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Abstract: Phytochemicals are natural plant-derived products that provide significant nutrition, essen-
tial biomolecules, and flavor as part of our diet. They have long been known to confer protection
against several diseases via their anti-inflammatory, immune-regulatory, anti-microbial, and several
other properties. Deciphering the role of phytochemicals in the prevention, inhibition, and treat-
ment of cancer—unrestrained cell proliferation due to the loss of tight regulation on cell growth
and replication—has been the focus of recent research. Particularly, the immunomodulatory role of
phytochemicals, which is pivotal in unchecked cell proliferation and metastasis, has recently been
studied extensively. The immune system is a critical component of the tumor microenvironment, and
it plays essential roles in both preventing and promoting oncogenesis. Immunomodulation includes
stimulation, amplification, or inactivation of some stage(s) of the immune response. Phytochemicals
and their products have demonstrated immune regulation, such as macrophage migration, nitric
oxide synthase inhibition, lymphocyte, T-cell, and cytokine stimulation, natural killer cell augmen-
tation, and NF«kB, TNEF, and apoptosis regulation. There is a dearth of extensive accounts of the
immunomodulatory effects of phytochemicals in cancer; thus, we have compiled these effects with
mechanistic aspects of dietary phytochemicals in cancer, highlighting promising candidates and
ongoing clinical trials on immunotherapeutic strategies to mitigate oncogenesis.
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1. Introduction

Cancer is a disease of abnormal and unchecked cell growth and proliferation, and it re-
mains the second leading cause of substantial mortality and morbidity rates worldwide [1-5].
According to the American Cancer Society, approximately 609,360 people died due to
various form of cancers, with around 1.9 million new cancer cases reported in 2022 [5].
As cancer involves unchecked cell growth, a prominent aspect of cancer prevention and
treatment is modulating the immune response. Refurbishing the immune system to defeat
and minimize the chances of cancer recurrence is essential in cancer treatment [6,7]. The
immune system is the key component responsible for proper cell growth and proliferation
while controlling metastasis [8]. Experiments have shown that the immune system can react
to experimentally induced tumors in animal models. Thus, it can be concluded that the
host cell immunological network can modulate malignant cells [9,10]. Research shows that
immunotherapeutic manipulation can control the spread of tumors of almost all types [11].

Local interventions and systemic therapies, like surgery, chemotherapy, radiation,
hormonal therapy, and other targeted therapies, are common approaches to augment the
immune system for treating cancer. Chemotherapy is a major consideration, and is one of
the most widely used treatments in both early and advanced stages of cancer; however,
due to its highly cytotoxic nature and other severe side effects, new approaches with
minimal iniquitous effects are warranted [12]. A successful shift towards phytochemicals
may diminish the side effects and be cost-effective, thus, playing an important role in
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the socio-economic sustainability of cancer therapeutics as well. Research endeavors are
focused on understanding the drawbacks of modern chemotherapies, reevaluating and
rediscovering the anticancer role of traditional medicine and phytochemical substitutes
(natural products) that are safer to use and are on the rise [13]. Various clinical trials are
underway to assess potent phytochemicals with anticancer and immunomodulatory effects
for the comprehensive therapy of specific types of cancer [13].

Phytochemicals encompass a broad range of natural compounds obtained from flora
or plant products, such as carotenoids, phenolics, alkaloids, nitrogen and sulfur-containing
compounds, to name a few [14]. Since ancient times, plant sources have been an inte-
gral part of our diet owing to their nutritional and medicinal values. Enormous volumes
of evidence show that phytochemicals can diminish the risk of several chronic diseases
and conditions involving a large immunological component, including, but not limited
to, cancer, diabetes, cardiovascular diseases, and arthritis [15-17]. Therefore, the intake
of phytochemicals such as curcumin, quercetin, flavonoids, luteolin, apigenin lycopene,
epigallocatechin-3-gallate (EGCG), resveratrol, curcuminoid, silibinin, and soybean in
the diet may be more useful for cancer prevention. The anticancer effect, along with
reduced side effects, immunomodulatory functions, and antioxidant properties of phyto-
chemicals, make them a more considerable preventive measure against cancer initiation
and recurrence.

There are several advantages to including phytochemicals as an essential part of the
diet. The foremost is the ease of administration, particularly for palatable compounds
in their natural form, such as fruits, raw vegetables, nuts, or as part of cuisine, such as
spices, oils, herbs, or processed forms such as vines, non-alcoholic beverages, and chocolate.
Routine and mindful intake of phytochemicals can have cancer-preventive properties.
Additionally, the consumption of whole bio-products has been shown to be more effective
than the isolation of one or a few active compounds. For example, bitter guard juice is
more effective in preventing pancreatic cancer [18], and whole fermented rice bran is more
effective in preventing colon cancer [19]. This review focuses on selected phytochemicals
that can be administered orally or consumed as part of the diet, containing anticancer and
immunomodulatory properties to fight against a vast variety of cancer and the mechanistic
aspects of immunological regulation by these phytochemicals.

2. Phytochemicals: History and Classification

Phytochemicals are biologically active natural compounds derived from plants (Greek
word, phyto, meaning plants) that provide macro- and micronutrients to humans [20].
In plants, they are responsible for providing aroma, color, taste, and protecting against
environmental hazards and pathogenic attack [21]. Phytochemicals may be available in
the form of secondary plant metabolites, known for their nutritive and protective role
in human health [22]. Phytochemicals have been in existence since the emergence of
plants, and their active roles have been known since ancient times. However, knowledge
of the chemistry of compounds conferring medicinal properties to phytochemicals was
gained a few hundred years ago. The earliest records of herbal medicines goes back to
around 2800 BC, written by the Chinese emperor Shen Nung in “The Great Native Herbal,”
and it gives an account of cancer treatment through immunomodulation [23]. Ancient
Indian literature also shows the use of medicinal plants in the form of Ayurveda, for
tumor management via inflammation and immune response management [24]. Later, this
medicinal knowledge was brought to Egypt and Europe, first by Hippocrates (460-377 BC)
and then by Aristotle (384-322 BC) [25]. The journey of medicinal plants, i.e., utilizing plant
product(s) as a source of medicine, began in 28 A.D. by Greek physicians, as indicated in
De Materia Medica [26]. Later, salicin, isolated from the same willow tree, was used as
an anti-inflammatory and pain-relieving drug [27]. During the 1980s, many laboratories
started to identify phytochemicals as medicines. Medicinal plants from traditional sources
have been increasingly used for the search of new drugs. After decades of active use as
traditional medicine (herbal preparation), the isolation of the first phytochemicals, i.e.,
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alkaloids (quinine, morphine, strychnine), was successful in the early 19th century, which
started a new era for research on dietary and medicinal plants [23]. Phytochemicals are
known to possess several biological properties such as anti-microbial activity, repair of cells,
antioxidant properties, and the inhibition of different cancer growths [28]. Phytochemicals
are mainly present in fruits, seeds, roots, stems, leaves, and flowers [29].

