T
lymphocytes [4,10]. Additionally, 5W MWA showed a trend toward promoting CD8+ T
lymphocyte infiltration; the extent was close to Sham + PD-1 and was not significant in
comparison to Sham. Combining MWA with anti-PD-1 therapy further boosted CD8+ T
lymphocyte numbers, especially in the 10W + PD-1 group, corroborating findings that
PD-1/PD-L1 blockade promotes T lymphocyte infiltration [33]. Conversely, Tregs, known
to limit antitumor immune responses, did not significantly decrease after treatment of
MWA alone [51]. By combining anti-PD-1 therapy with MWA, we found a reduction in
Treg numbers in distant tumors, suggesting potential synergistic effects. Maintaining the
balance between Th1 and Th2 cytokines is crucial in tumor immunity, as Th1 cytokines are
favorable for antitumor responses, while Th2 cytokines tend to hinder them [52–54]. In
our study, high-power MWA combined with anti-PD-1 significantly increased the level of
TNF-α, which is known for its direct tumor-killing effect, with no significant differences
in the IFN-γ, IL-4, and IL-10 levels [55]. MWA including MWA of different power levels,
or anti-PD-1 alone showed limited impact on TNF-α concentration; only 10W MWA in
combination with a PD-1 inhibitor produced a relatively significant elevation. In brief, our
results revealed that high-power MWA combined with anti-PD-1 significantly elevated the
CD8+ T cell to Treg ratio in tumor tissue and increased the level of TNF-α in peripheral
blood, suggesting that combined therapy with certain sophisticated matches holds the
promise to enhance the systemic antitumor immune responses which are required for
distant tumor control. Our study did not compare whether PD-1 expression was altered
in distal tumors before and after MWA ablation. In a study of primary human colorectal
tumors, Shi et al. reported that RFA treatment of liver metastases not only increased T-cell
infiltration but also increased PD-L1 expression in primary human colorectal tumors [33].
Another preclinical study of MWA in combination with ICI by Guo et al. provides more
direct evidence that MWA can lead to the overexpression of PD-1 and PD-L1 [56]. These
studies, together with the increase in tumor volume after 5W MWA treatment alone in our
study, strongly implicate that MWA ablation of one tumor among multiple liver cancers
concurrently alters the tumor microenvironment of distant tumors by producing a cascade
of cytokines and modulating the ratio of cytokines among them. All of these changes
tend to be more favorable to ICI effectiveness. In our findings, what warrants further
study is that high-power MWA with anti-PD-1 is highly capable of facilitating the abscopal
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effect. In a recent in vitro study on thermal ablation, researchers analyzed the changes
in the concentrations of ICD-related cytokines produced by different HCC tumors at
different temperatures, including ATP, HMGB1, and CXCL10, and the results indicated that
extremely low temperatures (−80 ◦C) and higher temperatures (60 ◦C) are more conducive
to facilitating the ICD effect [57]. Other real-world data from clinical liver cancer patients
present changes in cytokines in the peripheral blood of patients under different energy
levels of MWA ablation. The serum levels of IL-2 at 24 h post-MWA and IL-6 at 15 d
post-MWA were positively correlated with energy output during the MWA procedure [58].
Those studies, in addition to confirming our findings that higher power is more effective
in triggering the abscopal effect, also implied the hypothesis that there is a latent regular
correlation between temperature, MWA power, and ICD-related cytokines. When these
cytokines change to reach a certain threshold, they will trigger a synergistic effect with ICI
treatment, thus allowing us to observe the abscopal effect (Figure 6). Our further studies
will focus on the changes in ICD-related cytokines in tumor cells under different MWA
powers to fully understand the various cytokine changes related to tumor progression and
the immune microenvironment induced by different MWA powers. Based on the results
of the current study, one of our important findings is that whether it is the abscopal effect
on the macrophysical phenomenon or the ICD effect on the micro-mechanism, the power
level of MWA has been identified as a dominant agent of the capacity to trigger an immune
response to LC.

