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Abstract: Neovascular age-related macular degeneration (nAMD) is a leading cause of irreversible
visual impairment in the elderly. The current management of nAMD is limited and involves regular
intravitreal administration of anti-vascular endothelial growth factor (anti-VEGF). However, the
effectiveness of these treatments is limited by overlapping and compensatory pathways leading to
unresponsiveness to anti-VEGF treatments in a significant portion of nAMD patients. Therefore, a
system view of pathways involved in pathophysiology of nAMD will have significant clinical value.
The aim of this study was to identify proteins, miRNAs, long non-coding RNAs (lncRNAs), various
metabolites, and single-nucleotide polymorphisms (SNPs) with a significant role in the pathogenesis
of nAMD. To accomplish this goal, we conducted a multi-layer network analysis, which identified 30
key genes, six miRNAs, and four lncRNAs. We also found three key metabolites that are common
with AMD, Alzheimer’s disease (AD) and schizophrenia. Moreover, we identified nine key SNPs and
their related genes that are common among AMD, AD, schizophrenia, multiple sclerosis (MS), and
Parkinson’s disease (PD). Thus, our findings suggest that there exists a connection between nAMD
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and the aforementioned neurodegenerative disorders. In addition, our study also demonstrates the
effectiveness of using artificial intelligence, specifically the LSTM network, a fuzzy logic model, and
genetic algorithms, to identify important metabolites in complex metabolic pathways to open new
avenues for the design and/or repurposing of drugs for nAMD treatment.

Keywords: age-related macular degeneration; deep learning; diabetic retinopathy; fuzzy logic;
multi-layer network; neurodegenerative disorders

1. Introduction

Formation of new blood vessels from pre-existing capillaries is essential for the patho-
genesis of many diseases with a neovascular component, such as cancer, proliferative
diabetic retinopathy (PDR), and exudative or neovascular age-related macular degener-
ation (nAMD) [1–3]. nAMD is a leading cause of irreversible visual impairment in older
adults [4]. Due to the major role of the vascular endothelial growth factor (VEGF) and VEGF
receptor 2 (VEGFR2) signaling pathway in driving angiogenesis, several antibody-based
and tyrosine kinase inhibitory systems have been designed to limit VEGF-VEGFR2 interac-
tions and/or interfere with the downstream signaling pathways [5]. Despite promising
results with anti-VEGF monotherapies in different neovascular diseases, a plethora of cur-
rent studies reveal an incomplete response to anti-angiogenic drugs (including anti-VEGF)
in a significant portion of nAMD patients [6,7].

Several mechanisms are under investigation for the development of new anti-angiogenic
drugs to overcome the lack of response to anti-VEGF. These include the compensatory
angiogenic pathways, vessel co-option, intussusceptive microvascular growth, and vascular
mimicry [8–13]. In addition, recent studies demonstrate important crosstalk among angio-
genesis signaling pathways and other factors involved in different biological processes [10].
Thus, a broader investigation of angiogenesis signaling pathways and their interactions
with other biological processes are essential for a holistic approach to better understand the
angiogenesis phenomena and its association with other biological processes and to identify
novel targets to overcome the extended lack of response [14–16]. To accomplish this goal,
the utilization of a biological network analysis approach is essential [17–20].

Network-based approaches can be used to study complex biological diseases and
integrate multiple types of data. Disease-related genes tend to be arranged in clusters
as disease modules. A disease module represents an interconnected set of mechanisms
that are linked to a phenotype. Protein–protein interaction (PPI) network analysis is used
to comprehensively investigate complex intracellular signaling pathways and identify
disease-related genes. Indeed, topological analysis of the networks for evaluating different
kinds of centralities and identification of hubs as highly connected nodes play fundamental
roles in distinguishing novel targets and avoiding inefficient responses [20,21]. A gene
regulatory network (GRN) is a set of genes that interact to regulate the activation of a
specific cell function. Gene regulation activities are perturbed or malfunctional in many
diseases. Consequently, reconstructing this type of network is applicable to studying some
hub gene regulation processes.

Here, we integrated key proteins that are involved in 12 related angiogenic signaling
pathways. These included VEGF-VEGFR2, FGF-FGFR, EGF-EGFR, Dll4-Notch, TGFβ-ALK1,
HGF/c-Met, angiopoietins/Tie receptors, Wnt/β-catenin, PDGF/PDGFR, Ephs/Ephrins,
IGF-IGFR, factors related to vessel co-option, intussusceptive microvascular growth-related
proteins, vascular mimicry-related factors, text mining data [22], angiogenesis-related protein–
protein interaction networks (the extended angiome; first neighbors are linked to proteins
in the extended angiome, and factors are not linked to any proteins in the angiome or
extended angiome) [23], angiogenesis-related inflammatory factors, endothelial cell (EC)
metabolism-related genes, endoplasmic reticulum stress-related factors, angiogenesis-related
immune checkpoints, autophagy signaling pathways, cytoskeleton remodeling factors, wound
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response, neurogenesis, vision-related genes, aging-related factors, vitamin D-related signaling
pathways, G-protein-coupled receptor signaling pathways, prostaglandin signaling pathways,
and 87 signaling pathways that are directly or indirectly linked to angiogenesis processes to
reconstruct a comprehensive angiogenesis-related PPI network. Furthermore, recent studies
and multiple databases of disease-related target identification were integrated to reconstruct
an exhaustive nAMD network [24].