There are no strict classification guidelines for phytochemicals. One way to classify
them is according to their functional in plant metabolism; phytochemicals are classified as
primary and secondary metabolites. Primary metabolites are necessary for plant life and
include carbohydrates, proteins, lipids, nucleic acids, and their building blocks. Secondary
metabolites are the remaining plant chemicals produced through the metabolism of primary
metabolites by cellular activity. The most common classes of phytochemicals according
to their chemical structural identity are phenolics (45%), terpenoids and steroids (27%),
alkaloids (18%), and other chemicals (10%) [30]. A brief overview of these phytochemical
classifications is provided below.

2.1. Phenolics

Phenolic phytochemicals are the largest group of phytochemicals present in the plant
kingdom [31]. They have a hydroxyl group (-OH) with a covalently bonded aromatic
hydrocarbon group, for example, C6H50H (phenol). They form a diverse group that
includes hydroxybenzoic and hydroxycinnamic acids. These are secondary metabolites
synthesized by the phenylpropanoid, shikimate, and pentose phosphatase pathways in
plants. Polyphenols are present in various parts of plants and play important role in
growth, pigmentation, structure, and defense [32]. Within this group, the most important
dietary phenolics are flavonoids, phenolic acids, and polyphenolic amides. The structural
background, dietary source, and medical plant source of the most studied flavonoids and
phenolic acids are listed in Table 1.

Table 1. Bioactive phenolics, their structural backbones, and sources.

Phenolics Structural Represeytatlve Dietary Medical Plants Properties Refs.
Backbone Flavonoid Sources
Flavanonol h =y H - Taxifolin Tea Brysomi?m Crassa, AHFI(.)deant’ [27]
2k Pongamia pinnata anti-inflammatory
Buckwheat, Aloe vera,
Apigenin, redpepper, Acalypha indica,
Rutin, Luteolin,  fruits and Bocopa moneirra,
Flavone [ a Leteohg tomato skin, G'lyccherz'za glal_:m, Antioxidant [27]
s Glucosides, beets, Limnophila indica,
: Chrysin, artichokes, Mentha longifolia,
Apigenin, lemongrass, Momordica
chamomile charantia,
Grapefruit, Azadirachta indica,
Kaempferol, . . I
= . berries, olive Betula pendula, Antioxidant,
I ] Quercetin, . . n . .
- . oil, red and Bauhinia monandra,  cardioprotection,
Flavanols [ Tamarixetin, . . . . . [33-37]
o .. yellow onion, Cannabis sativa, antibacterial,
Myricetin, . L .. .
. brassicatees, Clitoria ternatea, antiviral, anticancer
Galangin . .
walnuts Mimosa pudica
| Nar%ngm,’ Orange, lemon, ..
: Naringenin, . . . Antioxidant,
Flavanone \ . grapefruit, Citrus media .. [31]
- Hesperetin, antiinflammatory

Silybin milk thistel
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Table 1. Cont.
. Structural R tati Diet . .
Phenolics ructura cpresenative retary Medical Plants Properties Refs.
Backbone Flavonoid Sources
. Soybean,
J ﬂ Da1c.121.n ¢ chickpeas, Immunomodulatory,
Isoflavone S Genistin, peanuts, alfalfa  Butea monospermea .. [35]
o ﬂ } o antioxidant
-~  Glycitein sprouts, red
clover, soy
Catechin,
Epictechin,
‘“"‘::l Gallate, Proan- Black tea, green Antioxidant,
Flavan-3-ols - thocyanifiins, te.a, lentils, Atunu raacemosa, ant?—inﬂamlfnatory, [31,32]
ﬂ ol ” Theaflavins, wine, cocoas, Camellia sinensis anticancer, im-
TR Thearubigins, apple juice munemodulatory
Epigallocate-
chin
O\/OH
Hydroxybenzoic Salicylic Acid Tea, potato, Piper marginatum
y Y SN s ! rosaceous fruit, P 8 ! Antioxidant [31]
acids Salicin . Pandanus Odorus
| » red wine
Coffee, apple?, . . Antioxidant,
. . plums, cherries,  Pinuseldarica, .
Hydroxycinnamic /J\ Caffeic, Ferulic eaches Rheumemodi anti-tumor,
y y R on Acid, Coumaric p ’ 4 anti-inflammatory,  [31,32]
acid “ . eggplant, cyperus rotundus, L .
= Acid ; .. . antimicrobial,
artichoke, Euphorbia tirucalli . .
antidiabetic
cabbage
2.2. Terpenoids
Terpenoids are a major class of secondary metabolites that contain carbon backbones
made of isoprene (2-methylbuta-1,3-diene) units [38]. The generic name “terpene” means
hydrocarbons found in turpentine, and the suffix “ene” means the presence of an olefinic
bond (containing two isoprene units, hence ten carbon atoms) [39]. Terpenoids are pro-
duced by a wide variety of plants, animals, and microorganisms, and their roles in living
organisms can be grouped as functional, defensive, and communicative [40]. Based on
the isoprene units, terpenoids are divided into various groups such as hemiterpenoids,
monoterpenoids, sesquiterpenes, diterpenes, triterpenes, and tetraterpenoids [41]. The
major dietary and medicinal sources of terpenoids are stated in Table 2. Among the various
groups of terpenoids, diterpenoids are mainly used for cancer therapy [42].
Table 2. Bioactive terpenoids, their structural backbones, and sources.
Trepenoids Structural Backbone Trepenoids Dietary Sources Medical Plants Properties Refs.
;n B, Isovaleric Acid, Grapefruit. hops Prinsepia utilis,
Hemiterpenoids T [ o Prenol, ora rli) o » OPS, Cananga odorata, Antioxidants [43,44]
e Isoperene 8 Humulus lupulus
o Geranyl
s Pyrophosphate, Mints, MenthaLongifolia, Antioxidant,
1 Eucalytol, lic. mai Anetheumgraveolens, n
Monoterpenoids P Limonene, garic, maize, Magnolia officinalis, antieancer, [43,44]
=0 . rosemary, ginger, . . antidiabetic,
\T Citral, . . Cannabis saativa, . .
AL citrus oils S immunostimulant
- Camphor, Cannabis indica

