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Abstract: Treatment-resistant depression (TRD) is a term used to describe a particular type of major
depressive disorder (MDD). There is no consensus about what defines TRD, with various studies
describing between 1 and 4 failures of antidepressant therapies, with or without electroconvulsive
therapy (ECT). That is why TRD is such a growing concern among clinicians and researchers, and it
explains the necessity for investigating novel therapeutic targets beyond conventional monoamine
pathways. An imbalance between two primary central nervous system (CNS) neurotransmitters,
L-glutamate and γ-aminobutyric acid (GABA), has emerged as having a key role in the pathophysiol-
ogy of TRD. In this review, we provide an evaluation and comprehensive review of investigational
antidepressants targeting these two systems, accessing their levels of available evidence, mechanisms
of action, and safety profiles. N-methyl-D-aspartate (NMDA) receptor antagonism has shown the
most promise amongst the glutamatergic targets, with ketamine and esketamine (Spravato) robustly
generating responses across trials. Two specific NMDA-glycine site modulators, D-cycloserine (DCS)
and apimostinel, have also generated promising initial safety and efficacy profiles, warranting further
investigation. Combination dextromethorphan-bupropion (AXS-05/Auvelity) displays a unique
mechanism of action and demonstrated positive results in particular applicability in subpopulations
with cognitive dysfunction. Currently, the most promising GABA modulators appear to be synthetic
neurosteroid analogs with positive GABAA receptor modulation (such as brexanolone). Overall,
advances in the last decade provide exciting perspectives for those who do not improve with con-
ventional therapies. Of the compounds reviewed here, three are approved by the Food and Drug
Administration (FDA): esketamine (Spravato) for TRD, Auvelity (dextromethorphan-bupropion) for
major depressive disorder (MDD), and brexanolone (Zulresso) for post-partum depression (PPD).
Notably, some concerns have arisen with esketamine and brexanolone, which will be detailed in
this study.

Keywords: antidepressants; depression; treatment-resistant depression; treatment; targets; GABA;
glutamate; pharmacotherapies

1. Introduction: The Problem of TRD

Depression is an increasingly prevalent and debilitating psychiatric disorder with
a heterogeneous symptomatic picture and complex neurobiological basis. In the United
States, depression is the leading cause of disability and suicide, affecting over 17.3 million
adults [1]. Major depressive disorder (MDD) costs Americans approximately $210.5 billion
annually, whereas the global economic burden of depression and anxiety is estimated
to be one trillion USD annually and rising [1,2]. Approximately one-third of depressed
patients fail to remit, even after four adequate therapeutic trials [3]. Diminishing returns
demonstrated in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D)
trial underscore the need for novel treatment avenues targeting the pathophysiological
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source of treatment resistance [4]. Disappointingly, no clear consensus exists for the
definition of TRD. Lack of response or remission after two adequate trials with standard
antidepressant therapies appears to be the modal definition. However, only 17% of studies
implement these criteria [5]. For the purposes of this review, TRD will be defined as such.

Overall, Treatment Resistant Depression (TRD) is associated with several comorbid
features, including prolonged mental and physical dysfunction, increased healthcare spend-
ing, worse clinical outcomes, and a higher risk of suicide [4,6–9]. Well-established clinical
correlates of TRD include persistent anhedonia and anxiety, the presence of one or more
medical and/or psychiatric comorbidities, as well as duration and frequency of depressive
episodes [10].

Most of the available FDA-approved pharmacological treatments for MDD target
conventional monoamine pathways (i.e., serotonin, dopamine, and norepinephrine), which
make up less than ten percent of total central nervous system (CNS) activity [11]. Thus,
there is an urgent need for new, improved antidepressant therapies targeting a broader
range of neurotransmission. The present study provides an overview of novel, rapid-acting
antidepressants with potential efficacy in TRD based on a physiological balance between
the brain’s two primary neurotransmitters, glutamate and GABA.

2. Glutamate and GABA Dysfunction in Depression

The function of the CNS fundamentally relies on a delicate physiological balance be-
tween glutamatergic and GABAergic systems. With more than 90% of CNS neurons acting
through these pathways, the excitatory activity must be well-regulated by an inhibitory
component [12]. Glutamate hyperactivation associated with impaired GABA inhibition
creates detrimental neural physiology, changing gene expression, cellular morphology, and
signaling activity. Receptors that are able to receive and process the signals from glutamate
or GABA are present on all cells in the brain, including neurons and glia [13]. Abnormalities
in volume, activity, and connectivity in cortico-limbic networks have been consistently
linked to depressive pathophysiology [14,15]. Glutamatergic and GABAergic dysfunction
in the prefrontal cortex (PFC) and anterior cingulate cortex (ACC) has been extensively
implicated in both MDD and TRD [16–25]. The default mode network (DMN), one of the
CNS’s major communication networks has also been implicated in this dynamic. Specifi-
cally, cortical GABAergic disinhibition in depressive disorders co-occurs with increases in
glutamatergic gene expression in the DMN [24,26–32].

2.1. Glutamatergic Abnormalities

Glutamate activity plays a key role in learning and memory, synaptic plasticity, and
overall behavior [33]. Moreover, glutamatergic transmission appears to be a key mediator
of mood, cognition, perception, and emotions associated with TRD [15]. A meta-analysis of
1H-MRS studies demonstrated that decreased Glx levels with absolute values in the pre-
frontal cortex were correlated with treatment severity (i.e., number of failed antidepressant
treatments), indicating that the severity of glutamatergic dysregulation could be related to
the severity of illness [34]. Subjects with depression have been shown to display a variety
of glutamatergic abnormalities, including reduced glial density, decreased expression of the
glutamate reuptake transporters EAAT1 and EAAT2 and decreased enzymatic conversion
from glutamate to glutamine [33].

One proposed neurobiological mechanism underlying TRD is related to the toxic effect
of extrasynaptic glutamate receptor hyperactivation. As extracellular glutamate release
outpaces clearance by glial cells, and the ensuing inflammation and neurodegeneration
likely contribute to the acute volume reductions and other cytoarchitectural abnormalities
detected in depressed patients’ brains [35]. To counteract these effects, glial cells are re-
sponsible for glutamate reuptake and facilitate the glial–astrocytic conversion of glutamate
to glutamine, which limits excitotoxicity and provides necessary precursors for GABA
synthesis [36]. Glutamine, the most abundant amino acid in the CNS by an order of magni-
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tude, also plays a vital role in cellular buffering, transcription/translation, mitochondrial
functioning, and other vital processes [33].

Metabotropic glutamate receptors (mGluRs) are highly expressed in brain regions
central to the pathophysiology of TRD. These receptors also influence local GABA and
glutamate activity; mGluR5 interacts with glutamatergic and GABAergic neurons through-
out the interconnected circuitry of the PFC, hippocampus, and amygdala. They control
processes such as learning, memory acquisition, fear extinction, and synaptic plasticity [37].
In this capacity, learning performance and response depend on the frequency of mGluR5
expression in the hippocampus [38,39]. The mGluR5 receptor also mediates stress resilience
via post-synaptic mGluR5 activation on the nucleus accumbens [40,41]. This process may
ultimately facilitate hippocampal neurogenesis and normalize hypothalamic–pituitary–
adrenal (HPA) axis activity, two processes that have been repeatedly implicated in recovery
from depression [42,43].

Ionotropic glutamate receptors also play a vital role in synaptic plasticity [44]. In
depressed patients, synaptic plasticity pathways have been shown to be disrupted in the
PFC and hippocampi, correlated with α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA) and NMDA receptor abnormalities [45,46]. The possibility of development of
antidepressant medications targeting the NMDA complex was suggested decades ago [47].
Regardless of causal direction, the reciprocal and downstream effects of this dysfunction
substantially contribute to neurodegeneration within the PFC and hippocampus. These
areas are highly implicated in the adverse cognitive and affective features of depression,
especially rumination and anhedonia [3,48].

Brain-derived neurotrophic factor (BDNF) levels, a primary driver of neuroplasticity
and glutamate modulation, are reduced in postmortem hippocampal and PFC samples
of patients with MDD. It is suggested that alterations in BDNF activity may contribute
to the acute regional volumetric decreases associated with MDD/TRD [3]. Moreover,
multiple SNPs in BDNF-associated regions have been associated with treatment response
to ketamine and selective serotonin reuptake inhibitors (SSRIs) in some patient populations.
BDNF knockout mice also show reduced responsiveness to such therapies [3,49]. BDNF
and its cellular target (tyrosine kinase receptor B (TrkB)) potently regulate neuronal survival
and growth through several downstream effectors: bcl-2, mammalian target of rapamycin
(mTOR), glycogen synthase kinase-3B (GSK-3B), and phosphatidylinositol 3-kinase (PI3-
kinase)/Akt [50].