2. Results
2.1. The NeDRex Plugin’s Network for Identifying Disease Modules

The nAMD-related modules and their components were identified using the NeDRex
plugin through the utilization of two algorithms (MuST and DIAMOnD) (Figure 1). The
SQSTM1, C3, and RPGR genes were the center of three disease modules discovered by
the MuST algorithm. The DIAMOnD algorithm’s findings included both isolated vertices
and nodes that are viewed as parts of a network. According to the analysis of the network
portion, the DIAMOnD algorithm detected 11 modules centered on the genes TIMP3, APOE,
CFB, SQSTM1, CFH, C3, TLR4, VEGsssFA, C2, CFI, and TNFRSF10A. As a result of the
aforementioned algorithms, the following schematic figure was produced (Figure 2). Two
distinct strategies were developed to evaluate the genes derived from the algorithms. The
centrality analysis of a comprehensive network containing all genes identified using these
two algorithms and the hubs discovered by analyzing AV-DRN and AMD-PPIN revealed
31 important genes. As a preliminary step, these 31 genes were utilized in construction
of the gene regulatory network (Figure 3). The second method was used to conduct a
detailed investigation of nAMD disease. Thirteen genes that significantly affected the
disease were identified as common key items between two algorithms (yellow nodes). The
nodes related to AMD disease in Figure 1 appear in blue, but when identifying disease
modules in Figure 2, they are changed to yellow due to the plugin’s default settings.
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Figure 1. The proteins related to nAMD were identified using the NeDRex plugin. These nodes are
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Figure 2. nAMD-related disease modules identification by two algorithms: (A) Multi-Steiner Trees 
(MuST) algorithm; (B) DIseAse MOdule Detection (DIAMOnD) algorithm. The blue nodes 
linked to AMD displayed in Figure 1 will change to yellow upon detecting disease modules due to 
the default settings of the plugin. 

Figure 2. nAMD-related disease modules identification by two algorithms: (A) Multi-Steiner Trees
(MuST) algorithm; (B) DIseAse MOdule Detection (DIAMOnD) algorithm. The blue nodes linked to
AMD displayed in Figure 1 will change to yellow upon detecting disease modules due to the default
settings of the plugin.
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Figure 3. (A) The miRNA–gene regulatory network reconstruction identified six miRNAs and 14 
essential genes by considering two centrality criteria: degree and betweenness. (B) Using six miR-
NAs as input data and the miRNet database (https://www.mirnet.ca (accessed on 18 August 2023)), 

Figure 3. (A) The miRNA–gene regulatory network reconstruction identified six miRNAs and 14 essen-
tial genes by considering two centrality criteria: degree and betweenness. (B) Using six miRNAs as input
data and the miRNet database (https://www.mirnet.ca (accessed on 18 August 2023)), a regulatory
network of lncRNA-miRNA was reconstructed that identified four crucial lncRNAs. These four lncRNAs
were deemed indispensable based on the two centrality criteria mentioned earlier.
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2.2. Gene Regulatory Network Analysis

Six miRNAs (hsa-mir-124-3p, hsa-mir-335-5p, hsa-mir-661, hsa-mir-29b-3p, hsa-mir-
29c-3p, and hsa-mir-450a-1-3p) and fourteen essential genes were found when the miRNA-
gene regulatory network was constructed using the aforesaid thirty-one genes as input data.
Indeed, the 14 essential genes at this stage were the same genes that were related to miRNAs
in the presented gene regulatory network (Figure 3A). In the following steps, the findings of
the constructed lncRNA-miRNA interaction network indicated that four lncRNAs (NEAT1,
KCNQ1OT1, SNHG17, and XIST) interacted with four of the six identified miRNAs (hsa-
mir-124-3p, hsa-mir-335-5p, hsa-mir-29b-3p, and hsa-mir-29c-3p), and they appear to be
crucial in controlling these miRNAs’ function (Figure 3B).

2.3. Enrichment Analysis

Three different layers of nAMD-related data (genes, miRNAs, and metabolites) were
subjected to the enrichment process. The results of enrichment on 31 identified genes
showed that seven pathways involving Staphylococcus aureus infection (false discovery
rate (FDR) = 0.000152), protein digestion and absorption (FDR = 0.00031), ECM–receptor
interaction (FDR = 0.00427), amoebiasis (FDR = 0.00492), the AGE-RAGE signaling pathway
in diabetes complications (FDR = 0.00492), focal adhesion (FDR = 0.00492), and complement
and coagulation cascades (FDR = 0.0401) represent significant influences. According to the
miRNA enrichment findings, all six discovered miRNAs play a role in the first five pathways,
which are significant in terms of FDR. These pathways included terpenoid backbone biosyn-
thesis (FDR = 0.0022855), arachidonic acid metabolism (FDR = 0.0280283), the hippo signal-
ing pathway—multiple species (FDR = 0.0280283), base excision repair (FDR = 0.0311627),
and complement and coagulation cascades (FDR = 0.0311627). Applying two databases
(KEGG and SMPDB) and 115 extracted metabolites as input data, metabolite enrichment
analysis was carried out. Nine significant pathways were identified using the KEGG–
metabolite enrichment analysis in terms of FDR. These included aminoacyl–tRNA biosyn-
thesis (FDR = 7.02 × 10−12); glyoxylate and dicarboxylate metabolism (FDR = 0.000176);
arginine biosynthesis (FDR = 0.00562); alanine, aspartate, and glutamate metabolism
(FDR = 0.0204); sphingolipid metabolism (FDR = 0.027); glycine, serine, and threonine
metabolism (FDR = 0.0288); cysteine and methionine metabolism (FDR = 0.0288); valine,
leucine, and isoleucine biosynthesis (0.0354); and taurine and hypotaurine metabolism
(FDR = 0.0354). Furthermore, the SMPDB–metabolite enrichment analysis revealed two dis-
tinct pathways involving the urea cycle (FDR = 0.0308) and glycine and serine metabolism
(FDR = 0.0458). Schematic figures of the metabolite enrichment results are presented in
Figure 4.