Pinene




Pharmaceuticals 2023, 16, 1652 5 of 25
Table 2. Cont.
Trepenoids Structural Backbone Trepenoids Dietary Sources Medical Plants Properties Refs.
HzG=.’/ \? . Antitumor/anticancer,
Artemisinin, Ceylon cinnamon, Cyperus edulis, . anti-inflammatory,
o TR . . Aframomumarundinaceum, . .
. 3 Bisabolol, pepper, turmeric, . analgesic, antiulcer, )
Sesquiterpenes CH . Artemisia annua, . . [43,44]
L 4 Fernesol, ginger, lettuce, Thapsia eareanica antibacterial,
K Eudesmol and potatos psia garg antifungal, antiviral,
CH, antiparasitic
/ \{,\ Cembrene,
. e Kahweol, Coffea arabica, Anti-inflammatory, )
Diterpenes qvf/ A % Taxadiene, Coffee Taxusbrevifolia, immunomodulatory [4344]
Y Cafestol
B Lanosterol, Soyabeans, .
5N Squalene legumes, alfalfa, Anticancer,
T ~ S;Cil onins’ java apple, garlic,  Triphyophyllum peltatum,  anti-inflammatory,
Triterpenes L p N lavender, Diospyros leucomelas, antioxidant, anti-viral, [43,44]
[ = Oleanolic Acid, . L . .
N R . caranberries, Tetracera boiviniana antibacterial,
K Ursolic Acid, . .
L. ! winged beans, antifungal
Betulinic Acid o0
white birch
Anti-inflammatory,
L o Carrots, anti-ulcer,
Cycope < pumpkins, Mauritia Vinifera, antibacterial, antiviral,
. ; arotene, . . . )
Tetraterpenoids ( Phytofluene orange, sweet Myrciaria dubia, hepatoprotective, [43,44]
Y ’ potato, orange, Spondias lutea immunomodulatory,
Phytoene . . .
autumn olive anti-atherosclerotic,
wound healing
2.3. Alkaloids
Alkaloids are natural secondary metabolites derived from plants, fungi, and animals
(~3000 distinct alkaloids have been characterized) [45]. They are low molecular weight
heterocyclic nitrogenous compounds (with one or more nitrogen atoms present as part
of a ring of atom called a cyclic system), which are colorless, crystalline, non-volatile
and have low toxicity with higher stability [46]. They are further classified according to
the amino acids from which they are derived in the biosynthetic pathway. The major
classes of alkaloids are pyrrolidine, pyridine-piperidine, quinoline, isoquinoline, and
pyrrolidine-pyridine, as stated in Table 3. Alkaloids are mainly used by plants for defense
against microorganisms and insects by producing allelopathically active chemicals [47].
Alkaloids have a restraining effect on the topoisomerase enzyme, leading to stalled DNA
replication and cell death, and have various pharmacological activities, including anti-
cancer properties, apart from anti-bacterial and anti-inflammatory effects [48]. Alkaloids
derived from plants have significant efficacy in the suppression of oncogenesis.
Table 3. Bioactive alkaloids, their structural backbones, and sources.
. . Di . .
Alkaloids Structure Alkaloids letary Medical Plants Properties Refs.
Backbone Sources
Apium graveolens,
Spinacia oleracea . .
S . Y A 1
H Piperine, Barley, bine, Malus domestica, n’Flmlcrobla ’
| Coniine eppers, apple,  Capsicum annuum antitumor,
Pyrrolidine T Peppers, apple, P ! anticonvulsant, [49]
Isope-lletierine,  spinach celery,  Humulus lupulus, .
. . anti-tubercular,
Preussin B celeriac Hordeum vulgare, .
analgesic

Simplicillium
lanosoniveum
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Table 3. Cont.

Alkaloids Structure Alkaloids Dietary Medical Plants Properties Refs.
Backbone Sources
Antitumor,
antimicrobial, antiviral,
analgesic,
Pyridine- . . anticonvulsant,
U Anabasine Tobacco Anabasis aphyllan .. [50]
piperidine | antiinflammatory,
H antioxidant,
anti-Alzheimer’s,
anti-ulcer, anti-diabetic
Antimalarial,
.. antibacterial,
Quinine, antifungal
Quinidine, Cocoa, black . . gl
. . . Cinchona succirubra, anthelmintic,
Quinoline Cinchonine, tea, scotch . L . . [51,52]
. - . Ochrosia Elliptica cardiotonic,
Cinchonidine, whiskey -
. anticonvulsant,
Ellipticine .
anti-inflammatory,
analgesic
Hydrastis
Berberine, Goldthread, Canadensis,
Morphine, Oregon grape, Papaver somniferun, Anti-inflammator
Isoquinoline Montanine, phellodendron,  Narcissus tazetta, . . . Y, [63-57]
. . . . improves digestion
Salsoline, turmeric, Salsola oppositefolia,
Galantamine barberry Hippeastrum
Bittatum
s H Kiwi, millet, Anfltt.lmor,.
Pyrrolidine- | ) | Myosmine otato, milk antimicrobial,
yrro! PN (/N\\ YOSt ! potato, mui, Nicotianatabaccum anticonvulsant, [58]
pyridine ; 7> Nicotine maize, rice, .
\ / . anti-tubercular,
— pineapple .
analgesic

3. Cancer Microenvironment: Immunological Milieu

The microenvironment of normal healthy cells incudes immune cells, fibroblasts, blood
and lymphatic vessels, and interstitial extracellular matrix [59]. This cellular machinery
plays a central role in maintaining tissue homeostasis and functions as a barrier to tumori-
genesis [60]. Aberrant signaling from messengers such as chemokines, cytokines, reactive
oxygen species (ROS), and lipid mediators, indicating a polarized microenvironment and
altered tissue homeostasis, may initiate/ promote tumorigenesis and growth. However, the
actual underlying mechanisms for oncogenesis, particularly owing to immune responses,
are not well elucidated for most cancer types. The tumor microenvironment (TME) con-
tains both malignant and nonmalignant cells, where non-malignant cells bear the initial
tumor-promoting role. The ‘seed and soil” hypothesis provides significant insights into the
relationship of the TME and malignant tumor, where TME is the ‘soil” and is crucial for the
tumor or ‘seed’ to germinate and further grow [61]. Tumors do not resemble malignant
cells of only one type but are complex organoids where various cells are recruited and
transformed [62]. TME, along with malignant cells, contains various immune cells, tumor
vasculature, fibroblasts, lymphatics, pericytes, and adipocytes [63]. The TME initially
primes the immune system by the infiltration of immune cells that send chemical signals
masking tumor antigens, thus protecting the cancerous cells [64]. At the cancer site, stromal
cells release various mediators and cytokines to participate in immune regulation.