Apart from its impact on tumor-associated immunity, MWA also influences proliferation-
related molecules. Elevated MVD is a well-established marker associated with tumor pro-
gression, metastasis, and patient prognosis [59]. Previous studies have indicated that thermal
ablation can increase MVD both locally and in distant tumor sites [28,60]. In our study, we
observed an increase in MVD in distant tumors following MWA, with a more significant
increase in the low-power ablation group. However, the combination with anti-PD-1 did not
mitigate the MVD increase induced by MWA, possibly due to the slower heating process
of low-power MWA, which exposes marginal tumors to sublethal temperatures for longer
durations [12]. This finding reaffirms our deduction that alterations in cytokines caused
by MWA can be harnessed to both amplify immunotherapeutic efficacy and foster tumor
proliferation.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW  11  of  17 
 

 

tumor control. Our study did not compare whether PD-1 expression was altered in distal 

tumors before and after MWA ablation. In a study of primary human colorectal tumors, 

Shi et al. reported that RFA treatment of liver metastases not only increased T-cell infiltra-

tion but also increased PD-L1 expression in primary human colorectal tumors [33]. An-

other preclinical study of MWA in combination with ICI by Guo et al. provides more direct 

evidence that MWA can lead to the overexpression of PD-1 and PD-L1 [56]. These studies, 

together with the increase in tumor volume after 5W MWA treatment alone in our study, 

strongly implicate that MWA ablation of one tumor among multiple liver cancers concur-

rently alters  the  tumor microenvironment of distant tumors by producing a cascade of 

cytokines and modulating the ratio of cytokines among them. All of these changes tend to 

be more favorable to ICI effectiveness. In our findings, what warrants further study is that 

high-power MWA with anti-PD-1 is highly capable of facilitating the abscopal effect. In a 

recent in vitro study on thermal ablation, researchers analyzed the changes in the concen-

trations of ICD-related cytokines produced by different HCC tumors at different temper-

atures, including ATP, HMGB1, and CXCL10, and the results indicated that extremely low 

temperatures (−80 °C) and higher temperatures (60 °C) are more conducive to facilitating 

the  ICD  effect  [57]. Other  real-world  data  from  clinical  liver  cancer  patients  present 

changes in cytokines in the peripheral blood of patients under different energy levels of 

MWA ablation. The serum levels of IL-2 at 24 h post-MWA and IL-6 at 15 d post-MWA 

were positively correlated with energy output during  the MWA procedure  [58]. Those 

studies, in addition to confirming our findings that higher power is more effective in trig-

gering the abscopal effect, also implied the hypothesis that there is a latent regular corre-

lation between temperature, MWA power, and ICD-related cytokines. When these cyto-

kines change to reach a certain threshold, they will trigger a synergistic effect with ICI 

treatment, thus allowing us to observe the abscopal effect (Figure 6). Our further studies 

will focus on the changes in ICD-related cytokines in tumor cells under different MWA 

powers  to  fully understand  the various cytokine changes related  to  tumor progression 

and the immune microenvironment induced by different MWA powers. Based on the re-

sults of the current study, one of our important findings is that whether it is the abscopal 

effect on the macrophysical phenomenon or the ICD effect on the micro-mechanism, the 

power level of MWA has been identified as a dominant agent of the capacity to trigger an 

immune response to LC. 

 

Figure 6. The threshold of the abscopal effect. When MWA was combined with ICI, Sham expressed
relatively weak immune-enhancing intensity and 5W expressed moderate immune-enhancing inten-
sity. Only 10W MWA showed obvious immune-enhancing intensity.
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The limitations of this study should be mentioned. Firstly, we did not monitor PD-
1 expression levels in distant tumors before and after MWA ablation. Serum VEGF, a
cytokine directly contributing to elevated MVD, was not examined in this study. Secondly,
we only selected post-ablation serum to study the relevant cytokines, and we did not
monitor the pattern of cytokine changes before and after ablation. There are also more
ICD-related cytokines that have not been measured in this study. Due to the limited amount
of fresh serum and tumor samples suitable for testing collected from the same pool of small
experimental animals, it was difficult to complete numerous tests simultaneously. In the
following study, we will further enrich the relevant data.

4. Materials and Methods
4.1. Study Design

Mice were subcutaneously injected with 1 × 106 Hepa1-6 cells in the bilateral flank.
Upon reaching a tumor size of 6–8 mm, the mice were subjected to random allocation into
six groups according to the following design: Sham ablation group: Sham group; low-power
group: 5W group; high-power group: 10W group; sham ablation combined with anti-PD-1
group: Sham + PD-1 group; low-power combined with anti-PD-1 group: 5W + PD-1 group;
high-power combined with anti-PD-1 group: 10W + PD-1 group (Table 1). Each group
consisted of a minimum of seven mice. Following the complete ablation of the right tumor,
the size of the left tumor was measured at three-day intervals to assess the presence and
extent of the abscopal effect. The left specimens were obtained for immunohistochemistry
on the 12th day after ablation to analyze the variations in the immune microenvironment
and neovascularization in the distant tumor. The peripheral blood was drawn on the 12th
day for ELISA testing to determine the systemic immunological state. The experimental
protocol was approved by the Animal Ethics Committee of Sun Yat-sen University (SYSU-
IACUC-2021-000370).