The false discovery rate (FDR) index, along with the KEGG and SMPDB databases,
was utilized to identify significant pathways. The SMPDB database revealed two important
pathways: the urea cycle (FDR = 0.0308) and glycine and serine metabolism (FDR = 0.0458).
However, nine significant pathways were identified based on the KEGG database, includ-
ing aminoacyl–tRNA biosynthesis (FDR = 7.02 × 10−12); glyoxylate and dicarboxylate
metabolism (FDR = 0.000176); arginine biosynthesis (FDR = 0.00562); alanine, aspartate,
and glutamate metabolism (FDR = 0.0204); sphingolipid metabolism (FDR = 0.027); glycine,
serine, and threonine Metabolism (FDR = 0.0288); cysteine and methionine metabolism
(FDR = 0.0288); valine, leucine, and isoleucine biosynthesis (FDR = 0.0354); and taurine and
hypotaurine Metabolism (FDR = 0.0354).
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2.4. Metabolite Pathway Analysis

The integration of the metabolic pathway topology analysis with the enrichment anal-
ysis of metabolic pathways is also crucial. Two different sorts of results were produced,
depending on whether relative betweenness centrality (R-b C) or out-degree centrality (O-d
C) was applied in the topological analysis. Figure 5A shows the criteria that were consid-
ered for this analysis. Two criteria were used to examine and summarize the results. First,
we chose the top five cases in each of the two centralities (relative betweenness centrality
(R-b C) and out-degree centrality (O-d C)) based on their impact parameter values. Second,
an assortment of the results based on FDR was conducted, and three cases (phenylalanine,
tyrosine, and tryptophan biosynthesis; synthesis and degradation of ketone bodies; and
D-glutamine and D-glutamate metabolism) were removed since they had no significance
in the metabolic pathway analysis (red color). These analyses found four significant path-
ways, including taurine and hypotaurine metabolism (FDR = 0.03605); alanine, aspartate,
and glutamate metabolism (FDR = 0.021047); glycine, serine, and threonine metabolism
(FDR = 0.029711); and aminoacyl–tRNA biosynthesis (FDR = 8.02 × 10−12).

2.5. Joint Pathway Analysis

We conducted a joint pathway analysis to examine the connection between 115 distinct
AMD-related metabolites obtained from published articles along with 31 crucial genes in-
volved in these metabolic pathways. Three different sorts of findings were obtained depending
on the chosen topology measure (degree, betweenness, or closeness; Figure 5B). Two criteria
were used to examine and summarize the results. The first step involved choosing the top
five cases in each of the centralities based on their impact parameter scores. The results were
classified based on FDR in the following step, and three cases (synthesis and degradation
of ketone bodies, the citric acid cycle (TCA cycle), and glycolysis or gluconeogenesis) were
excluded because they were not significant in the joint pathway analysis. As a consequence,
the six items identified as critical metabolic related pathways included alanine, aspartate,
and glutamate metabolism (FDR = 0.0005232); glycine, serine, and threonine metabolism
(FDR = 0.000031504); arginine biosynthesis (FDR = 0.00083089); sphingolipid metabolism
(FDR = 0.0072172); cysteine and methionine metabolism (FDR = 0.000016837); and arginine
biosynthesis (FDR = 0.000831).

2.6. Metabolite–Gene–Disease Interaction Network

A broad perspective of putative functional connections among metabolites, associated
genes, and the target diseases was provided by the metabolite–gene–disease interaction
network. The outcomes additionally demonstrated a connection between some altered
metabolites in nAMD and other neurodegenerative disorders. For instance, it was found
that there was an association between schizophrenia and eight metabolites. These included
L-lactic acid, cortisol, cholesterol, (R)-3-hydroxybutyric acid, glycine, L-lysine, L-arginine,
and pyruvic acid. Additionally, a connection was found between Alzheimer’s disease (AD)
and four metabolites: glycine, L-lysine, L-arginine, and calcium (Figure 6A).
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metabolites (glycine, L-lysine, and L-arginine) were identified between AMD, Alzheimer’s dis-
ease, and schizophrenia. (B) Common SNPs between AMD and other neurodegenerative diseases,
including Parkinson’s, Alzheimer’s, schizophrenia, and multiple sclerosis, were identified.

2.7. Identification of Genes Related to nAMD–Single Nucleotide Polymorphisms (SNPs)

The two-centrality metrics (degree and betweenness) in each of the two drawn net-
works (the SNP–Gene–Disease network and the SNP–Gene–Metabolite–Disease network)
were used as input data in the mGWAS-Explorer database to identify 30 significant SNPs
associated with nAMD disease. The genes to which these SNPs connect were first identi-
fied and included in the third list of crucial genes in nAMD. The second phase involved
specifying shared SNPs between nAMD, Alzheimer’s disease (AD), multiple sclerosis
(MS), Parkinson’s disease (PD), and schizophrenia. In a comparison between the 30 critical
SNPs in nAMD with the total number of shared SNPs in nAMD and the four other neu-
rodegenerative disorders (15 SNPs), 9 SNPs were found to be essential for the centrality
parameters in nAMD disease and to be associated with a range of aforementioned neurode-
generative disorders. The main results were categorized into three axes: (i) the rs1061170
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(corresponding to the complement factor H (CFH) gene) was common in nAMD, AD, MS,
and schizophrenia; (ii) the rs699947 (corresponding to the VEGFA gene) was common in
nAMD, AD, MS, PD, and schizophrenia; and (iii) the rs429358 (corresponding to the APOE
gene) was common in nAMD, AD, MS, and PD (Figure 6B).