3.1. Overview of the Immune System in Cancer

The immune system is an association of complex networks of specialized molecules,
cells, tissues, and organs that provides defense from foreign pathogens, aberrant cells,
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and tumors. The main physiological function of the immune system is to distinguish
between “self”, “non-self,” and “altered-self” structures or transformed cells [65]. Cells
of the immune system are derived from hematopoietic stem cells by hematopoiesis, be-
longing to either the lymphoid lineage (B and T cells, natural killer [NK] cells, and innate
lymphoid cells) or the myeloid lineage (granulocytes, basophils, eosinophils, neutrophils,
monocytes-macrophages, and dendritic cells [DCs]) [65]. Molecules that can be recognized
by the immune system are considered antigens, and are generally presented on the surface
of target cells [66]. Based on antigen specificity, effector responses, and kinetics of activa-
tion, the immune system is divided into two distinct components: innate and adaptive
immunity [67]. The immune system acquires the ability to recognize, detect, and eliminate
different tumors, even though the human body is not completely resistant to cancer [68].
Moreover, tumor cells are regulated by a dynamic process called immunoediting [69].
During this process, innate and adaptive immune cells are triggered by inflammation
in the tumor, recruiting immune cells to the arising tumor and synthesizing cytokines
and chemokines. The functions of innate and adaptive immune responses in cancer are
important for understanding the effect of phytochemicals on cancer and are detailed below.

3.1.1. Innate Immune Response in Cancer

The innate immune system, also known as the natural immune system, recognizes
foreign pathogens or non-self-structures based on receptors encoded in the germline known
as pattern recognition receptors [70,71]. Innate immunity is the first line of defense in the
body [72]. It plays a critical role in cancer, as innate immune cells can directly interact
with tumor cells for elimination [73]. NK cells are principally responsible for killing
MHC-lacking cancer cells. Upon activation of stimulatory receptors, NK cells express
inflammatory cytokines such as interferon gamma (IFN-y) and perforins, activating the
apoptotic pathway in tumor cells [74]. IFN-y can also interact with other receptors on tumor
cells via Fas ligand, tumor necrosis factor (TNF), TNF-related apoptosis-inducing ligand
(TRAIL), and lymphotoxin alpha, which in turn enables apoptosis [75,76]. NK cells have
two subtypes: one population expressing CD56dim, CD16bright, and the other CD56bright,
CD16dim surface proteins [77]. The population with high CD16 expression shows cytotoxic
properties, whereas low expression shows immunoregulatory properties for killing tumor
cells without immunization [78]. Apart from these receptors, NK cell activity is modulated
by several cytokines, such as IL-2, IL-12, IL-15, IL-18, and IL-2 [65,67,79-82]. Apart from
this, innate cells such as NK cells, DCs, and lymphoid cells have an important function of
presenting antigens to T cells through major histocompatibility (MHC), connecting the link
between the innate and adaptive immune systems [83] and discovering trained immunity.

Tumor cells enhance the expression of chemical messengers such as chemokine C-C
motif ligand (CCL)-2, CCL28, CCL18, TGEp, cycloxygenase-2, prostaglandins, IL-13, IL-6,
IL-13, and human leukocyte antigen G [84]. These secretary proteins recruit immune
suppressor cells, TregS, tumor-associated macrophages (TAMs), myeloid-derived suppres-
sor cells (MDSCs), mast cells, NK and NKT cells, tumor-associated DCs that aggregate
around the tumor and inhibit immune surveillance, as shown in Figure 1. MDSCs are
intermediate cell types between myeloid progenitors and terminally differentiate cells,
functionally known for their suppressive activity towards T cells [85]. However, there
persist some reports that MDSCs may not be a distinct class or intermediate subtype, with
functions overlapping with neutrophils. The role of MDSCs, their functional and antigen
presentation properties, as well as their functions in the TME, are reviewed in detail by
Engblom et al. [86].
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properties. Red lines indicate blood vessels.

The pleiomorphic nature of cytokines in the TME contributes to promoting cancer
cell proliferation, bypassing apoptosis, inducing EMT of cancer cells, and facilitates tumor
tolerance, angiogenesis, invasion, and metastasis [87]. Angiogenic processes depend on
the tight coordination and balance between positive and negative modulators through the
action of various molecules, enzymes, cellular junction proteins, and various adhesion
receptors [88]. Tumor angiogenesis downregulates as well as shift the balance from negative
to positive regulators [89]. This process involves sequential effects that primarily include
endothelial cell sprouting, loss of mural cell-endothelial cell association, increased vascular
permeability and density [90]. Recent studies have implicated tumor-infiltrating immune
cells as crucial mediators of cancer initiation and progression [91]. The inflammatory
response triggered by immune cells finally leads to enhanced endothelial cell activation,
proliferation, and vascular burgeon [92]. These immune cells comprise cells of both innate
and adaptive immunity. The innate cells consist of macrophages, granulocytes, mast cells,
NK cells, and DCs. Within these cells, mast cells and macrophages recruit additional
leucocytes by secreting soluble cytokines and chemokines and recruit T cells and B cells
resulting in an immune response, as stated in Figure 2A, which finally contributes to tumor
progression and affect its therapy.
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Macrophages are another cell type of innate immunity that counter tumor cells. Tumor
cells are known to express surface molecules like phosphatidylserine and low-density
lipoproteins, which boost the activation of macrophage-induced phagocytosis [93]. Within
the TME, TAMs influence tumor progression, extracellular matrix remodeling, proliferation,
invasion, and angiogenesis. Macrophages are mainly of two types: M1 and M2, which
play a role in the polarization of Thl and Th2 T cells, respectively [94]. Activation of
M1 enhances the production of IL-12, IL-23, ROS, and NO [95]. M2, on the other hand,
enhance stimulation of IL-4, IL-13, IL-1, IL-10, CCL18 and CCL22, dectin-1, CD206, toll-like
receptor (TLR)-1, TLR-6, and TLR-7 [96], scavenger receptor A, scavenger receptor B-1,
CD163, CCR2, CXCR1,CXCR2 and DC-specific intercellular adhesion molecule-3-grabbing
non-integrin, as shown in Figure 1 [97-99]. Different factors influence the M1 to M2 polar-
ization, such as interferon regulatory factor (IrF), NFkB, STATs, hypoxia inducible factor
(HIF), and Kruppel-like transcription factor [100]. For example, in the case of melanoma
cells, melanomas exosomes produce HIF-1a and HIF-2cc in M1 and M2 macrophages,
respectively. Higher counts of TAMs are detected in different types of tumors. In malignant
mammary tumors, CD206 expressing M2 macrophage infiltration is higher, whereas in
benign tumors, infiltration of M1 is found higher, but within TME, there is a phenotyp-
ing shift for macrophages from M1 to M2, leading to cancer progression [101]. Various
reports have indicated that pro-inflammatory cytokines released by M1-macrophages in-
hibit the proliferation of tumors, whereas M2-associated cytokines are involved in tumor
growth [102,103]. Wang Y et al. showed that IL-12 within TME can promote macrophage
from M2 to M1 to overcome tumors [104]. The inflammatory cytokine IL-6 is critical to
polarize M2 through the mTOR signaling complex 2 (mTORC2) and Akt, promoting tumor
growth and metastasis [105]. Various research findings highly suggest M2-macrophages’
negative role in TME; thus, M2 polarization inhibition can stop tumor progression [106].