Increasing evidence suggests that BDNF-TrkB signaling underlies a substantial por-
tion of both affective pathophysiology and treatment response across therapeutic ap-
proaches [51,52]. Importantly, the rate of activity-dependent BDNF release appears to distin-
guish rapid-acting agents discussed in this review from their monoaminergic counterparts,
whose delayed treatment response coincides with an indirect increase in BDNF secretion
weeks after initiation [53]. It has recently been demonstrated that conventional antidepres-
sants such as fluoxetine and imipramine, as well as the rapid-acting glutamatergic agent
ketamine, directly bind to TrkB and allosterically potentiate BDNF signaling [52,54]. This
may suggest a final common pathway for many antidepressant modalities—amplification of
endogenous glutamate/BDNF signaling via TrkB. Notably, multiple serotonergic hallucino-
gens have also demonstrated preliminary efficacy in TRD [55,56] and impart downstream
glutamatergic effects (as well as robust spinogenesis and dendritogenesis), which are depen-
dent on intact TrkB signaling [57,58]. Lysergic acid diethylamide (LSD) and psilocin have
recently been found to directly bind to TrkB with affinities 1000-fold higher than those for
conventional antidepressants and ketamine. However, 2R,6R-hydroxynorketamine (R,R-
HNK), an active metabolite of ketamine with negligible affinity for NMDA receptors, was
found to displace LSD from TrkB at high nanomolar concentrations, suggesting relatively
comparable potency [54]. Despite repeated and robust demonstration of antidepressant
effects across animal models with R,R-HNK, higher plasma levels appear to confer less
improvement in clinical studies of depression and suicidal ideation [59,60]. Surprisingly, in
patients with TRD, higher R,R-HNK levels have been shown to correlate with increased en-
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cephalographic gamma power—a putative measure of cortical disinhibition/excitation (i.e.,
decreased activity in GABAergic interneurons and increased activation of fast ionotropic
glutamate receptors on pyramidal neurons) [59]. Thus, it remains unclear as to whether
the cortical “glutamate surge” and/or resultant TrkB signaling are sine qua non to antide-
pressant efficacy for this class. The first phase I trial with R,R-HNK is currently underway
(NCT04711005), which may hopefully add some clarity. Further caveats to this hypothesis
exist as well, and it is important to place any BDNF-related findings within the context of
population heterogeneity and neuro-regional specificity [50,53].

2.2. GABAergic Abnormalities

Strong evidence supports a key role for GABA in MDD, showing structural and
functional GABAergic system deficits throughout the central and peripheral nervous sys-
tems [61]. Compared to healthy controls, depressed patients consistently display net
reductions in cortical GABA concentrations and neuronal density, as well as decreased
enzymatic synthesis in the periphery and cerebrospinal fluid (CSF) [61,62]. In women with
TRD/treatment-resistant postpartum depression, depressive severity is linked to GABA
concentrations in the DMN [26,27]. In the CNS, reductions in ACC GABA levels appear
to correlate with increased anhedonia and treatment resistance [19,23]. In contrast, higher
baseline ACC activity is associated with improved outcomes [22]. In TRD specifically, ros-
tral ACC function may mediate the balance between negative rumination and constructive
self-evaluation, both facilitated by the DMN [17,22], suggesting that ACC dysfunction plays
a role in excessive negative rumination. In both MDD and TRD, region-specific normaliza-
tion of GABA concentrations in the occipital cortex (OCC), ACC, and DMN have repeatedly
been observed in response to all successful antidepressant therapies [19,22,23,63].

Likewise, reductions in both GABAA and GABAB receptor-mediated inhibition in
MDD have been demonstrated across genomic [64], postmortem [65], and neuroimag-
ing studies [28,48]. Levinson and colleagues’ transcranial magnetic stimulation (TMS)
study demonstrated substantial deficits in GABAA inhibitory signaling in patients with
treatment-resistant depression, but not in those with MDD or euthymic remitters with a
history of MDD [28]. These results suggest that neurophysiological deficits of the GABAB
receptor are more broadly related to depressive pathophysiology and symptoms, whereas
GABAA receptor deficits are more selectively associated with illness severity and treatment
response [28]. Overall, MDD and TRD seem to be biologically different. GABAergic deficits
involve the concomitant presence of neurophysiological, neuroendocrine, cognitive, and
behavioral findings [32,66,67], which may be reversed with targeted therapeutics.

3. Methods: Clinical Studies of Investigational Compounds Targeting Glutamate
and GABA

The aim of this study is to present most relevant scientific research regarding the
several investigational compounds targeting the glutamatergic and/or GABAergic systems
as their primary mechanism of antidepressant action that have been tested in clinical trials
up to September 2023. All proceeding compounds demonstrate evidence of antidepressant
efficacy in at least one successful clinical trial, though not all have progressed through
the final stages of drug development. (For an overview of investigational antidepressants
targeting GABA/glutamate, including level of evidence for antidepressant efficacy, see
Table 1 for GABAergic compounds and Table 2 for glutamatergic compounds.) On Table 3,
we provide a guide on how we defined the evidence levels of each compound included on
Tables 1 and 2. We have briefly mentioned several psychedelic compounds above, two of
which (ayahuasca and psilocybin) have demonstrated preliminary efficacy in TRD [55,56].
As the extent of their direct glutamate/GABA modulation in relation to antidepressant
efficacy is unclear at this juncture, they have not been formally included in our review.
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Table 1. Efficacy Overview of Investigational Glutamatergic Compounds for the Treatment of Depression with Level of Evidence.

Compound Sponsor Mechanism Side Effects Study Source Outcome Sample Design Phase N Evidence
Level

KETAMINE NIMH/MayoClinic

NMDAR
antagonism;

AMPAR
stimulation

Acute: transient
dissociative and

psychotomimetic
effects, ↑HR/BP

Chronic: dissociation;
cognitive/locomotor
deficits; renal toxicity
(high abuse potential)

Berman et al.,
2000 + MDD/BPD RDBPCT, CO, inactive

placebo, IV II N = 7

++++

Zarate et al.,
2006a + TRD RDBPCT, CO, inactive

placebo, IV II N = 17

Price et al., 2009 + TRD+SI

RDBPCT, single IV
infusion [continuation
trial for responders−→

aan het Rot et al., 2010]

II N = 26

aan het Rot
et al., 2010 + TRD

Pilot OL, repeated
infusion [continuation of

Price et al., 2009 IV
ketamine-responders]

I N = 10

Mathew et al.,
2010 + TRD

Pilot RCT, single IV dose
with lamotrigine
pre-treatment &

successive continuation
riluzole

IV N = 26

Diazgranados
et al., 2010a + TRBPD RDBPCT, CO, active

placebo, IV, adjunct II N = 18

Diazgranados
et al., 2010b + SI+TRD Single open label

IV infusion II N = 33

Zarate et al.,
2012 + TRBPD RDBPCT, CO, inactive

placebo, IV, adjunct II N = 15

Murrough et al.,
2013 + TRD

RDBPCT, PA, active
control, single

IV infusion
II N = 72 (47)

Sos et al., 2013 + MDD a priori RDBPCT, CO,
inactive placebo, IV III N = 27

Lapidus et al.,
2014 + TRMDD RDBPCT, CO, inactive

placebo, IN N/A N = 20

Hu et al., 2016 + TRMDD+SI

RDBCT, PG, inactive
placebo, single IV

infusion, adjunct to new
OAD escitalopram

N/A N = 30 (15)
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Table 1. Cont.

Compound Sponsor Mechanism Side Effects Study Source Outcome Sample Design Phase N Evidence
Level

KETAMINE NIMH/MayoClinic

NMDAR
antagonism;

AMPAR
stimulation

Acute: transient
dissociative and

psychotomimetic
effects, ↑HR/BP

Chronic: dissociation;
cognitive/locomotor
deficits; renal toxicity
(high abuse potential)

Singh et al.,
2016a + TRD

RDBPCT, inactive
placebo, repeated

admin, IV
II N = 67

++++

Fava et al., 2018 + TRD

RDBPCT, IV adjunct,
active placebo, multiple

doses, 5-groups
(including one
control group)

II N = 99 (80)

Phillips et al.,
2019 + TRD

RDBCT, CO, midazolam
placebo,

repeated/maintenance
IV infusions

III N = 41

Domany et al.,
2019 + TRD/SI/HC

POC, RDBPCT, repeated
oral adjunct,

inactive placebo
III N = 41 (22)

Ionescu et al.,
2019 TRD+SI RDBPCT, repeated

dosing, IV, adjunct N/A N = 26 (13)

Wilkinson et al.,
2019 + severe/TR

mood disorders

Chart review case series
of repeated IV dosing

titrated by
weight, uncontrolled

N/A N = 54

Roy et al., 2020 + Adolescent TRD

Single group open label
repeated IV dosing; with
pre/post administration

MRS imaging

II N = 13

Wilkinson et al.,
2017 + SI

Systematic
Review/Meta-Analysis

of 10 controlled trials
testing a single

IV infusion

SR|MA N = 167

Correia-Melo
et al., 2020 + TRD RDBACT, ketamine

group; esketamine group II N = 63
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Table 1. Cont.