2.8. Results of the Developed Binary-GA Search Method for Maximization of the Model in the
56-Dimensional Space

The maximization progress using 300 iterations of the binary-GA is shown in Figure 7.
The binary-GA method generates a chromosome (an array with a length of 55), mimicking
the input sequence of metabolites. Each element in the array is represented as either one
or zero, indicating its effectiveness in influencing the output merit of the metabolic route.
A value of one denotes a highly impactful metabolite, while a value of zero implies a
metabolite with a lesser influence on the overall output. Through rigorous application of
the binary-GA optimization technique, we successfully identified the 25 most valuable
metabolites within the metabolic pathway. These metabolites exhibited a significant effect
on the output merit, contributing to the overall functionality and regulation of the biological
process under investigation. The selected metabolites are listed in Table 1.
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Table 1. Metabolites derived via the fuzzy logic model, deep learning, and the genetic algorithm.

L-Leucine Inosine L-Glutamic Acid L-Aspartate

Zinc (II) ion SM(d18:1/18:0) L-Alanine L-Cystine

cis-Aconitic acid Dopaquinone L-Serine L-Lysine

L-Aspartic acid L-Histidine Betaine Adenosine

Glutathione Cytidine L-Arginine L-Valine

Urea
Glycerol L-Glutamine Glycine

Taurine
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2.9. Summary of All Results

To acquire a clear understanding of the nAMD condition, all the results were pooled in
four tables. Table 2 lists three significant gene lists, six miRNAs, four lncRNAs, and seven
metabolites that were shared between the MMIN and MGDIN networks via degree and
betweenness centralities as well as twenty-five metabolites based on the fuzzy logic model,
deep learning, and the genetic algorithm. Table 3 lists the common metabolites between
AMD, schizophrenia, and AD; 30 AMD-SNPs; and common SNPs between AMD and AD,
MS, PD, and schizophrenia. Table 4 summarizes the findings of the pathway enrichment
analysis at various levels (including 31 essential genes, six miRNAs, 115 metabolites),
the pathway analysis, and the joint pathway analysis. The results that were commonly
observed among the metabolic pathway enrichment analysis, pathway analysis, and joint
pathway analysis are presented in Table 5.

Table 2. AMD-related results showing three significant gene lists, six miRNAs, four lncRNAs, and
seven metabolites that were shared between the metabolite–metabolite interaction network (MMIN)
and metabolite–gene–disease interaction network (MGDIN) via degree and betweenness centralities
as well as 25 metabolites based on the fuzzy logic model, deep learning, and the genetic algorithm.

AMD-Related Results

No.

Gene Name

miRNAs lncRNAs

Metabolites

Disease
Module

Gene
Regulatory
Network

AMD-SNP
Data

Shared Metabolites
between the MMIN

and MGDIN Networks
via Degree and Be-

tweenness centralities

Fuzzy Logic Model +
Deep Learning +

Genetic Algorithm

1 SLC16A8 PDGFA CFH hsa-mir-450a-1-
3p NEAT1 Pyruvic acid L-Leucine L-Glutamic acid

2 RPGR COL1A1 VEGFA hsa-mir-661 SNHG17 Glycine Zinc (II) ion L-Alanine

3 ERCC6 COL1A2 APOE hsa-mir-335-5p KCNQ1QT1 Citric acid cis-Aconitic acid L-Serine

4 NMNAT1 COL4A1 TOMM40 hsa-mir-124-3p XIST L-Lysine L-Aspartic acid Betaine

5 VEGFA COL14A1 PVRL2 hsa-mir-29b-3p L-Alanine Glutathione L-Arginine

6 TNFRSF10A COL18A1 ABCA1 hsa-mir-29c-3p L-Arginine Urea L-Glutamine

7 SQSTM1 UBC L-Methionine Taurine L-Aspartate

8 C9 C1S Inosine L-Cystine

9 APOE P3H3 SM(d18:1/18:0) L-Lysine

10 TLR4 FN1 Dopaquinone Adenosine

11 ABCA4 MUC1 L-Histidine L-Valine

12 TIMP3 BMP1 Cytidine Glycine

13 C3 SERPING1 Glycerol

14 CFH SPDYE1

15 C2

16 CFI

17 CFB

18 C1QTNF5

Table 3. Summary of the common metabolites between AMD, schizophrenia, and AD as well as the
30 AMD-SNPs and the shared SNPs between AMD and AD, MS, PD, and schizophrenia.

AMD-Related Results

No

Common Metabolites

AMD-SNPs

Common SNPs

AMD and
Schizophrenia

AMD and
Alzheimer’s

Disease

AMD and
Multiple
Sclerosis

AMD and
Schizophrenia

AMD and
Parkinson’s

Disease

AMD and
Alzheimer’s

Disease

1 L-Lactic acid Glycine rs17576 rs114254831 rs3025039 rs699947 rs3025039 rs800292

2 Cortisol L-Lysine rs1061170 rs116503776 rs699947 rs2230205 rs429358 rs9332739

3 Cholesterol L-Arginine rs699947 rs2740488 rs11755724 rs1061170 rs699947 rs1061170
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Table 3. Cont.

AMD-Related Results

No

Common Metabolites

AMD-SNPs

Common SNPs

AMD and
Schizophrenia

AMD and
Alzheimer’s

Disease

AMD and
Multiple
Sclerosis

AMD and
Schizophrenia

AMD and
Parkinson’s

Disease

AMD and
Alzheimer’s

Disease

4 (R)-3-Hydroxybutyric acid Calcium rs429358 rs12678919 rs7412 rs4151667

5 Glycine rs2043085 rs7679 rs2230199 rs2075650

6 L-Lysine rs3764261 rs3918242 rs1061170 rs2740488

7 L-Arginine rs4073 rs800292 rs429358 rs7412

8 Pyruvic acid rs243865 rs3025039 rs699947

9 rs964184 rs7412 rs2736911

10 rs2075650 rs2070895 rs429358

11 rs174547 rs1800775 rs6857

12 rs2071559 rs17577

13 rs1800961 rs1065489

14 rs6857 rs10468017

15 rs1837253 rs17231506

Table 4. Findings of the pathway enrichment analysis, including information on 31 essential genes,
six miRNAs, and 115 metabolites. The table also provides details on the pathway analysis and joint
pathway analysis.