DCs can interact with tumor cells through integrins and other receptors, finally leading
to the phagocytosis of apoptotic cancer cells. Furthermore, DCs are professional antigen-
presenting cells, which play crucial role in interlinking innate and adaptive immunity [107].
DCs are abundantly present in TME in various cancers such as lungs, breast, head and
neck, colorectal, renal bladder, ovarian, and gastric [108]. Tumor burden is directly linked
with the number of DCs in various cancers; for example, in ovarian cancer, as the tumor
progresses, the number of tumors infiltrating DCs increases [109]. Within TME, DCs switch
from immune stimulatory to immune suppressive DCs with the upregulation of immune
suppressive molecules and decrease of T cell infiltration [109]. Sisirak et al. showed that in
breast cancer, DCs are associated with worse prognosis. They show a poor response to TLR
stimulation in respect to antigen presentation, as well as low IFN production and sustained
FOXP3+ Treg expansion [110].

3.1.2. Adaptive Immune Response in Cancer

In comparison to the innate immune presenting system, the adaptive immune system
is a slower immune response but is more specific in nature [111]. Thus, adaptive immunity
is an important power line of defense with immunological memory and high specificity.
The effector functions of the adaptive immune system are mediated by the expression of
specialized receptors such as B cell receptor and T cell receptor. During the process of
development, these receptors undergo somatic recombination; as a result, diverse antigens
have the capacity to bind to these receptors [112]. The important hallmark of B and T cells
is, upon antigen recognition, they can undergo the process of clonal selection, which
facilitates the eradication of threats [65]. The key cells in this group are T-lymphocytes
and B-lymphocytes [113]. B-lymphocytes are antigen-presenting cells, which have the
ability to neutralize, agglutinate foreign cells, precipitate serum antigens, and activate
the complement to produce antibodies [114]. The T-lymphocytes, on the other hand,
can produce several types of cytokines, which are important activators of other immune
cells. Adaptive immune cells mainly interact with tumor cells via tumor antigens by
antigen presentation to eliminate tumors [115]. The TME is densely packed with infiltrating
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CD8+ cytotoxic T cells, CD4+ helper T cells, and FOXP3+ regulatory lymphocytes in
various cancers such as bladder [116], renal [117], ovarian [118], prostate [119], skin, and
various solid tumors [120]. Activation of T cells is regulated by specific MHC molecules in
coordination with ligands of their costimulatory molecules like CD40, ICOS, GITR, OX40,
and 4-IBB [121]. In addition, various cytokines such as IL-2, IL-10, IL-15, IL-17, and TGEf3
play a role in T-cell function for its antitumor response [122,123]. Within TEM, CD4+ helper
T cells are critical cells that are important in the recognition of neoantigens and interaction
with DCs through CD40L enhancing CD8+ T cell priming and activation [124,125]. CD4+ T
cells, in the presence of TGFf3 and IL-10, can differentiate into inducible Treg cells, which
are a subset of CD4+ T cells; within different tumors, they suppress antitumor properties
of CD4+ and CD8+ T cells leading to poor prognosis and increased tumor growth (152).
Research has shown that Tregs infiltrating tumors also have inhibitory molecule expression,
such as CTLA-4, PD-1, and LAG-3, compared to peritumoral Tregs [121]. Cytokines IL-12
and IL-6, on the other hand, can inhibit the effector function of CTLs against tumors as
well as stimulate the role of Tregs [126]. In addition, Tregs inhibit the function of most
immune cells present in TEM like macrophages (promote M2 phenotype), NK cells, DCs,
B cells, and CD4+ and CD8+ T cells and produce immune suppressant molecules like IL-1,
ROS, VEGEF, and TGFp [127-129]. In respect to other subsets, CD8+ T cells infiltrating
TME have shown to reduce tumor progression with their enhanced ability to produce
IEN-y (pro-inflammatory cytokine) [130,131]. IFN-y shows an array of functions such as
differentiation of T cells to Th1 cells, differentiation of CTLs to effector CTLs, inhibition of
angiogenesis, promotion of adaptive immunity, and induction of anti-metastatic activity
of IL-12 [132-134]. Tumor cells, on the other hand, can regulate T cell function where it
decreases the IFN-y release, producing immune escape mediators like STAT3, PD-L1, and
IDO1 [134-136].

4. Role of Phytochemicals in Modulating Immune Functions in Cancer

Phytochemicals have remarkable anti-cancer properties that have been demonstrated
at both in vitro and in vivo levels. Phytochemicals confer protection from malignancy
through scavenging free radicals, reducing invasion and angiogenesis, and suppressing
proliferation of tumor cells [137]. In addition, they show their activity on different molecular
targets, membrane receptors, kinases, tumor activator proteins, transcriptional factors,
cyclins, caspases, microRNAs, and signal transduction pathways [91].

4.1. Regulation of the Innate Immune Response in Cancer by Phytochemicals

Phytochemicals have a great ability to modulate the immune response by regulating
immune cells. Several phytochemicals, alone or in combination, are crucial in the stimula-
tion, activation, and maintenance of T cell and NK cell cytotoxicity. Silibinin has been shown
to increase the number of CD4+ and CD8+ T cells and neutrophils but decrease macrophage
and MDSCs cell numbers in 4T1 luciferase-transfected mammary cancer in female BALB/c
and CB17-Prkdc Scid/] mice [138]. Quercetin-triggered NK cell-mediated tumor cell
apoptosis through the NKG2D-activating receptor in quercetin-treated K562, SNU1, and
SCN-C4 cells, also affected the Th1/Th2 ratio in tumors [139]. Apigenin increases CD4+,
CD8+ T cell numbers and reduces suppressive Treg cell numbers in mice [140].

Fraker et al. showed that the oral administration of retinol in wild-type BALB/c
and congenitally athymic BALB/c mice can enhance the cytotoxic activity of NK cells
in the spleen within an hour of treatment [141]. The enhanced activity is associated
with increased expression of the retinoic acid early-inducible gene, and its products act
as ligands for the NK cell surface receptor NKG2D [142]. Phytochemicals are not only
involved in cytotoxic activity but also play a role in NK cell maturation and increase the
expression of activating receptors of NKp46, NKp30, NKp44, NKG2D CD69, and CD25 and
IFN-y and downregulate the inhibitory receptor CD158, in both in vitro and in vivo mouse
studies [143,144]. Isoflavone (genistein), even at low concentrations (0.5-1.0 pmol/L),
enhances NK cell degranulation and its activity in vitro [145,146].
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Curcumin shows immunomodulatory effect upon nitric oxide (NO) production by
NK cells as well as macrophages causing cytotoxicity against tumor cells like in AK-5,
YAC-1, and breast tumor exosomes [147,148]. Fiala et al. showed that curcumin, in combi-
nation with omega-3 fatty acid, enhances NK cell-mediated apoptosis by inhibiting NF«B
signaling in pancreatic cancer both in vivo and in vitro [149]. In-depth immunological
studies revealed that generally tumor cells decrease the CD4+/CD8+ ratio and inhibit T-cell
functions to escape from immune surveillance [8]. Curcumin was also shown to inhibit
immunosuppressive Treg cell functions, downregulate IL-10 and TGFf3 secretion, and
modulate the macrophage and DC cell functions in both in vitro and in vivo models [150].