Compound Sponsor Mechanism Side Effects Study Source Outcome Sample Design Phase N Evidence
Level

ESKETAMINE/(S)–
KETAMINE
(SPRAVATO)

J&J (Janssen)

NMDAR
antagonism

(non-
selective/non-
competitive)

Transient dissociation
(less than ketamine),

sedation, anxiety,
hypoesthesia, vertigo,
dizziness, dysgeusia,
GI disturbances, ↑BP

Singh et al.,
2016b + TRD

RDBPCT, IV, adjunct, x2
randomized, PA,

optional OL
continuation phase

II N = 30 (20)

+++++

Canuso et al.,
2018 + TRMDD+SI RDBPCT, IN, adjunct;

concluded ineffective for SI II N = 68 (35)

Daly et al., 2018 + TRD
RDBPCT, IN, multiple

doses, adjunct,
partial OL

II N = 67 (34)

Ochs-Ross et al.,
2018 Geriatric MDD RDBPCT, active control,

flexible dosing, IN III N = 138

Daly et al., 2019 + TRD
Long-term RDB

withdrawal study,
adjunct, IN

III N = 297

Fedgchin et al.,
2019 + TRD RDBPCT, IN, active

placebo, adjunct; 3 arm III N = 346
(233)

Popova et al.,
2019 + TRD RDBPCT, active control,

adjunct, flexible dosing III N = 227

Fu et al., 2020 + MDD+active SI

RDBPCT, IN, adjunct,
inactive placebo; plus

optional follow up
continuation (n=192)

III N = 226
(114)

Ochs-Ross et al.,
2020 - Geriatric TRD

RDBACT, adjunct, IN,
flexible dosing,

new OAD
III N = 138 (72)

Wajs et al., 2020 - Geriatric TRD

Long-term, OL,
uncontrolled, adjunct,

IN [continuation of
Ochs-Ross et al., 2020]

III N = 802

Ionescu et al.,
2020 + MDD+active SI RDBPCT, IN, inactive

placebo, new OAD III N = 227
(115)

Correia-Melo
et al., 2020 + TRD RDBACT, ketamine

group; esketamine group II N = 63

Zaki et al., 2023 + TRD OL, long-term
extension study III N = 768
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Table 1. Cont.

Compound Sponsor Mechanism Side Effects Study Source Outcome Sample Design Phase N Evidence
Level

Dextromethorphan
(DM)

Compounds
—

NMDAR
antagonism; low

affinity σ1
opioid receptor

agonism;
SERT/NET
inhibition

GI disturbances,
dizziness, QTc

prolongation (in those
with heart conditions)

Lee et al., 2012
with corrigendum - BPD RDBPCT, PA,

stratified, adjunct III N = 309
(203) Ø

AVP-
923/Nudexta

[DM+quinidine]
Avanir

NMDAR
antagonism; σ1
agonism; SNRI

Nausea, dizziness,
peripheral edema, rare

liver malfunction

Messias &
Everett, 2012 + TRD Case report on emotional

lability in depression N/A N = 1

+Kelly &
Lieberman, 2014 + TRBPD-II

Preliminary
retrospective chart
review/case series,

adjunct; high dropout
rates due to nausea

N/A N = 77

Murrough et al.,
2017b + TRD

POC, repeated BID
administration, OL,

single arm
IIa N = 20

AXS-05
[DM+bupropion]

Axsome

NMDAR
antagonism; σ1
agonism; SNRI;

nACh
antagonism

Anxiety, restlessness,
dry mouth,

arrhythmia, irritability,
insomnia,

hyperventilation

Iosifescu et al.,
2022 + MDE RDBPCT, PA, active

control, oral II N = 97

+++++
Tabuteau et al.,

2022 + MDD RDBPCT, PA, 2 arm, oral,
repeated administration III N = 327

(163)

NCT02741791/STRIDE-
1 - TRD

RDBPCT with active
placebo, parallel groups,

proceding open-label
bupropion lead in period

III N = 312
(156)

LANICEMINE
(AZD6765)

AstraZeneca
low trapping

NMDAR
channel blocker

No dissociative or
psychotomimetic

effects

Zarate et al.,
2013 - TRD

RDBPCT, CO, single IV
infusion, inactive

placebo
II N = 22

Ø

Sanacora et al.,
2013

(NCT00491686)
- TRMDD

RDBPCT, single
administration, IV,

parallel groups,
monotherapy, PILOT

IIa N = 34 (16)

Sanacora et al.,
2013

(NCT00781742)
+ TRMDD

RDBPCT, multiple
infusions, IV, parallel

groups, 3 arm,
adjunctive, inactive

placebo

IIb N = 152
(102)
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Table 1. Cont.

Compound Sponsor Mechanism Side Effects Study Source Outcome Sample Design Phase N Evidence
Level

LANICEMINE
(AZD6765) AstraZeneca

low trapping
NMDAR

channel blocker

No dissociative or
psychotomimetic

effects

Sanacora et al.,
2017 - TRMDD

RDBPCT, PA, IV, 3 arm,
inactive placebo,

repeated administration,
adjunct

IIb N = 302
(202) Ø

RILUZOLE

Stanley Medical
Research Insti-

tute/NIMH/Yale
University

AMPAR
stimulation;

NMDAR
inhibition;
↑VGLUT
reuptake

GI disturbances,
dizziness, drowsiness

Zarate et al.,
2004 + TRD open label monotherapy II N = 19

+/−

Zarate et al.,
2005 + BPD Adjunct to lithium, OL,

non-randomized II N = 14

Sanacora et al.,
2007 + TRD Adjunct to traditional

antidepressant, OL II N = 10

Brennan et al.,
2010 - BPD

OL, adjunct, brain
imaging of POC/ACC, 1

arm
N/A N = 14

Salardini et al.,
2016 + MDE

RDBPCT, parallel
groups, adjunct to

citalopram
II & III N = 64 (32)

Mathew et al.,
2010 - TRD RDBPCT, adjunct to

single IV dose ketamine IV N = 26

Ibrahim et al.,
2012a - TRD RDBPCT, adjunct to

single dose ketamine IV N = 42

Niciu et al., 2014 - TRD

adjunct to ketamine
infusion, parallel groups,

oral, flexible dose,
RDBPCT

IV N = 52

NCT00376220 - BPD

RDBPCT, PA, repeated
administration, inactive
placebo, gradual dose

titration

II N = 94 (47)

Park et al., 2017 - BPD RDBPCT, PA,
monotherapy, II N = 19

NCT01204918 - TRMDD RDBPCT, PA, 3 arm,
adjunct to SSRI/SNRI II N = 104 (64)
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Table 1. Cont.

Compound Sponsor Mechanism Side Effects Study Source Outcome Sample Design Phase N Evidence
Level

RISLEMENDEZ
(CERC-

301/MK0657)
Cerecor/NIMH

NMDAR
antagonism

(NR2B-selective)

No significant
dissociative or

psychotic effects

Ibrahim et al.,
2012b - TRD Pilot RDBPCT, CO, oral,

monotherapy I N = 5

Ø
Paterson et al.,

2015b - MDD/SI

RDBPCT, sequential
parallel, 3-arm, adjunct,
repeated administration,
low dose; high dropouts

II N = 137 (81)

MEMANTINE
NIMH/Forest
Laboratories

NMDAR
antagonism; σ1

receptor
agonism

Body aches, dizziness,
confusion, headache,

drowsiness, insomnia,
constipation, agitation,

hallucinations

Zarate et al.,
2006b - MDD RDBPCT, parallel,

monotherapy, daily oral, III N = 32 (16)

+/−

Muhonen et al.,
2008 - MDD+alcoholism

Naturalistic RDBPCT,
PA, escitalopram
placebo, adjunct

IV N = 80 (40)

Anand et al.,
2012 - TRBPD

POC, RDBPCT, parallel
groups, adjunct to

lamotrigine, repeated
administration

IV N = 29 (14)

Lenze et al.,
2012 - Geriatric MDD

Pilot RDBPCT, PA, with
12 month follow up,
placebo group and
healthy comparator

group

IV N = 35 (17)

Smith et al., 2013 - TRMDD RDBPCT, PA, adjunct,
repeated administration, IV N = 31 (15)

Lepow et al.,
2017 + MDD

Case
Series/retrospective

chart review of subjects
from Zarate et al., 2006,

2013; Ibrahim et al.,
2012a

N/A N = 7

Lavretsky et al.,
2020 - Geriatric MDD

RDBPCT, adjunct to
escitalopram, 12 month
naturalistic follow up

IV N = 95
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Table 1. Cont.