Pathway Enrichment Analysis

NO Genes miRNAs

Metabolites

Enrichment Analysis Metabolic Pathway
Analysis

Joint Pathway
Analysis

KEGG SMPDB

1
Staphylococcus
aureus infection
(FDR = 0.000152)

Terpenoid backbone
biosynthesis

(FDR = 0.0022855)

Aminoacyl–tRNA
biosynthesis

(FDR = 7.02 × 10−12)

Urea cycle
(FDR = 0.0308)

Aminoacyl–tRNA
biosynthesis

(FDR = 8.02 × 10−12)

Alanine, aspartate,
and gluta-

mate metabolism
(FDR = 0.0005232)

2
Protein digestion
and absorption
(FDR = 0.00031)

Arachidonic acid
metabolism

(FDR = 0.0280283)

Glyoxylate and
dicarboxylate
metabolism

(FDR = 0.000176)

Glycine and
serine metabolism

(FDR = 0.0458)

Alanine, aspartate,
and gluta-

mate metabolism
(FDR = 0.021047)

Glycine, serine, and
threonine metabolism
(FDR = 0.000031504)

3
ECM–receptor

interaction
(FDR = 0.00427)

Hippo signaling
pathway—

multiple species
(FDR = 0.0280283)

Arginine biosynthesis
(FDR = 0.00562)

Glycine, Serine, and
Threonine metabolism

(FDR = 0.029711)

Arginine biosynthesis
(FDR = 0.00083089)

4 Amoebiasis
(FDR = 0.00492)

Base excision repair
(FDR = 0.0311627)

Alanine, aspartate, and
glutamate metabolism

(FDR = 0.0204)

Taurine and
Hypotaurine
Metabolism

(FDR = 0.03605)

Sphingolipid
metabolism

(FDR = 0.0072172)

5

AGE-RAGE signaling
pathway in

diabetes complications
(FDR = 0.00492)

Complement and
coagulation cascades

(FDR = 0.0311627)

Sphingolipid
metabolism

(FDR = 0.027)

Cysteine and
methionine
metabolism

(FDR = 0.000016837)

6 Focal adhesion
(FDR = 0.00492)

Glycine, serine, and
threonine metabolism

(FDR = 0.0288)

Arginine biosynthesis
(FDR = 0.000831)

7
Complement and

coagulation cascades
(FDR = 0.0401)

Cysteine and
methionine metabolism

(FDR = 0.0288)

8
Valine, leucine, and

isoleucine biosynthesis
(FDR = 0.0354)

9
Taurine and

hypotaurine metabolism
(FDR = 0.0354)
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Table 5. Findings that were frequently seen in the metabolic pathway enrichment analysis, pathway
analysis, and joint pathway analysis. The numbers shown in the final output section represent the
frequency of pathway presence (+) in the outcomes of various analyses.

Pathways

Enrichment Analysis Pathway Analysis Based
on KEGG Joint Pathway Analysis

Final Output
KEGG SMPDB

Relative Be-
tweenness
Centrality

(R-b C)

Out-Degree
Centrality

(O-d C)
Degree Betweenness Closeness

Aminoacyl–tRNA Biosynthesis + -- -- + -- -- -- 2

Glyoxylate and dicarboxylate metabolism + -- -- -- -- -- -- 1

Arginine biosynthesis + -- -- -- + -- + 3

Alanine, aspartate, and
glutamate metabolism + -- + + + + -- 5

Sphingolipid metabolism + -- -- -- + -- + 3

Glycine, serine, and
threonine metabolism + -- + -- + + -- 4

Cysteine and methionine metabolism + -- -- -- -- + -- 2

Valine, leucine, and
isoleucine biosynthesis + -- -- -- -- -- -- 1

Taurine and hypotaurine metabolism + -- + + -- -- -- 3

Urea cycle -- + -- -- -- -- -- 1

Glycine and serine metabolism + + + -- + + -- 5

3. Discussion

The diagnostic and therapeutic molecular networks constructed for the nAMD patho-
genesis consisted of 30 proteins. These were created by merging 18 genes from the disease
modules, 14 genes from the gene regulatory network, and 6 genes from the AMD-SNP data,
which were validated. The 30 identified genes were in three general families, including
angiogenesis, inflammation, and metabolism. A detailed examination of the angiogenesis
processes revealed six different subfamilies. These included the angiogenesis itself (VEGFA,
PDGFA, and MUC1), ECM proteins (Col1A1, Col1A2, Col4A1, Col14A1, Col18A1, TIMP3,
and P3H3), cytoskeleton remodeling (FN1, C1QTNF5, and PVRL2), protein-mediated
transport (ABCA4), proteasome degradation (UBC), cell viability (TNFRSF10A), and DNA
repair (ERCC6). The subfamilies related to inflammation included the complement system
(C1S, C2, C3, C9, CFB, CFI, and CFH), proteins involved in toll-like receptors (TLR4), the
autophagy process (SQSTM1), and protein involved in PINK1-PRKN mediated mitophagy
(TOM40). Finally, the metabolism subfamily was classified into three subfamilies, which
included glucose metabolism (SLC16A8), lipoprotein metabolism (APOE), and NAD+

metabolism (NMNAT1). Recent studies have also shown that the complement system plays
a crucial role in AMD pathogenesis through regulation of ECM stability, inflammation,
energy metabolism, lipid accumulation, and oxidative stress (OxS). Understanding the
ECM’s structural components is important before considering how the complement system
affects their function.