Phenolic compounds, like resveratrol, showed increased toxic effects against various
cancer cell lines such as leukemia (K562), human promyeloblastic leukemia (KG-1a), HepG2,
and A549 [151]. The mechanism of toxicity was correlated with an increase in phospho-
rylation of JNK, ERK-1/2, and RK1/2 MAP kinase activity, perforin, NKG2D, and IFN-y
upregulation, TRAIL pathway activation, CD107a expression, CD8+- and CD4+-T-cells
stimulation, and inhibition of constitutively active signal transducers and activators of
STATS3 signaling [152-154]. The TRAIL pathway has been shown to mediate apoptotic
cell death in various cancers, such as human prostate carcinoma, breast, colon, skin, and
neuroblastoma both in vitro and in vivo studies, as shown in Table 4 [155-159].

Table 4. Phytochemicals and their immunomodulatory effects in cancer.

Phytochemicals Immunomodulatory Effects Type of Cancer Study Type Refs.
T11NFkB signaling Skin, liver, colon, .
‘ FIL-1B ovary, pancreas, In vitro (PBMC and cell
aempferol HaCaT, THP1-Blue, [160]
TMTTNF stomach, and THP1-Blue-CD14)
JIL6 bladder cancers ue
M1CD4* /CD8" ratio
TMTIEN-y . . .
Crude Garlic Extract FHL-2, TL-4 Lnéer, colon, prostate, In vivo (Wister rats and [161]
+14Th1/Th2 response and breast cancers chickens)
Tt Lymphocyte proliferation
11 T-cells and Macrophage In vivo (female athymic
1L T-helper 2 cells Breast, lung, colon, nude mice)
Cannabinoids TLLIL-10 prostate, skin, and In vitro (cell lines MCF-7, [162]
LI TNFo and TL-1B expression in macroph brain cancers MDA-MB-231, DU-145,
xa expressio: acrophages CaCo-2, AGS)
+14NFKB signaling In vivo (female athymic
. . nude mice)
Flaxseed Lignans L Proinflammatory cytokines (IL-18, IL-6, TNFx,  Breast and In vitro (cell lines MCF-7, [163]
HMGBI, TGF£1, TNFaR1, TGFR1) prostate cancers MDA-MB-231. DU-145
11JCOX-2 level and activity . !
CaCo-2, AGS)
111 T-cell proliferation, survival, MDSC
Anthocvanin differentiation Oral and PBMCs (healthy [164]
Y 1 Cytokine-induced STAT protein cervical cancers adult donors)
phosphorylation
L Pro-inflammatory cytokines/chemokines
JIMHC class II and co-stimulatory molecule .
Quercetin LIl Ag-specific T-cell activation by reducing Oral, cervical, and PBMCs (healthy [6,164]
LPS-stimulated DC activity lung cancers adult donors)
-Leukocyte biology and Th1/Th2 balance regulation
T11Macrophages
T1Phagocytosis
™M1TNF-«, IL-1, IFN-3 .
Echinacea Tt Leukocyte mobility Leukemias and In vivo (Leukemic mice) [165,166]

TMTNK cell stimulants and NK cell activation
T1Murine bone-marrow derived macrophage by
increasing CD80, CD86, MHCII expression

lymphomas
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Table 4. Cont.
Phytochemicals Immunomodulatory Effects Type of Cancer Study Type Refs.
T1TApoptosis of malignant cells
T cells ability to kill cancer cells
M1 CD4* T-cell and B cell numbers
111 Lymphocyte-mediated immune functions
M1 Progenitor, gff.ecter, and circulating T-cells Breast, colon, In vivo gfemale athymic
L Treg cell activity colorectal. head and nude mice)
Curcumin JLITGF and IL-10 neck. bl ci der. skin In vitro (cell lines [138,167,
ured -Th1/Tcl-type cytokine-producing effector T—cell osgr{ana anecéesatic’ MDA-MB-435, CCL23, 168]
population normalizes in tumor-bearing hosts and rosptate cance,r S CAL27, UM-SCC1,
J1J4CD80, CD86, MHC class II in DCs. P UM-SCCC14A)
LIIL-12 expression in DCs
JLLIL-1B, IL-6, and TNFx in DCs
J{lMetastasis
JLINFkB signaling
In vivo (male Wistar
111T- and B-lymphocyte proliferation Oral squamous Kyoto rats)
Tinospora cordifolia 11 T-lymphocytes subsets (CD4+ and CD8+) carcinoma, colon, and  In vitro (cell lines KB, [169]
1711Th1 and Th2 cytokine secretion cervical cancers CHOK-1, HT-29, SiHa and
murine primary cells)
TM1IFEN-y-induced activation of STAT1
M1 T-cell immunity
TSensitive to T cell-mediated cell death Melanoma, colorectal,  In vivo (C57BL/6 mice)
TM11CD4+CD8+ T-cells . .
Apigenin 11{PD-L1 in DCs breast, lung, prostate, In vitro (cell lines A375, [170,171]
I Tregs leukemia, ovarian A2058, RPMI-7951, !
I Tumor weights and splenomegaly cancers Jurkat cells)
stabilized Ikaros expression in vitro and in vivo by
targeting CK2
T11B- and T-lymphocyte proliferation Breast. cervical
. T Macrophage activity L ! . .
Carotenoids +14Cytotoxic T-cells and effector T-cell function ovarian, and In vivo (SJL/] mice) [172,173]
+11Cytokines Colorectal cancers
TMCD4Y T-cell Gastric, cervical,
) MTNK cells prostate, . .
B-carotene 111 Cells with markers for IL-2 activation breast, colon cancers, In vivo (SJL./J mice) [169,174]
TMNK cell cytotoxicity and total T-cells and leukemia
In vivo (female
1Blood IL-2, IL-4, IL-10, TNF-« levels Wistar rats
Prostate, breast, and
Lycopene 11Blood IgA, IgG and IgM levels lun r{ - ’ In vitro (cell lines [6]
L6 ung cancers MCF-10a, MCF-7,
MDA-MB-231, HBL-100)
TCD3+, CD4+, CD8+ cells
E—carotene and 1B cells and T-helper cells (CD4+ total Breast ' In vivo (S]L/J mice) [175]
ycopene cell numbers) adenocarcinoma
11 1gG
Flavonoids
(chalcones, flavones,
isoflavones, II f ;ﬁ%lll; taoclgvsitxbset {Sriasct;;toer;ach, and In vivo (SJL/] mice) [6]
flavanones, flavanols, y ung <
anthocyanins)
TM1COX-2
- Total cell, neutrophil, eosinophil counts
L4 In vivo (C57BL/6 mice)
Luteolin JLIIEN-y Breast cancer In vitro (cell lines TC-1, [6]
344 TNF-o B16, B16E7)
14 T-cell proliferation and antigen-specific
J1J Mast cell histamine secretion
Head and neck, breast,
. a . . ) . prostate, stomach,
Epigallocatechin-3 T1CD8* and CD4" T cell-mediated esophagus, colon, [176]