Compound Sponsor Mechanism Side Effects Study Source Outcome Sample Design Phase N Evidence
Level

D-
METHADONE

(Dex-
tromethadone/

REL-1017)

Relmada

NMDAR
antagonism

(non-
competitive,
non-opioid
selective)

No ketamine-like
psychotomimetic

effects

Fava et al., 2022 + MDD

RDBPCT, PA, 3 arms,
adjunct, repeated dosing,
oral solution dissolved

in cranberry juice

IIa N = 62

+/−
NCT04688164
(RELIANCE I) - MDD RDBPCT, 2 arms,

adjunctive III N = 232

NCT05081167
(RELIANCE III) - MDD RDBPCT, 2 arms,

monotherapy III N = 232

NITROUS
OXIDE (N2O)

Washington
University
School of
Medicine

NMDAR,
AMPAR, KAR,
nACh, & 5-HT3

antagonism;
GABAA & GlyR

potentiation

Well-tolerated
Anxiety, nausea,

headache, sedation,
high abuse potential

Nagele et al.,
2015 + TRD

Pilot RDBPCT, CO,
adjunct to existing

treatment, one hour
inhalation of 1:1 ratio of
nitrous oxide-oxygen OR

placebo 1:1 ratio of
nitrogen(inert)-oxygen
twice over two weeks

II N = 21

++

Yan et al., 2022 + TRD

RDBPCT, one hour
inhalation of 1:1 ratio of
nitrous oxide-oxygen OR

placebo 1:1 ratio of
nitrogen, one time

II N = 44

RAPASTINEL
(GLYX-13) Allergan

NMDAR
functional

partial agonism
(glycine site)

Dissociation

Preskorn et al.,
2015 + TRMDD

RDBPCT, PA, single
administration, multiple

doses, IV, inverted U
dose response curve,

monotherapy

II N = 115

Ø

NCT02943564 - MDD RDBPCT, PA, IV, adjunct,
two doses III N = 658

(421)

RAP-MD-01,
NCT03675776 terminated MDD

RDBPCT, PA, IV,
monotherapy, two doses,

terminated due to
futility

III N = 50

RAP-MD-02,
NCT02932943 - MDD RDBPCT, adjunct, IV III N = 465

(231)

RAP-MD-03,
NCT02943577 - MDD RDBPCT, adjunct, IV III N = 429

(206)
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Table 1. Cont.

Compound Sponsor Mechanism Side Effects Study Source Outcome Sample Design Phase N Evidence
Level

RAPASTINEL
(GLYX-13) Allergan

NMDAR
functional

partial agonism
(glycine site)

Dissociation RAP-MD-04,
NCT02951988 - MDD

RDBPCT, adjunct, IV, for
relapse prevention, two
doses, initial open label

phase

III N = 604
(402) Ø

APIMOSTINEL
(NRX-

1074/AGN241751)
Allergan

NMDAR
functional

partial agonism
(glycine site)

No ketamine-like
psychotomimetic

effects
Naurex, 2015 + MDD RDBPCT, single

administration, IV, 4 arm IIb N = 140 +++

D-
CYCLOSERINE

NARSAD/NYS
Psychiatric

Institute

NMDAR
functional

partial agonism
(glycine site)

Well-tolerated
hyperexcitability,
dizziness, anxiety,
fatigue, GI distress

Heresco-Levy
et al., 2006 - TRD RDBPCT, CO, adjunct,

dose too low IIb N = 22

+++

Heresco-Levy
et al., 2013 + TRD RDBPCT, PA, gradual

titration to high dose II N = 26 (13)

Kantrowitz
et al., 2015 + TRBPD

adjunct, maintenance
therapy after single
ketamine infusion,

gradual titration to high
dose,

IV N = 8

Newport et al.,
2015 + Depression

Meta-
Analysis/Systematic
Review of RDBPCT

(Heresco-Levy et al 2006,
2013)

MA|SR N = 48

McGirr et al.,
2022 + Depression RDBPCT, iTBS plus

placebo or DCS II N = 50

SARCOSINE —
GlyT1 inhibition

(↑NMDAR
activity)

Well-tolerated Huang et al.,
2013 + MDD RDBPCT, citalopram

control II N = 40 +++

BASIMGLURANT
(RG-

7090/RO4917523)

Hoffman-
Roche/Chugai mGluR5 NAM GI disturbances,

dizziness
Quiroz et al.,

2016 - TRMDD

RDBPCT, parallel group,
3-arm, adjunct,

modified-release
basimglurant

IIb N = 333
(223) +

ARKETAMINE
(PCN-101)

Perception
Neuroscience

NMDAR
antagonism

Transient dissociation,
nausea, dizziness,

somnolence,
numbness, blurred

vision, ↑BP

Leal et al., 2021 + TRD Pilot OL, single infusion I N = 7

+/−Leal et al., 2023 - TRD Pilot RDBPCT, crossover
study II N = 10

NCT05414422 - TRD RDBPCT, 3 arm IIa N = 102
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Table 1. Cont.

Compound Sponsor Mechanism Side Effects Study Source Outcome Sample Design Phase N Evidence
Level

AV-101 (4-
Chlorokynurenine/

4-CI-KYN)
VistaScience NMDAR glycine

binding site

Headache, drowsiness,
MSK pain, sleep

disturbances

NCT03078322/
ELEVATE - MDD RBDPCT II N = 180

−
Park et al., 2020 - TRD RDBPCT, crossover

study II N = 22

MIJ-821
(CAD9271) Novartis NMDAR

antagonism
Amnesia, dizziness,

somnolence
Ghaemi et al.,

2021 + TRD RDBPCT, parallel group,
3-arm II N = 70 +++

DECOGLURANT Roche
Pharmaceutical

mGlu2/3
Receptor

Antagonist

Headache,
somnolence,
orthostactic

hypotension, nausea,
dizziness, orthostatic

↑HR

Umbricht et al.,
2020 - TRMDD RDBPCT, parallel group,

4-arm, adjunct II N = 357 Ø

TS-161
(TP0473292)

Taisho
Pharmaceutical

mGlu2/3
Receptor

Antagonist

Nausea, dizziness,
vomit

Watanabe et al.,
2021 + TRD RDBPCT, parallel group I N = 8

+/−
NCT04821271 ongoing TRD RDBPCT, 2 arm,

crossover study II N = 25

Abbreviations: GABA = Gamma-Aminobutyric Acid; NMDAR = N-methyl-D-aspartate Acid Receptor; AMPAR = α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Re-
ceptor; KAR = Kainate Receptor; mGluR = Metabotropic Glutamate Receptor; NAM = Negative Allosteric Modulator; PAM =Positive Allosteric Modulator; NAS = Neuroactive
Steroid/Neurosteroid; ALLO = Allopregnanolone; PPD = Postpartum Depression; MDD = Major Depressive Disorder; BPD = Bipolar Depression; TR = Treatment Resistant;
SI = Suicidal Ideation; SUD = Substance Use Disorder; SNRI = Selective Norepinephrine Reuptake Inhibitor; SERT = Serotonin Transporter; NET = Norepinephrine Transporter;
VGLUT = Vesicular Glutamate Transporter; GlyT1 = Glycine Transporter 1 (expressed at glutamatergic synapses); GlyR = Glycine Receptor; nACh = Nicotinic Acetylcholine Receptor;
5-HT3 =Serotonin; RDBPCT = Randomized Double-Blinded Placebo-Controlled Trial; PA = Parallel Assignment; TRMDD = Refractory Major Depressive Disorder; PG = Parallel Groups
Assignment; HC = Healthy Control Subjects; OL = Open Label Design; OAD = Oral Antidepressant; RDBACT = Randomized Double Blind Active Control Trial; BID = Twice Daily;
IV = Intravenous Administration; IN = Intranasal Administration; CO = Crossover Study Design; PA = Parallel Arm Study Design; SR|MA = Systematic Review/Meta-analysis;
POC = Proof-of-Concept Trial; NARSAD =National Alliance for Research on Schizophrenia and Depression; NIH = National Institutes of Health; NIMH = National Institute of Mental
Health; POC = Parieto-Orbital Cortex; ACC = Anterior Cingulate Cortex; GI = Gastrointestinal; MSK = Musculoskeletal.
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Table 2. Efficacy Overview of Investigational GABAergic Compounds in the Treatment of Depression with Level of Evidence.

Compound Sponser Mechanism Side Effects Study Source Sample Outcome Design N Phase Evidence Level

BREXANOLONE
(SAGE-

547/Zulresso)
Sage

GABAA NAS
PAM (ALLO

analog)

Sedation, acute
loss of

consciousness,
flushed

skin/face, dry
mouth, vertigo

Kanes et al.,
2017a severe PPD + Single-arm, OL N = 4 II

+++++

Kanes et al.,
2017b

(NCT02614547)
TRPPD + RDBPCT parallel group N = 21 (10) II

Meltzer-Brody
et al., 2018

(NCT02942004)
PPD + multicenter, RDBPCT,

3-arm N = 138 (45) III

Meltzer-Brody
et al., 2018

(NCT02942017)
PPD + multicenter, RDBPCT,

2-arm N = 108 (54) III

Hutcherson
et al., 2020 PPD +/−

Review of above 3 RCTs
and 1 quasi-experimental

study
N = 271 (160) SR|MR

ZURANOLONE
(SAGE-217) Sage

GABAA NAS
PAM (ALLO

analog)

Headache,
dizziness,

nausea,
somnolence

Gunduz-Bruce
et al., 2019 MDD + RDBPCT N = 89 (45) II

+++++

MOUNTAIN
(Sage, 2019) MDD - RDBPCT, 3-arm N = 581 (424) III

Clayton et al.,
2023 MDD + RDBPCT N = 543 III

Deligiannidis
et al., 2023 PPD + RDBPCT N = 196 III

GANAXOLONE
(CCD-1042)

Marinus
GABAA NAS
PAM (ALLO

analog)