3.1. ECM Proteins, Complement System, and Pathogenesis of nAMD

ECM molecules play a crucial role in modulating cellular functions and various pro-
cesses, including angiogenesis. Collagen, laminin, and fibronectin are examples of ECM
molecules that exhibit angioregulatory characteristics [25]. Our findings also demon-
strated that functional members exist among each of the four key classifications, including
Col1A1 and Col1A2 belonging to the fibril-forming collagens, Col4A1 belonging to the
basement membrane collagens and network-forming collagens, Col14A1 belonging to
fibril-associated collagens with interrupted triple helices, and Col18A1 as a candidate from
multiplexin subgroups [26,27]. COL1A1 expression affects cell migration, survival, and
recurrence in diabetic retinopathy (DR) and malignant astrocytoma patients. Addition-
ally, the decreased level of COL1A1 significantly limits the expression of many proteins
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linked to cell invasion, including STAT3, matrix metalloproteinase 2 (MMP2), MMP9, and
NF-κB [28].

A 150 bp DNA element in the promoter region of the COL1A2 gene is a TGFβ-
responsive element. TGFβ promotes the expression of PDGFA, fibronectin (FN1), and
collagens (COL1A1 and COL4A1), with a prominent role in angiogenesis [29–31]. Also,
circular COL1A2 (circCOL1A2) controls the miR-29b/VEGF axis throughout the patho-
logical progression of DR. Since the miR-29b/VEGF axis is not specific to DR, targeting
circCOL1A2 may be a possible therapeutic for DR and other retinal diseases with a neo-
vascular component [32]. COL4A1 manages the inhibition of cell death; the activation of
focal adhesion kinase; the cell cycle; tumor angiogenesis; the PI3K/MAPK, PI3K/AKT,
and PRL/PAK1 signaling pathways, and the discoidin domain receptor (DDR) axes. Colla-
gen 4 increases the production of CCL7 protein via the PI3K/MAPK pathway, which in
turn triggers epithelial mesenchymal transition (EMT) and metastasis. MMP2/9 secretion,
migration, invasion, and colonization of tumor cells are stimulated by COL4A1 through
activation of the PI3K/AKT signaling pathway and DDRs. Additionally, the network-
forming collagens, such as COL4A1, may be involved in the control of the IGFR signaling
pathways, apoptosis, and autophagy. This may be due to the interactions between DDRs
and IGFR and the function of DDRs in regulating Bcl-2, Bcl-xl, Survivin, Bax, and LC3II
expression. MMP1-3 secretion in breast cancer cells is stimulated by the activation of the
PRL/PAK1 signaling pathway via COL4A1.

The Collagen type XIV α 1 chain (COL14A1) reveals its key roles in various pro-
cesses such as ECM and collagen fibril organization. Moreover, collagen binding results
showed that high expression of COL14A1 is associated with poor overall survival rates
for breast cancer patients [33]. Collagen XVIII (COL18A1) is another significant collagen
with essential roles in the maintenance of retinal structure and neural tube closure [34,35].
Prolyl 3-hydroxylase genes (P3H1, P3H2, and P3H3), which are crucial for proper post-
translational modifications of the collagen chains and creation and maturation of their final
quaternary structures, are also significant components. These genes induce type IV collagen
hydroxylation and inhibit its control of platelet aggregation [36]. In addition, the epigenetic
inhibition of P3H2 and P3H3 may play a key role in the progression and metastasis of
breast cancer [37]. By reducing the expression of genes in this family in some cancers, the
possibility of greater interaction of collagen type IV with platelets occurs, protecting cancer
cells from shear stress and natural killer cells, thus helping them escape immune system
detection [38,39].

Early stages of nAMD are associated with changes in Bruch’s membrane (BrM) and
choriocapillaris ECM composition, which can be followed by BlamD, BlinD, and drusen
development. These changes most likely produce a situation in which the underlying
genetic risk is manifested. ECM protection against C3b deposition and inflammation is
an inevitable process [40]. To better understand C3b function, three stages of production,
deposition, and regulation of its activity should be considered. All three complement
activation pathways (lectin, classical, and alternative) converge in the formation of a
protein complex (the C3 convertase), which cleaves C3 into the anaphylatoxin C3a and
the central protein in the complement amplification loop (C3b). Multiple genetic and
molecular studies have shown that overactivation of the alternative complement system
plays a significant role in the pathogenesis of AMD [41]. Six of the identified complement
system genes related to AMD diagnostic and therapeutic panel (C2, C3, C9, CFB, CFI, and
CFH) belong to the alternative pathway, and one (C1s) belongs to the classical pathway.
Thus, inhibition of multiple complement activation pathways should be considered for an
effective treatment strategy for AMD.

Infectious endophthalmitis or sterile uveitis/endophthalmitis are two types of prob-
lems that are related to intravitreal anti-VEGF injections. These are caused by pathogens or
patient/delivery/medication-specific factors, respectively [42,43]. The antibody-triggered
classical complement pathway is initiated when circulating C1 complexes are recruited to
antibody-labeled pathogen surfaces [44]. C1q, C1r, and C1s are the three major units that



Pharmaceuticals 2023, 16, 1555 16 of 52

constitute the C1 complex. C1q comprises the antibody recognition unit and its associated
proteases C1r and C1s, which are activated to cleave other complement proteins that to-
gether form enzymes on the surface that catalyze the covalent deposition of C3b molecules
onto the bacterial surface [45]. One of the pathways obtained from the KEGG enrichment
analysis of the identified important genes was Staphylococcus aureus infection. It seems
that the importance of the classical complement pathway (along with the alternative path-
way) depends on the C1s-driven immune response to the Staphylococcus aureus infection
and the role of Staphylococcus aureus toxins in ocular damage and inflammation [46,47].