Table 1. The groups and the treatments involved in the study.

Sham MWA Low-Power MWA High-Power MWA

PBS Sham 5W 10W
Anti-PD-1 Sham + PD-1 5W + PD-1 10W + PD-1

PBS: phosphate-buffered saline.

4.2. Cell Line and Culture

Mouse hepatoma cell line Hepa1-6 was cultured in DMEM medium at 37 ◦C in a
95% air and 5% CO2 incubator (i150c, Thermo Fisher Scientific, Waltham, MA, USA)
supplemented with 10% FBS and 1% penicillin/streptomycin [61].

4.3. Animal Model and Treatments

Male C57BL/6 mice, aged six to eight weeks, were utilized in this study. Hepa1-6
cells, at a concentration of 1 × 106, were subcutaneously injected into symmetrical sites on
both bilateral flank regions of the mice. Once the tumors reached a diameter of 6–8 mm,
MWA (MTC-3C VISON MEDICAL) treatment was performed on the right-sided tumor.
According to the previous study and preliminary experiment [62], complete ablation was
performed using 5 watts of power for 3 min or 10 watts of power for 1.5 min. In sham
ablation, the ablation needle was inserted into the tumor and directly pulled out.

PD-1 antibody (BE0273, BioXCell) treatment was given by intraperitoneal injection at
a dose of 2 mg/kg at 30 min, day 3, day 6, and day 9 after MWA in the experimental group,
whereas mice treated with MWA alone were injected with 2 mg/kg of PBS by i.p. injection
in the control group [45].
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4.4. Tumor Evaluation

The abscopal effect was assessed by measuring the longest diameter (L) and the
shortest diameter (S) of the left tumor with a Vernier caliper every three days after MWA [27].
The tumor volume was calculated according to the following formula:

V = (L × S2)/2

4.5. Histopathologic Examination

The left tumor was fixed in a 10% formalin solution, followed by embedding in
paraffin. Slices with a thickness of 4 µm were obtained from the paraffin-embedded tumor
specimens. Subsequently, the slices were subjected to staining with hematoxylin and eosin.
Anti-CD8 (diluted 1:1000, GB114196, Servicebio, Wuhan, China), anti-CD31 (diluted 1:600,
GB11063-2, Servicebio, Wuhan, China), and anti-FOXP3 (diluted 1:500, GB11093, Servicebio,
Wuhan, China) antibodies were detected using immunohistochemistry.

Hematoxylin staining resulted in blue-colored nuclei, while positive staining showed
a brown color. The quantification of CD8+ and FOXP3+ cells was performed by observing
the number of cells in five randomly selected areas under magnifications of 100× and 200×.
The results were averaged to obtain a representative value [45].

MVD was examined under 100× and 200× magnification in five randomly selected
sites. Endothelial cells stained in brown or clusters of endothelial cells were counted
as single countable microvessels. Vessels with thick muscle walls or a lumen diameter
exceeding the equivalent of 8 red blood cells (about 50 mm) were excluded from the
analysis [63].

4.6. Enzyme-Linked Immunosorbent Assay

The blood was drawn through the ocular on the 12th day following treatment and
left to stand at room temperature for coagulation. Serum was collected by centrifugation
at 1000 RPM for 10 min and kept at −80◦ [45]. Th1-type TNF-α and IFN-γ and Th2-type
IL-10 and IL-4 concentrations in serum were determined using an ELISA kit (Meimian
Biotechnology, Yancheng, Jiangsu, China).

4.7. Statistical Analysis

SPSS Software (version 25, IBM, New York, NY, USA) and GraphPad Prism software
(version 9, Boston, FL, USA) were used for statistical analysis and drawing. Continuous
data are expressed as mean ± SD. One-way analysis of variance (ANOVA) was used for
comparisons of groups. p < 0.05 was considered to indicate a significant difference.

5. Conclusions

In summary, our experimental results indicate that both 5W and 10W MWA can acti-
vate tumor immune-related communities, thereby enhancing the efficacy of ICI therapy.
However, only the combination of 10W MWA with anti-PD-1 exhibited a significant absco-
pal effect. Our study revealed that the local treatment of one lesion can lead to dramatic
changes in the microenvironment of the other distant tumor, which include some factors
promoting tumor progression, and at the same time, certain factors can also be applied
to enhance the overall therapeutic effect via the combination of ICI. Because the abscopal
effect can only be achieved when the immune-enhancing effect reaches a certain level to
counteract factors induced by MWA that promote tumor proliferation, in order to avoid the
harms and obtain the benefit of the best therapeutic response, reasonable ablation power
selection should be considered as critical for triggering the abscopal effect.
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