Sedation,
dizziness

Gutierrez-
Esteinou et al.,

2019
severe PPD + RDBPCT, 3 doses N = 58 (30) II

+++

Dichtel et al.,
2020

postmenopausal
women w/TRD + pilot OL, adjunct,

uncontrolled N = 10 N/A

Abbreviations: GABA = Gamma-Aminobutyric Acid; NMDAR = N-methyl-D-aspartate Acid Receptor; AMPAR = α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor;
KAR = Kainate Receptor; mGluR = Metabotropic Glutamate Receptor; NAM = Negative Allosteric Modulator; PAM =Positive Allosteric Modulator; NAS = Neuroactive
Steroid/Neurosteroid; ALLO = Allopregnanolone; PPD = Postpartum Depression; MDD = Major Depressive Disorder; BPD = Bipolar Depression; TR = Treatment Resistant;
SI = Suicidal Ideation; SUD = Substance Use Disorder; SNRI = Selective Norepinephrine Reuptake Inhibitor; SERT = Serotonin Transporter; NET = Norepinephrine Transporter;
VGLUT = Vesicular Glutamate Transporter; GlyT1 = Glycine Transporter 1 (expressed at glutamatergic synapses); GlyR = Glycine Receptor; nACh = Nicotinic Acetylcholine Receptor;
5-HT3 = Serotonin; RDBPCT = Randomized Double-Blinded Placebo-Controlled Trial; PA = Parallel Assignment; TRMDD = Refractory Major Depressive Disorder; PG = Parallel Groups
Assignment; HC = Healthy Control Subjects; OL = Open Label Design; OAD = Oral Antidepressant; RDBACT = Randomized Double Blind Active Control Trial; BID = Twice Daily;
IV = Intravenous Administration; IN = Intranasal Administration; CO = Crossover Study Design; PA = Parallel Arm Study Design; SR|MA = Systematic Review/Meta-analysis;
POC = Proof-of-Concept Trial; NARSAD =National Alliance for Research on Schizophrenia and Depression; NIH = National Institutes of Health; NIMH = National Institute of Mental
Health; POC = Parieto-Orbital Cortex; ACC = Anterior Cingulate Cortex; GI = Gastrointestinal; MSK = Musculoskeletal.



Pharmaceuticals 2023, 16, 1572 15 of 32

Table 3. Efficacy Evidence Levels.

+++++ FDA-approval for depression (positive results from Phase 3 RCTs)

++++ Support from meta-analyses/systematic reviews of Phase III RDBPCTs with positive data (N > 100 per group)
+++ Positive results in Phase II and/or in RDBPCT(s), including meta-analysis/systematic reviews (N of 30–100 per group)
++ Positive results in smaller RCTs (N < 30 per group)
+ Preliminary positive results in open-label, uncontrolled, observational, OR case series

+/− Results vary between/within studies; inconclusive efficacy based on available data
Ø FDA rejected or overall negative/unsubstantiated results
+ Overall Positive Study Outcome
– Overall Negative Study Outcome

+/− Mixed Study Results

4. Clinical Studies with Glutamate Modulators in TRD

Anhedonia and anxiety represent clinical markers of treatment resistance in a signifi-
cant proportion of people with depression; therefore, assuaging these symptoms is a key
component of several of the following investigational drugs. Glutamatergic modulation in
depression is, to a degree, already a successful mechanism of many conventional antide-
pressants (cAD), refining neurotransmission and receptor expression via direct and indirect
actions with chronic use [68,69].

Diverse NMDA receptor antagonism has demonstrated rapid antidepressant efficacy
in preclinical depression paradigms [24,29,70,71] and in some clinical trials [72,73]. Notably
however, whereas glutamatergic neurotransmission appears critical to the therapeutic
efficacy of these compounds, whether direct NMDAR antagonism is primarily responsible
for the ultimate effects is very much unsettled [74]. Paradigms such as GABAergic intra-
neuronal NR2B blockade leading to an extracellular glutamate surge and NMDA-mediated
AMPAR potentiation have been proposed. However, precise mechanisms have remained
obscured amidst the (at times conflicting) agonist/antagonist, metabolite, and knockout
studies addressing this issue. For now, the therapeutic primacy of NMDAR inhibition
and resultant AMPAR potentiation appears a temporary frontrunner in the dynamic glu-
tamatergic antidepressant landscape [75,76]. Phase I trials using the AMPAR antagonist
perampanel (Fycompa) to potentially negate the antidepressant effects of ketamine are
underway (NCT03367533, NCT03973268), which may add more clarity to the situation.

The ensuing sections will analyze the highest level of published data from investiga-
tional antidepressant agents that agonize, antagonize, or otherwise affect glutamatergic
neurotransmission, in the context of TRD pharmacotherapy.

4.1. Ketamine and Similar Compounds

Ketamine, arguably the most well studied rapid-acting antidepressant and anti-
suicidal agent of the last two decades, is a derivative of phencyclidine (PCP). First approved
by the US Food and Drug Administration (FDA) in 1970 as a dissociative anesthetic and
pain management agent, ketamine’s antidepressant efficacy at sub-anesthetic doses was
not discovered until thirty years later [72]. Various hypotheses of ketamine’s rapid AD
effects implicate cortical NMDAR-AMPAR throughput, BDNF-TRKb-mTOR enhancement,
monoamine enhancement, opioid receptor signaling, immunomodulation, and others as
the mediators of downstream antidepressant effects. Such complex effects seem to ulti-
mately result in increased neurogenesis and synaptogenesis, improved neuroplasticity, and
normalization of stress-related neurodegeneration [77,78].

However, several lines of evidence must be considered. First, contrary to preclinical
observations, a recent randomized controlled trial (RCT) in humans demonstrated pro-
longed antidepressant responses to ketamine with coadministration of rapamycin (mTOR
inhibitor) [79]. While these findings necessitate further validation, they present several
important lines of clinical inquiry. Second, another study demonstrated that the induction
of antidepressant behavioral effects occurs in vivo independently of (and before) actual
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spine formation. However, glutamate-induced synaptogenesis in their study played a
critical role in sustaining the effects over the subsequent week [80].

Regarding other receptors, a complex relationship exists between opioid receptor
signaling and glutamate transmission. Both systems appear essential, though not indepen-
dently sufficient, to induce ketamine’s AD action [81–83]. Some (but not all) studies have
demonstrated attenuation of ketamine’s AD efficacy with coadministration of naltrexone,
a non-selective opioid receptor antagonist, again necessitating further replication [84,85].
Lastly, contrasting the deleterious effects seen in heathy adults or chronic ketamine addic-
tion, repeated acute phase administration of IV ketamine appears to reliably ameliorate
cognitive impairment in TRD patients [86]. Improvements in working memory might be
predictive of anti-suicidal responses in this population as well [87]. Taken together, these
results suggest important translational gaps between animals and humans, necessitating a
greater emphasis on patient biomarkers and phenotyping in clinical trials.

In that regard, lower baseline gamma power (reflective of GABA and glutamate
functional balance) and subsequent elevation after ketamine administration have been
shown to predict better antidepressant responses in TRD [88], though further validation is
needed. Ketamine administration in depressed patients also appears to reconfigure func-
tional connectivity within the DMN. Notably, normalization of insular DMN hyperactivity
in TRD patients appears to coincide with peak antidepressant responses (48 h), subse-
quently reversing at 10 days post-infusion (when effects on mood are typically lost) [89].
Elevation in peripheral BDNF appears to be one of, if not the only, robustly validated
blood-based marker for ketamine response. Importantly, BDNF has displayed adequate
central–peripheral correlation, being reflective of CNS glutamatergic activity [90].

In terms of clinical trials, Berman and colleagues’ randomized, double-blind, placebo-
controlled trial (RDBPCT) was the first clinical report of ketamine’s rapid and robust
antidepressant effects [72], marking a watershed in the development of antidepressant
therapies. Comparable results have been replicated in several similarly designed RDBPCTs
examining single administration of sub-anesthetic dose ketamine in patients with MDD
and TRD [73,91–93]. Meta-analyses consistently support these findings [91,92,94], estab-
lishing ketamine’s AD efficacy in oral and intranasal administration, repeated dosing, an
augmenting agent, and patients with treatment-resistant bipolar depression or suicidal
ideation [91,94–96].

Across adjunctive trials in TRD, a single dose of ketamine can alleviate depressive
symptoms for up to seven days, with AD effects peaking 24 h after administration [91]. In
MDD, these effects are maintained for two to three weeks with repeated infusions [91]. In
terms of sustained effects, two RCTs have shown prolonged (4–6 weeks) antidepressant
effects using combined intravenous (IV) (0.5 mg/kg) and oral (50 mg/day) ketamine
augmentation in MDD/TRD populations [95,96]. However, at the onset of both trials,
patients were newly initiated on SSRIs, thus obfuscating the timing of their improvement.
Combining ketamine with other NMDA allosteric modulators such as D-cycloserine (DCS)
or riluzole may also prolong anti-suicidal effects for over 6 weeks in TRD patients [97]. Of
note, multiple preclinical and clinical studies suggest that ketamine’s anti-suicidal effects
are at least partially disparate from its AD action [98].

Although results are promising, limitations have emerged across RCTs, most notably
the inability to effectively blind subjects and raters to the drug [99]. Additionally, many
studies are hindered by homogenous samples, short durations, and limited real-world
feasibility [98,100]. Data from recreational ketamine users show that long-term ketamine
use can lead to renal and bladder toxicity, cognitive impairment, dependence, and induced
suicidal ideation during withdrawal [101,102]. This has fueled the search for novel agents
similar to ketamine but without the undesirable side effects [103]. One such investigational
compound is the S (+) enantiomer of racemic ketamine: (S)–ketamine hydrochloride
or esketamine.