3.2. ECM Remodeling by Cytoskeleton-Related Proteins and Angioinflammatory Factors

ECM proteins like collagen can be assembled using fibronectin, a key component of
the newly deposited ECM, as a template. The hallmark of late-stage DR and nAMD is
neovascularization, which uses ECM production as a scaffold for the abnormal new vessel
architecture. The fibronectin matrix and collagen turnover are impacted by changes in MMP
activity that are crucial in the etiology of nAMD. PDGF and TGFβ contribute to proliferative
vitreoretinopathy (PVR), nAMD, and PDR and are known to promote the formation of the
fibronectin matrix [48]. The ECM’s main connective protein, fibronectin, is essential for cell
migration, adhesion, proliferation, and ERK activation [49,50]. Also, fibronectin associates
with collagen type IV [49]. The heparin-II domain of fibronectin binds VEGFA, and the
extra domain A of fibronectin promotes VEGFC expression and lymph angiogenesis via
the PI3K/AKT signaling pathway [50,51]. In both healthy and pathological situations,
fibronectin structure and function are inversely correlated. The fluctuations between the
ECM’s two conformations (relaxed and strained) ensure the process of maintaining proper
tissue homeostasis. When the ECM is relaxed, fibronectin is frequently seen in a compact
or extended form, but when the ECM is strained, fibronectin changes conformation to
accommodate the tensile forces generated by the cells. Three axes represent the outcome of
these conformational changes: (i) association of soluble substances such as VEGFA with
fibronectin; (ii) ECM rearrangements by making it easier for the matrix elements to bind;
and (iii) modification and activation of integrins [52].

Mechanical stress in RPE cells also increases gene expression in the axis of angiogenesis
(VEGF, ANG2, and HIF-1α(, inflammation (IL6, IL8, and TNF-α) and ECM (FN1, VIM,
and CDH2) and has a prominent role in promoting aberrant angiogenesis in nAMD [53].
The process of Tie2/integrin complex stabilization is mediated through fibronectin [54].
Fibronectin is essential for controlling the angiogenesis process and signaling pathways
mediated by VEGFR2 and the receptor for advanced glycation end products (RAGE). Under
physiological conditions, fibronectin binds VEGF to induce angiogenesis, recruitment of
c-Src to VEGFR2, and downstream activities. The glycosylated form of fibronectin, by
directly binding to RAGE, leads to greater interaction of c-Src with RAGE and prevents the
activation of the VEGF-VEGFR2 signaling pathway [55].

The role of tissue inhibitor of metalloproteinase 3 (TIMP3) in a variety of processes
such as angiogenesis, inflammation, ECM remodeling, and amyloid precursor protein
(APP) processing has been substantiated. TIMP3 mitigates angiogenesis by inhibiting
VEGF, modulates ADAM 10 and ADAM 17 activity in APP processing [56–59], fine-tunes
ADAM 17 activity in inflammation [60–62], and affects ECM remodeling by inhibiting
MMP2 and MMP9 [63,64]. Reduced transcription (via siRNA or the T allele of rs13278062)
or knockout of the tumor necrosis factor receptor superfamily 10A (TNFRSF10A) gene in
RPE cells leads to decreased cell viability and increased apoptosis through downregulation
of the PKCA pathway. Moreover, OxS and the Tnfrsf10 null mutation in mice upregulate
TNFRSF10A transcription and create age-dependent RPE abnormalities [65]. Recent studies
have also identified a crosstalk between VEGF and mucin 1 (Muc1). In addition, tumor
cells promote different signaling pathways that are involved in growth, survival, and
EMT by increasing Muc1 expression on their surface [66]. In hypoxic conditions, mucin 1
stimulates expression of several proangiogenic factors such as HIF-1α, VEGFA, PDGFB,
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and connective tissue growth factor (CTGF) [66,67]. In addition, by connecting to the MUC1
promoter, HIF-1α increases its expression [68].

The C1q tumor necrosis factor-related protein-5 (C1QTNF5) mutation (S163R) plays a
fundamental role in the formation of late-onset retinal degeneration [69]. C1QTNF5 belongs
to the C1q/TNF family, which is involved in immunity and inflammation, glucose and lipid
metabolism, and vascular maintenance [70,71]. Moreover, the LASSO regression model
suggests that C1QTNF5 may be a key biomarker in PDR [72]. Cytoskeleton-remodeling-
related proteins play important roles in controlling angiogenesis and vascular permeability.
In addition to cadherins, nectins constitute other adhesion molecules localizing to cell–cell
junctions [73]. Recent in vitro studies suggest that PVRL2 (CD112 or nectin-2) regulates
human EC migration and proliferation. In CD112-deficient mice, the blood vessel coverage
of the retina was significantly enhanced. A blockade of CD112 modulated EC migration
and significantly enhanced tube formation [74]. Thus, changes in ECM composition and
function are key modulators of the cellular microenvironment that impact various cellular
pathologies and diseases.

3.3. Aging and Pathogenesis of nAMD

Choroid becomes less flexible and thinner with age [75], diminishing the retinal blood
flow and nutrient/oxygen supply [76] and thus leading to nutrient and oxygen starvation
of the retina (ischemia) and placing the RPE cells under significant metabolic stress. To
counteract this ischemic stress, RPE cells drive choroidal neovascularization (CNV), a
characteristic of nAMD accounting for about 90% of cases of severe vision loss. VEGF and
VEGFRs play fundamental roles in the onset and progression of nAMD [77].

Clinical evidence reveals that the effectiveness of intravitreal injections of anti-VEGF
agents such as ranibizumab, bevacizumab, and aflibercept is constrained by competing
and compensating alternative angiogenic pathways that could act as escape routes [78,79].
Results from our earlier network analysis indicated that angiopoietin 2 (ANG2) could play
a significant role in an incomplete response to anti-VEGF [20,80]. By extending the data
examined here, the potential function of the PDGFA protein as the second pro-angiogenic
factor involved in anti-VEGF resistance was also predicted. According to an assessment
of the disease’s active clinical trials, research is often focused on nine broad categories.
An analysis of treatment strategies that focused on two or more angiogenesis-related axes
revealed that VEGFA in combination with ANG2 and PDGFA may be more desirable
targets for an effective treatment strategy [81].