Gallate

immune responses

pancreas, skin,
lung cancers

The upwards arrows indicate upregulation and the downwards arrows indicate downregulation.
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Phytochemicals also regulate macrophages to achieve anti-tumor activity, not only
by inhibiting HIF-1x and HIF-2 but also by maintaining a proper balance in M1 and M2
polarization [177]. The polyphenolic compound resveratrol, in humans (PBMCs), has been
shown to trigger pro-inflammatory signaling in macrophages [178]. In M1 cells, it stops
the increase of pro-inflammatory molecules by downregulation of CD16 and upregulation
of metalloproteinase (MMP)-2, whereas in M2 cells, it stops the increase of proangiogenic
molecules by upregulation of CD14, MMP-2, and MMP-9 and downregulation of endocyto-
sis, as shown in Figure 1 [178]. Fenretinide, a derivative of retinoic acid, has been shown to
inhibit M2 macrophage polarization in colon cancer in APC ™"/* transgenic mice, with an
adverse impact on cancer attenuation [179]. IL-4, IL-13, CD206, Fizz1, and PPARY protein
levels are blocked by fenretinide, which finally inhibits M2 polarization without any effect
on M1 polarization. Cannabinoids can modulate macrophage activity by reducing the
expression of TNFx and IL-1§3, suggesting its anticancer potential in xenograft tumors for
colorectal cancer cells (HTC116, SW480, SW620, and HT29) [162,180]. Echinacea, on the
other hand, enhances cytokine production (TNF-«, IL-1, IFN-3), activates macrophages by
increasing the expression of CD80, CD86, MHCII molecules, and phagocytosis in murine
bone marrow-derived macrophages [165,181].

Other crucial innate cells interacting with the tumor cell are DCs. Curcumin treatment
in male C57BL/6 mice strongly downregulates CD80, CD86, and MHC class II expression,
but not MHC class I expression on DCs. The DCs also exhibit impaired IL-12 expression
and pro-inflammatory cytokine production (IL-13, IL-6, and TNFo). Apigenin treatment
leads to low expression of PD-L1 in DCs, resulting in enhanced T cell immunity in the
melanoma xenograft mouse model and human peripheral blood mononuclear cells [182].

4.2. Regulation of Adaptive Immunity in Cancer by Phytochemicals

Phytochemicals have a strong effect on B cell and T cell populations and play integral
regulatory roles in maintaining and enhancing the adaptive immune response. In vivo
studies with mice inoculated with Ehrlich’s ascites mammary carcinoma (EAC) have shown
that phytochemicals such as curcumin, even at low doses, increase T cell population, de-
crease tumor growth, increase cytotoxic activity of CD8+ T cells with an increase in IFN-y
release, and increase in CD4+ T cell and B cell populations [183,184]. Phytochemicals have
also been shown to inhibit tumor cell proliferation by activating the apoptosis pathway
and caspase-3 activity via inactivation of PI3 kinase targets such as GSK3, AKT, FOXO, and
PARP degradation [185], as shown in Figure 2. Shao et al. showed that bisdemethoxycur-
cumin can suppress bladder cancer by enhancing CD8+ T cell infiltration in the TME and
increasing the level of IFN-y by reducing the MDSC population in salivary gland tumor
cells in BALB-neuT mice [186,187]. They have also shown that MDSCs, on one hand, reduce
IL-6 while on the other hand, induce IL-12, enhancing the CD4+ T and CD8+ T response.
Additionally, curcumin inhibits the Treg suppressive activity by inhibiting IL-2 secretion
and decreasing Foxp3 expression [188].

Rocaglamides act as immunosuppressive phytochemicals by inhibiting the production
of IL-2, IL-4, and IFN-y in T cells circulating in peripheral blood [189]. Garlic extract, which
contains various phytochemicals such as allicin, alliin, diallyl disulfate, diallyl trisulfide,
ajoene, and s-allyl cystine, was shown to increase the ratio of CD4+/CD8+, enhance the
production of IFN-vy in splenocyte of fibroblast tumors, and increase IFN- vy, IL-2, IL-4
levels in breast cancer in Wistar rats [161]. This overall increase in Th1 and Th2 response
promoted lymphocyte proliferation [161]. Kis et al. have shown that cannabinoids have a
protective role in cancers of various regions, including breast, lung, colon, prostate, skin,
and brain, by enhancing the effect of T cells and decreasing the production of T-helper
2 cytokines such as IL-10 in female athymic nude mice xenograft tumors with MCF-7,
MDA-MB-231, DU-145, CaCo-2, and AGS, as shown in Table 4 [162]. Tinospora cordifolia
greatly affects the proliferation of B-lymphocytes and T-lymphocytes subsets (CD4+ and
CD8+) and the secretion of Th1 and Th2 cytokines in colon, cervical, and oral squamous
carcinomas [170,171]. Apigenin, in the case of melanoma (melanoma xenograft model
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with A375, A2058, and RPMI-7951), strongly suppresses the IFN-y-induced activation of
STAT1, leading to decreased PD-L1 expression; thus, sensitizing them to T cell-mediated
killings [172]. Studies have shown that apigenin potentially stabilized Ikaros expression by
targeting CK2 [173]. Overall, various phytochemicals can differentially modulate various

functions of innate and adaptive immune cells to overcome tumor growth, as shown in
Table 4.

4.3. Phytochemicals in Cancer: Clinical Trials and Other Studies with Human Patients

Effective clinical trials of different phytochemicals, such as various alkaloids and
terpenes, flavopiridol, curcumin, silibinin, and resveratrol for the treatment of different
disease conditions, are ongoing [26,190-194]. Various phytochemicals, not only in pre-
clinical studies but also in several phases of clinical trials, have shown major positive
outcomes. For example, in phase I clinical trials, curcumin alone (8 g/day) or in combination
with quercetin (400/20 mg) showed significant measurable histological improvement in
patients with various cancer such as pancreatic cancer [195], oral leukoplakia [196], cervical
intraepithelial neoplasia [195], multiple myeloma, and advanced colorectal cancer [196]. In
a phase 1II clinical study, Carroll and colleagues showed that curcumin (4 gm/day) resulted
in a 40% reduction in aberrant crypt foci within 30 days of treatment [197].