Esketamine has nearly fourfold greater affinity for the NMDAR than (R)-ketamine
but interestingly induces fewer and weaker psychotomimetic and dissociative effects [103].
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Esketamine’s putative mechanism of action likely involves a similar, transient surge in
glutamatergic transmission, accompanied by increased synaptogenesis and an influx in neu-
rotrophic factor activity [46,77,97]. In 2019, esketamine nasal spray (marketed as Spravato)
was approved as an adjunctive AD treatment for TRD in the United States and the European
Union, becoming the first novel-acting antidepressant approved in decades [104,105]. In
contrast, the National Health System (NHS) of Great Britain contemporarily rejected the
drug, citing unconfirmed benefits, inflated price, and severe adverse effects in its deci-
sion [106]. Independent groups conducting cost-effectiveness analyses have consistently
determined that esketamine/Spravato exceeds standard cost-effectiveness thresholds and
is currently too expensive for widespread or long-term use in the United States [107,108].

To date, esketamine’s AD efficacy has been tested in five phase III RDBPCTs and one
phase III open-label clinical trial as an augmentation strategy, mostly to new oral antide-
pressants (NOA). Results from two 28-day phase III RCTs support multi-dose, adjunctive
esketamine’s tolerability and AD efficacy in adult and geriatric samples [109,110]. Based on
positive phase II results, Popova and colleagues hypothesized a far greater effect size than
what manifested from their trial, possibly related to unsuccessfully blinding esketamine’s
subjective effects, especially in comparison to inactive placebo [110]. Fedgchin’s group
conducted an analogous study, which did not support adjunctive esketamine’s AD efficacy
for TRD [111]. Most recently, Fu and colleagues demonstrated moderately significant
AD effects with adjunct intranasal (IN) esketamine but failed to demonstrate an effect for
suicidality, the trial’s other primary outcome. In fact, with seven suicide attempts and
one completion by a patient who had received esketamine just three days prior, Fu and
colleagues’ findings may draw a troubling parallel to SSRI black box warnings [104].

A recent, longer (4 months) clinical trial by Daly and colleagues demonstrated a
significant dose–response curve associated with esketamine augmentation [112]. The
results suggest that prolonged treatment may help delay relapse time among TRD patients
who respond well to short-term adjunctive esketamine. Long-term esketamine use in Daly
and colleagues’ study was also linked to short-term, adverse effects, including increases
in blood pressure, dissociative experiences, and incidents of worsening depression when
compared with placebo. Findings regarding both safety and efficacy in the trial are of
limited applicability due to a high dropout rate [112]. Wajs and colleagues conducted
the longest phase III trial of intermittent esketamine augmentation to NOA with the
median open-label esketamine exposure of just under 23 weeks [113]. A very recent open-
label, long-term study accessed the safety and efficacy of esketamine use in patients with
TRD [114]. The results were positive, showing that the same improvement of depressive
symptoms at the first 4 weeks of exposure to the drug were sustained during the 2-year
mark at the end of the study, with a very small percentage of patients discontinuing the
study because of worsening depression (0.6%) or suicide ideation (0.2%). A successful
suicide attempt was reported among patients receiving esketamine. Although interpreted
by the investigator as unrelated to esketamine, the suicide completer had no history of
suicidal behavior or intent [113]. No deaths were reported in the placebo group. Wajs and
colleagues suggested that the results provide moderate support for long-term, adjunctive
esketamine in TRD [113].

As detailed above, esketamine-associated adverse events across trials have raised sig-
nificant concern, particularly with regard to inducing suicidality [115]. Janssen-sponsored
investigators have also weighed in on this issue [116]. Currently, patients receiving pre-
scription esketamine must adhere to Risk Evaluation and Mitigation Strategy (REMS), a
restrictive medical distribution and observation program [117]. Owing to these drawbacks,
intensive efforts to develop safer glutamatergic antidepressants with rapid onset, robust
efficacy, and sustained symptom reduction have commenced globally [103].

Notably, a recent meta-analysis has indicated significantly greater response (RR = 3.01
vs. RR = 1.38) and remission rates (RR = 3.70 vs. RR = 1.47), as well as lower dropouts
(RR = 0.76 vs. RR = 1.37), favoring intravenous ketamine over intranasal esketamine [118].
The only head-to-head comparison to our knowledge (n = 63) found that when both
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compounds are delivered intravenously, they exert similar rapid antidepressant effects in
TRD patients but trend towards favoring racemic ketamine at 7 days (p = 0.08) [119]. There
is an ongoing phase IV trial accessing the clinical response of esketamine monotherapy in
patients with TRD that compares two different doses and placebo accessing the MADRS
from day 1 to week 4 [120]. Given limited resource availability and acuity for TRD patients,
future effectiveness studies comparing intranasal esketamine to IV racemic ketamine would
seem warranted. Blinding can be accomplished by simultaneous IV/IN administration.

Key enantiomeric differences beyond route-dependent absorption might also con-
tribute to these findings.

Arketamine (R(-)-ketamine, PCN-101) has demonstrated results in its first open-label
study delivering single IV infusion to seven TRD patients [121]. Another open-label study
(Crossover RCT) demonstrated mixed results, where a single infusion was not superior to
placebo in improving depressive symptoms on TRD patients. [122]. A larger phase II RCT
(n = 102) in TRD has recently been completed, with negative results. The trial did not meet
both primary and secondary endpoints, with no statistical differences between the MADRS
results after 24 h of administration on all three arms [123]. Notably, preclinical studies
suggest that this enantiomer may have important downstream signaling differences from
esketamine, conferring more prolonged responses with fewer adverse effects compared to
either racemic or esketamine [124]. Further RCTs (possibly including adjunctive use) may
be warranted, given mixed initial signals.

Nitrous oxide (N2O), known widely as “laughing gas”, is primarily a non-competitive
NMDA receptor inhibitor and dissociative anesthetic. N2O is one of the World Health
Organization’s essential medicines, and its clinical administration has been considered safe
for more than 150 years [125]. Nagele and colleagues’ proof-of-concept RCT tested the an-
tidepressant effects a single session of nitrous oxide inhalation in TRD subjects and reported
substantial, rapidly onset AD effects with fewer adverse outcomes than anticipated [99,126].
A very similar and recent study had some mixed findings on a larger sample (N = 44),
showing improvements in MDD symptoms during the first 24 h after inhalation but no
significant differences from placebo after one and two weeks [127]. Concerns regarding
toxicity and abuse risk, which mostly occur with chronic, high-dose recreational usage,
have somewhat obscured promising initial findings [128]. Notwithstanding positive results
from a triple crossover RCT comparing different concentrations in MDD suggest feasibility.
Several trials with N2O are currently enrolling for depression (MDD and bipolar), suicidal
ideation, post-traumatic stress disorder, and others [129].

d-Methadone (dextromethadone/REL-1017) is the d-stereoisomer of methadone.
Methadone itself has repeatedly demonstrated efficacy treating depression among opioid
use disorder patients [130]. The d-stereoisomer likewise acts as an NMDA receptor antag-
onist, binding at the same synaptic site as ketamine and dizocilpine (MK-801) [131,132].
Human and animal trials have not linked d-methadone to any reinforcement, respiratory
depression, or other adverse effects seen with opioids or ketamine [131]. However, some
have questioned whether it is truly free of abuse potential [133]. A phase IIa RDBPCT
evaluated the AD efficacy of one loading dose followed by daily oral d-methadone as
an add-on to TRD patients’ existing therapies [134]. Compared to placebo, subjects in
both d-methadone treatment groups began showing meaningful improvements across
depressive outcome measures by day four, which persisted for one week following the
subjects’ last dosage [134]. Results from a sub-analysis made from the phase II study
accessing subjective cognitive measures from both MADRS and SDQ showed improvement
in cognitive functions in the groups that received the drug compared to placebo in 14 days
of evaluation [135]. Negative top-line results from the first phase III TRD study RELIANCE
III were recently released. Participants (n = 232) were given d-methadone monotherapy
for 28 days, showing a 14.8-point reduction in the MADRS on day 28. However, placebo
arm demonstrated a 13.9-point reduction, with some sites seeing placebo dramatically out-
perform the active treatment [136]. The other phase III study (RELIANCE I) had negative
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results, when the drug was tested as monotherapy for treatment of MDD [137]. Another
phase III study (RELIANCE II) assessing its adjunctive use in MDD is underway [134,138].

MIJ821 (Novartis) is another novel NMDA receptor antagonist with minimal psy-
chomimetic effects. The first phase II study in TRD patients recently completed. The 6-arm,
dose-finding RCT (n = 70) included placebo and IV ketamine comparator arms. Both low
and high doses separated from placebo at 24 and 48 h but not at 6 weeks (preliminary
results were reported within an 80% confidence interval) [139]. A larger phase II, 7-arm
RCT in TRD is ongoing (NCT05454410) is ongoing as well as another in MDD with active
suicidal ideation (NCT04722666) with expected results towards the end of 2023 and 2024.

Decoglurant (Roche), an mGlu2/3 antagonist receptor, was tested in a large clinical
trial (n = 370), where the primary objective was to access antidepressive and procongnitive
of the compound versus placebo as an adjunctive therapy to SSRI/SNRI therapy in individ-
uals with TRD [140]. At 6 weeks, decreases in MADRS scores were noted from baseline, but
without reaching statistical significance when compared to the placebo group, failing the
primary endpoint, and, for the secondary endpoints, mood and functioning and cognitive
impairment, it has also failed in separate from the placebo group.

TS-161 (Taisho Pharmaceutical) is also an mGlu2/3 antagonist receptor, like the previ-
ous compound on our review, but this one was only tested in a preclinical–clinical phase
I trial [141]. This study found that the compound is safe and well-tolerated in humans,
but with the need of further clinical development to access the treatment of MDD. At the
current moment, there is an ongoing phase II crossover RCT at NIMH (NCT04821271),
where patients with MDD will take TS-161 for 3 weeks and placebo for 3 weeks, with
the MADRS score at day 21 as the primary endpoint, with an estimated completion date
in 2024.

Other exploratory AD compounds that exemplify NMDAR antagonism without ke-
tamine’s associated psychotomimetic and dissociative properties include memantine [131],
lanicemine [142], and CERC 301 [143]. In all reports, initial efficacy was either transient or
inconsistent in larger studies [97,103,144–146].

4.2. Dextromethorphan and Similar Compounds

Dextromethorphan (DM) is a nonselective, uncompetitive NMDAR antagonist, ther-
apeutically implicated in various neuropsychiatric disorders [147]. The unconfirmed
mechanism of AD action may rely on σ1 (“opioid-like”) receptor activation, monoamin-
ergic neurotransmitter reuptake inhibition, and nicotinic acetylcholine (nACh) receptor
antagonism, leading to downstream AMPAR activation [147–149]. Due to its short half-life,
DM lacks AD efficacy as a monotherapy, but in conjunction with quinidine, a CYP2D6
enzyme inhibitor that limits DM metabolism, it produces more lasting AD effects [148,149].
A study group found negative results when combining dextromethorphan to valproic acid
in order to improve depressive symptoms in patients with bipolar disorder [150].

AVP-923/Nuedexta consists of a combination of the NMDA antagonist/sigma1 recep-
tor agonist dextromethorphan hydrobromide (DM) and the cytochrome P450 2D6 (CYP2D6)
enzyme inhibitor quinidine sulfate [151]. It exhibited high response rates without the emer-
gence of suicidal ideation, dissociation, or psychotomimetic effects in an early phase II
clinical trial with TRD patients [152]. However, the trial’s high dropout rate and lack of a
comparator group limited the generalizability of the findings. Nuedexta is FDA-approved
for pseudobulbar affect treatment, and alternative formulations designed to increase DM’s
bioavailability without the risk of quinidine toxicity are under investigation [144]. The
AVP-786 formulation consists of deuterated-DM and ultra-low dose quinidine. The phase
II clinical trial results for TRD have yet to be reported. Phase III results (TRIAD-1/2) for
Alzheimer’s-related agitation have generated conflicting results per Avanir’s/Otsuka’s
press releases; however, full publications are yet to be released [153].

AXS-05/Auvelity (combination DM and bupropion) leverages bupropion’s norepi-
nephrine–dopamine reuptake inhibitor (NDRI) and CYP2D6 inhibition to potentiate DM
glutamatergic effects. It also acts as a sigma-1 receptor agonist, which has important impli-
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cations for BDNF processing and other effects [154]. AXS-05 was recently approved by the
FDA following positive results from phase III trials. Two phase III RCTs have evaluated
AXS-05 monotherapy for MDD/TRD, showing favorable safety and tolerability [155]. For
MDD, the GEMINI trial saw AXS-05 outperform the inactive placebo comparator at all time
points with substantial improvements in quality of life and decreased functional impair-
ment [156]. The STRIDE-1 trial testing AXS-05 in TRD patients began with a bupropion-only
lead in period before randomizing bupropion non-responders to receive either AXS-05
or bupropion-only placebo for an additional six weeks. Compared to bupropion alone,
AXS-05 demonstrated statistically significant improvements on The Montgomery–Åsberg
Depression Rating Scale (MADRS) at weeks one, two, and when averaged over the entire
six-week period. The combination also trended towards superior improvement at the
primary endpoint (MADRS at week 6) but failed to reach statistical significance (p = 0.12).
Notably, AXS-05 also showed statistically significant improvements in anxiety and cog-
nitive functioning (Axsome Therapeutics, 2020). Building on these results, investigators
initiated an open-label, twelve-month phase II trial for MDD patients with suicidal ideation
(COMET-SI). Findings were consistent with past controlled trials, AXS-05 was associated
with functional improvements and durable anti-suicidal properties, but the AD efficacy did
not reach statistical significance [157]. A recent 12-month open-label trial (EVOLVE) also
demonstrated significant reductions in anxiety (HAM-A) starting at one week, reaching
70% response rates at one year in patients with MDD. This will be important to replicate in
larger RCTs, as co-occurring anxiety is a significant risk factor for TRD [158].

AV-101 (L-4-chlorokyurenine or 4-CI-KYN) is a prodrug converted via the kynurenine
pathway to an antagonist (7-chlorokynurenic acid) at the glycine-binding site of the NM-
DAR NR1 subunit that has been tested for the treatment of MDD. Results from a Phase II
study of AV-101 (ELEVATE) showed that the AV-101 treatment arm did not differentiate
from the placebo group on the primary endpoint (MADRS at 2 weeks) [159]. An additional
small (n = 19) phase II crossover of AV-101 in individuals with TRD was also negative
(p = 0.71, d = 0.22) [160].

4.3. Glycine Site NMDA Receptor Modulation

Rapastinel (GLYX-13) is a small polypeptide that acts as a partial agonist at the glycine
site of NMDA receptors [161]. Preclinical evidence suggests that rapastinel may enhance
dendritic complexity and long-term potentiation via bidirectional modulation of NMDA
signal transduction [161–163]. Based on safety and efficacy data obtained in phase I and II
trials [164], rapastinel is not associated with ketamine-like dissociation and was granted fast
track status and later breakthrough therapy designation for MDD in 2016 [161]. However,
during more rigorous phase III RCTs, IV rapastinel failed to separate from placebo as an
adjunctive strategy and monotherapy (NCT02943564 and NCT03675776, respectively), and
the drug’s AD development was discontinued, terminating future trials [161].

Apimostinel (NRX-1074/AGN-241751) is a higher-potency rapastinel analog with
increased bioavailability. Developed for adjunctive use for TRD, apimostinel acts as a
functional antagonist at the glycine B site of NMDA receptors [165]. Apimostinel has been
tested in two phase I studies and a larger phase II RDBPCT, showing rapid AD effects after a
single, high-dose IV administration [165]. Another phase II RCT of repeated administration
oral apimostinel monotherapy is upcoming [166].

Zelquistinel (GATE-251) is an orally active, non-peptide, small-molecule NMDAR
modulator. Unlike Rapastinel/Apimostinel, it acts independently of the glycine ligand
site within the NMDAR complex to induce excitatory activity. This novel NMDA binding
site has demonstrated antidepressant effects sustained at two weeks in chronic rodent
stress models. It similarly appears to activate Akt/mTOR signaling, with subsequent
elevation of synaptic proteins in the PFC. Results of a recent phase IIa clinical trial in MDD
(NCT03726658) have yet to be posted.

D-cycloserine (DCS) is a broad-spectrum antibiotic, first suggested to promote antide-
pressant properties in 1959 by G.E. Crane [167]. At low doses (<100 mg/day), DCS acts as
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a functional NMDA receptor antagonist, whereas relatively higher doses (>750 mg/day)
accelerate glycine site NMDA receptor potentiation and produce DCS’s antidepressant and
anxiolytic effects [168]. Studies using transcranial direct current stimulation (tDCS) have
shown that DCS modulates neuroplasticity through long-term potentiation via action on
cortical NMDA receptors in humans [168,169]. This effect signifies therapeutic relevance for
conditions (e.g., dementia) and treatments (e.g., exposure therapy) relating to learning and
memory [168]. In an initial small study of TRD patients, adjunctive DCS failed to separate
from placebo in terms of AD efficacy [170]. The same group of researchers later conducted a
larger (n = 26) RCT, in which high-dose DCS augmentation showed superior AD efficacy to
placebo [171]. This was replicated by another group who randomized TRD patients (n = 50)
to receive DCS or placebo in combination with intermittent theta-bust stimulation (iTBS).
Significantly greater improvements were seen with adjunctive DCS compared to placebo
(d = 0.96) [172]. Though further replication is required with DCS, the model of leveraging
pharmacological synaptic plasticity to enhance targeted treatments like neuromodulation
provides an exciting avenue for translational research in the near future.