Resveratrol clinical trials, with a dose of 2.5 gm/day for the period of 29 days, reduced
the concentration of insulin-like growth factor (IGF)-1 and IGF-binding protein 3 in the
plasma, inhibited tumor formation, and metastasis [198,199]. Resveratrol with dose of
1 gm/day for four weeks decreased cytochrome P450 and CYP3A4 levels and increased
CYP1A2 in the plasma of healthy individuals, which could aid in cancer prevention.
These molecules play an important role in detoxification and carcinogen inactivation [200].
Resveratrol shows its therapeutic activity by promoting NK cells’ effector function via
recognizing transformed cells prior to proliferation more rapidly than T cells. NKG2D, an
antigen receptor expressed on NK cells, T cells, and CD8" cells, recognize specific ligands
expressed on transformed cells for their tumor suppressive effect [201,202].

In addition to curcumin and resveratrol, catechins such as EGCG and epicatechin-
3-gallate (ECG), present in green tea in high concentrations, prevent DNA damage and
mutagenesis in healthy cells [203,204]. Liver cancer patients or chain-smokers have elevated
levels of 8-OHdG in their urine. Green tea supplement of 500-1000 mg/day for a period of
three months significantly decreases 8-OHdG levels [204-206]. Zheng et al. showed that
green tea had positive outcome with prostate cancer patients as well; however, green tea
did not have a significant outcome in patients with stomach cancer [207,208]. Clinical trials
studying elderly men supplemented with 3-carotene increased CD3+, CD4+, CD8+ T cell
percentages and enhances NK cell numbers, and EGCG with DNA vaccine enhances CD8+
cell-mediated immune responses in the TME [209]. In contrast, 3-carotene (15 mg/day)
and retinol (25,000 IU/day) enhance lung cancer and its mortality [210]. Another study
showed that the intake of 3-carotene (15 mg/day), a-tocopherol (30 mg/day), and selenium
(50 ng/day), for a period of five years, lowered the risk of gastric cancer, although no effects
were observed with esophageal cancer [210,211]. These conflicting outcomes of the same
phytochemicals may be due to certain biomarkers expressed in different cancers during
their progression. It was demonstrated that treatment with phytochemicals regresses
tumor volume and enhances the synergistic effect of various chemotherapeutic drugs like
5FU, doxorubicin.

Ishikawa et al. [212] showed that in patients with colorectal, liver, or pancreatic cancer,
daily consumption of 4 aged garlic capsules/day (Allium sativum 500 mg) for 12 weeks
led to increased NK cell numbers and activities and was associated with more favorable
outcomes. Further, daily consumption of 6 capsules (2.5 mL garlic) for 1 year led to
decreased colon adenoma size and numbers [213]. A list of all the clinical trials and other
studies with human subjects on the efficacy of phytochemicals in treating cancer is provided
in Table 5.
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Table 5. Ongoing clinical trials on phytochemical efficacy in cancer treatment.
Study Type Phtochemical (s) Cancer Refs.
Study with Human . ) Colorectal, liver, pancreatic cancer [212,213]
7. Allium satioum
Participants Colon adenoma
Pancreatic cancer [188]
Oral leukoplakia [189]
. . Curcumin alone, .. . . -
Phase I Clinical Trail curcumin + quercetin Cervical intraepithelial neo-plasia [188]
Multiple myeloma [189]
Advanced colorectal cancer [189]
Phase II Clinical Trial Curcumin Aberrant crypt foci [161]
e  Reduced insulin-like growth factor (IGF)-1
and IGF-binding protein 3 in the plasma,
Study with Human Resveratrol inhibited tumor formation, and metastasis. [172]
Participants e Decreased cytochrome P450 and CYP3A4
levels, and increased CYP1A2 in the plasma
of healthy person
Phase II Clinical Trail Green Tea Prostate cancer [198]
Stud.y.w1th Human B-carptene, a-tocopherol, Gastric cancer [199]
Participants selenium

5. Challenges and Future Prospectives

Although phytochemicals have been extensively studied in various cancer cell lines
in vitro and in pre-clinical animal models, as well as clinical trials with some promising
natural therapeutics ongoing, their clinical efficacy as an anti-cancer target is still under
debate. The major problem associated with phytochemical drugs is their solubility and
adsorption, beginning in the oral cavity and continuing up to the gut milieu. Additionally,
phytochemicals can have a wide range of pharmacokinetics that hinge on a multitude of
factors, such as the type of compound and mode of preparation. Therefore, the synthesis of
easily soluble phytochemical analogs, with well-characterized kinetics, mainly in aqueous
or other stabilizing conditions, that can be absorbed effectively in the gut is warranted. Fur-
thermore, the half-life of phytochemicals is very short in human blood, and the mechanisms
of their metabolism remain unclear. Therefore, improving the bioavailability and stability
of phytochemicals in vivo represents another challenge to researchers. In this consequence,
more efficient research is required to increase the longevity of their half-life and thereby
efficacy, and a better and more in-depth understanding of their mechanism of metabolism
and subsequent activity is needed.

Unfortunately, no phytochemical has been established or approved to combat cancer.
Challenges associated with phytochemicals, such as inadequate information about specific
targets, pre-clinical study data, optimal dose, solubility, and longevity or bioavailability,
need to be overcome before phytochemical therapeutics can be approved. There is also a
threat of overdosing or toxicity due to the consumption of phytochemicals in very high
doses, such as overuse of wine may lead to liver damage, alcohol toxicity, socio-economic
problems, and other challenges associated with intoxication. Thus, it is important to con-
sume phytochemicals in limited doses and responsibly, even though most phytochemicals
are not known to be harmful in small doses, per the direction of the physician. Additionally,
further studies with combination/cocktail phytochemical therapeutics, and cutting-edge
basic research with more robust and effective drug development are required. Further
understanding of various dietary phytochemicals is necessary regarding various cancers
via immune modulation of various innate and adaptive cells within TME, which could be
safe, non-toxic, and economical anti-cancer therapeutics.
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6. Conclusions

Phytochemicals have been reported to play vital immunomodulatory roles in cancer
since ancient times. In recent years, extensive research on phytochemicals has shown them
to be attractive anti-cancer therapeutics through modulation of the TME. More research is
needed for the development of phytochemicals-mediated cancer treatment, through better
understanding of cell cycle progression, inhibition of signaling cascades at various stage of
cancer progression like initiation, progression, and development.
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