4.4. Metabotropic Glutamate Receptor Negative Modulation

Basimglurant (RO4917523/RG7090) is a potent, selective mGluR5 negative allosteric
modulator (NAM) with a long half-life and fair oral bioavailability. Preclinical evidence
indicates robust anxiolytic and antidepressant efficacy [173]. Quiroz and colleagues tested
a daily adjunctive (modified release) basimglurant in a large (n = 333) phase IIb RCT
for refractory MDD. The study did not meet its primary AD outcome measure, but the
higher dose (1.5 mg compared to 0.5 mg low dose) outperformed the placebo across several
secondary AD measures [174]. There was an unusually high placebo response rate in
this trial. Pooled pharmacokinetic data from four phase I and one phase II studies also
suggested that clearance was twofold higher in smokers and 40% higher in males [175].
Due to the negative results on the phase IIb study conducted, this drug has not been cleared
by FDA to be used for refractory MDD.

4.5. AMPA Receptor Positive Modulation and Other Mechanisms

Riluzole is a neuroprotective agent primarily used in the treatment of amyotrophic
lateral sclerosis (ALS). Pharmacologically, it modulates both GABA and glutamate sys-
tems through several cascading mechanisms. Riluzole promotes post-synaptic GABAA
receptor allosteric modulation and reduces glutamatergic activity via direct NMDA and
kainate receptor inhibition, blockade of tetrodotoxin (TTX)-sensitive sodium channels, and
simultaneous reuptake acceleration and inhibition of release [144]. Riluzole also increases
glutamate–glutamine cycling, a potential explanation for in vitro observations of enhanced
neuroplasticity and amelioration of excitotoxicity [176,177], as well as in vivo reductions in
depressive behaviors [144,178]. According to meta-analysis findings, riluzole augmentation
and monotherapy both demonstrate sustained antidepressant and anxiolytic efficacy for
depressive disorders [144,179]. In TRD, AD efficacy was seen in early open-label studies
but not replicated by more rigorous clinical trials [144,179], (see Table 1).

5. Clinical Studies with GABA Modulation in TRD

Accumulating data support the involvement of the GABAergic system in the patho-
physiology and treatment of TRD [61]. A new class of robust antidepressants have evolved
from the endogenous neuroactive steroid/neurosteroid (NAS) and potent GABAA PAM
(Positive Allosteric Modulator) allopregnanolone (ALLO) [11,24]. Evans and colleagues
(2012) demonstrated that pretreatment with ALLO prevented depressive and anxious
behaviors while simultaneously normalizing chronic stress-induced hippocampal neurode-
generation, HPA axis responsiveness, and BDNF expression [63]. ALLO is implicated as a
potential mediator of depression based, in part, on findings of decreased ALLO levels in
depressed patients that normalized with AD treatment [11]. Exogenous and endogenous
administration produced sustained anxiolytic, anticonvulsant, neuroprotective, and anti-
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inflammatory effects, along with AD efficacy reported to last for one month—longer than
any FDA-approved antidepressant available now [24,180]. ALLO’s therapeutic mechanism
is mediated largely by its GABAAR modulation, but likely sustained via downstream
GABA gene expression regulation and transcriptional changes [24,180]. However, ALLO
itself is unsustainable as a long-term treatment since it tends to revert to its metabolic
precursor, progesterone—a mechanistic distinction from the proceeding analogs [63].

GABAA Receptor Positive Modulation

Brexanolone (BRX/Zulresso, formerly SAGE-547) is a GABAA PAM and synthetic
analogue of ALLO [24] it is the first FDA-approved treatment for postpartum depression
(PPD). Extended release (60 h IV infusion) BRX demonstrated rapid, durable AD efficacy
during phase I, II, and III clinical trials [181–183]. However, a recent meta-analysis found
less decisive conclusions [184]. According to Hutcherson and colleagues, only one of
the two completed phase III RCTs provided evidence of remission beyond 30 days, and,
in both, results were clouded by large placebo effects, narrow population samples, and
other sources of bias [183,184]. BRX was generally well-tolerated, but patients experienced
suicidal thoughts and behaviors associated with BRX treatment [185]. Likewise, the 2.5-day
continuous infusion requirement creates some logistical hurdles for widespread use. As
with Spravato, access to BRX is currently restricted to the REMS program due to excessive
sedation and sudden loss of consciousness. This represents a treatment obstacle for many
mothers of neonates.

Ganaxolone is an additional ALLO-like compound that demonstrates AD efficacy
in early phase II trials [186,187]. However, future studies should examine daily oral
maintenance doses following a short-course IV lead in to bolster real-world efficacy and
feasibility in a way that BRX cannot [187].

Zuranolone (formerly SAGE-217) is another ALLO-like compound with AD efficacy in
one early phase II trial [188]. A recently published phase III trial had very positive results,
showing significant clinical improvements at day 3 and sustained through the whole
duration of the study at day 42 [189]. Overall, clinical trial outcomes for synthetic ALLO
compounds are promising as TRD therapies, but limited by small samples, short durations,
and virtually identical designs. Another very recent phase III trial compared Zuranolone
versus placebo in 196 patients, showing significant positive results in improving depressive
symptoms on patients with PPD on days 3, 15, 28, and 45 [190]. Due to those very recent
findings, Zuranolone was approved by the FDA for the treatment of PPD [191]. Larger
and longer RDBPCTs are crucial to verify the safety and efficacy of these drugs, with this
recent published study changing the near future related to the feasibility of this type of
drug for MDD.

6. Conclusions

Since initial development, three different classes of antidepressant medications have
been marketed: (1) Monoamine Oxidase Inhibitors (MAOIs) and Tricyclic Antidepressants
(TCAs), (2) Selective Serotonin Reuptake Inhibitors (SSRIs), and (3) Serotonin–Norepinephrine
Reuptake Inhibitors (SNRIs). While safety profiles have improved, a recent systematic re-
view demonstrated that MAOIs and TCAs still retain the highest efficacy and acceptability,
respectively, amongst antidepressants [192]. However, patients that suffer with TRD still
do not experience significant improvement with existing therapies and also experience
unwanted side effects. The development of novel therapies will provide opportunities to
discover new medications that could have enhanced efficacy in treating TRD with different
mechanisms of action and a more targeted approach, allowing for better symptom relief
and improved treatment response rates.

Glutamate–GABA imbalance in depressive pathophysiology has emerged as an imper-
ative to understanding depressive pathophysiology and treatment resistance. To improve
future TRD research and treatment, establishing a clear and unanimous definition of
treatment resistance will be highly relevant. Of the compounds reviewed here, two are
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FDA-approved: esketamine (Spravato) for TRD and BRX (Zulresso) for PPD. However, both
have drawbacks, including the lack of independently funded research, high abuse potential,
and the REMS program mandates, which are based on safety concerns. Compared to
esketamine, ketamine may produce more severe psychotomimetic/dissociative side effects,
but its AD efficacy and safety has been shown repeatedly in clinical trials and held up to the
scrutiny of meta-analyses. Ketamine and N2O are both limited by a high abuse potential,
and N2O was discontinued from development due to side effects and abuse potential.
Many of the concerns regarding N2O come anecdotally or from recreational users and are
notably absent in clinical trials. Thus, reappraisal for its applicability, especially in refrac-
tory populations, may be warranted. For instance, enhancing post-synaptic extracellular
glutamate binding is essential for the acute BDNF-mediated gains in neuroplasticity at-
tributed to ketamine treatment, but excessive pre-synaptic glutamate release or insufficient
reuptake could lead to neuronal atrophy and deteriorate post-synaptic transmission [16].
Compounds with unique multimodal mechanisms, such as memantine, riluzole, and ra-
pastinel, have each been tested in several RCTs, but results on AD efficacy are inconclusive
or negative, and each compound is associated with undesirable side effects. The rapastinel
analog apimostinel achieved positive AD results in a single RCT but lacks evidence of
long-term efficacy. Similarly, compounds with positive phase II RCT results, ganaxolone,
DCS, d-methadone, and sarcosine have all shown AD efficacy in small samples but require
further validation from larger RCTs. AVP-923 showed early signs of AD efficacy but is
limited by its potentially severe heart and liver side effects. Despite mixed results in phase
III trials, AXS-05 shows promise based on its unique mechanism of action, anxiolytic/pro-
cognitive properties, and lack of weight gain and sexual dysfunction, which are intolerable
to many patients on conventional antidepressants. Zuranolone is scheduled to receive a
response from FDA in August 2023 about the approval or not since the application has been
granted priority by the agency [193]. Future research should focus on rigorous translational
and clinical investigation to provide relief for the more than 30% of depressed patients
who do respond to currently available therapies. It should also be considered to repurpose
existing drugs and evaluate their use in TRD, and it may involve new routes for drug
administration, with the development of AD drugs that can be administered less frequently,
targeting patients that could have more difficulty in adherence because of various factors,
but, at the same time, drugs and routes that engender safe, rapid, and sustained antide-
pressant effects. It will be important for future treatment models to consider the nuances of
glutamate signaling, especially with regard to timing, duration of action, and downstream
implications. Ultimately, the full potential of many glutamatergic/GABAergic compounds
may be realized by emerging research on their ability to temporarily shift set points for ease
of induction of neuroplasticity (i.e., “meta-plasticity”). This property may open a window
during which delivery of secondary agents (or psychotherapy) can maximize and prolong
beneficial adaptations [194,195].
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