To counteract the metabolic remodeling, RPE cells may also change their metabolism.
Targeting numerous angiogenic pathways has the potential to prevent revascularization,
but it also provides other strategies to prevent an incomplete response via altering the
cellular metabolism. The cells in the hypoxic and avascular area cooperate together with the
cells in the normoxic and nearby vascular region as part of this approach. The metabolism
of the cells in the hypoxic region shifts toward increased glycolysis and lactate generation.
Nevertheless, the cells near the blood vessels utilize the resulting lactate for oxidative
phosphorylation [82,83]. A process called metabolic symbiosis may also be important in
the anti-VEGF resistance in the retina [84]. Monocarboxylate (MC) transporters are one
way to transport lactate into the cell [85,86]. MCT3 (SLC16A8) is present only in the RPE
cells and the choroid plexus endothelium, and MCT4 (SLC16A3) is expressed in greater
amounts under hypoxic conditions [87,88]. By oxidizing lactate within the cell, LDHB
causes an increase in pyruvate, which enables PDH to inhibit proline hydroxylation. The
activity of prolyl hydroxylase leads to poly-ubiquitination and degradation of HIF-1α in
the proteasome. Thus, inhibition of prolyl hydroxylase by pyruvate increases the HIF-1α
protein stabilization and activation of the NF-κB transcription factor. HIF-1α and NF-
κB increase VEGFA and IL8 transcription, respectively [86]. Hence, one possible way to
improve the effectiveness of anti-VEGF drugs is to prevent lactate from entering the cells
through inhibition of MCT3 (SLC16A8) and MCT4 (SLC16A3).
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In addition to genes related to glucose metabolism, those involved in NAD+ metabolism
(NMNAT1) also are significant to the development of AMD disease. Over the past decade,
it has become clear that NAD+ impairment plays a significant role in almost all retinal
neurodegenerative disorders [89]. Genome sequencing of carriers with Leber congenital
amaurosis 9 (LCA9) has revealed approximately 10 mutations in the NMNAT1 gene [90].
The NMNAT1 gene encodes an important enzyme with a key role in nicotinamide ade-
nine dinucleotide (NAD) biosynthesis. Further research on LCA9 retinas has shown that
NMNAT1 is not only responsible for NAD+ biosynthesis but also is necessary for the de-
velopment, structure, and function of the retina [91,92]. The malfunction of NMNAT1 can
result in harm to the photoreceptors’ survival and vision function, enhance RPE damage
caused by ROS, and notably elevate the levels of molecules that trigger inflammation and
drusen formation [91,93,94]. Inhibiting the enzymatic activity of NMNAT1 could cause
damage to photoreceptors, the outer and inner nuclear layer, and the plexiform layer,
ultimately resulting in RPE harm [95,96]. Targeting NMNAT1 via specific shRNA in retinal
explants had three general consequences: (i) increased H3 and H4 acetylation levels in the
retina; (ii) increased expression of two pro-apoptotic genes (Noxa and Fas); and (iii) an
increased number of apoptotic retinal progenitor cells [92].

Three elements comprising radiation exposure, a high fatty acid ratio, and high oxygen
consumption increase the retina’s vulnerability to OxS [97]. OxS is a major contributor
to the aging process, CNV, progressive retinal degeneration such as AMD, immune cell
infiltration, and atrophy [98,99]. The excision repair cross-complementing 6 (ERCC6) gene
plays a vital role in the aging process, transcription-coupled nucleotide excision repair, and
the quick removal of RNA polymerase II-blocking lesions from the transcribed strand of
active genes. It also plays a significant role in complex formation at DNA repair sites and
in ocular degeneration [100,101]. AMD susceptibility is increased as a result of decreased
ERCC6 expression, its mutation, and synergistic interaction with CFH mutations [100–105].

3.4. AMD and Other Neurodegenerative Diseases

Drusen formation, immune system activation, and retinal inflammation are the three
criteria used to show how apolipoprotein metabolism, the complement system, and amyloid
beta (Aβ) interact to cause AMD. Drusen is formed between RPE and photoreceptors.
Subretinal drusenoid deposit (SDD) or reticular pseudodrusen (RPD) are between RPE
and Bruch’s membrane as basal linear deposits (BLinD) or soft drusen [106,107]. BLinD
is more involved in nAMD, while RPD is a major factor in disease progression toward
geographic atrophy [108,109]. Overall, the drusen contents are classified into five general
categories: lipids, apolipoproteins, complement factors, minerals, and other proteins.
Phospholipids, triglycerides, cholesterol, apolipoprotein E (APOE), CFH, and vitronectin
are common between BLinD and RPD [110]. RPE and Müller glial cells produce APOE,
a plasma lipid transport protein. APOE is secreted from the apical and basal surfaces of
RPE cells. Moreover, APOE is regarded as a transporter of cholesterol and lipids in the
development of drusen and plays a crucial function in lipid efflux and trafficking from BrM
to choriocapillaris [111,112]. The APOE disruption causes impairments in retinal function
by thickening the retina and altering the lamina’s elasticity [113].

Exposure of human RPE cells to serum C1q leads to the formation of APOE-, Aβ-, and
vitronectin-rich sub-RPE deposits and shows the intercommunication between complement
factors and APOE [114]. An interaction between Aβ and APOE has also been recognized.
RPE and retinal ganglion cells express Aβ and APP, which are important in the development
of ocular aging, AMD, and AD [115–118]. APOE isoforms can affect Aβ in a wide range
of biological processes and molecular functions such as oligomer stabilization [119,120],
binding and clearance [121,122], APP transcription, and Aβ secretion [123]. However, the
pattern of these isoforms and their impact on the retina and brain is distinct. Compared
to the typical allelic variation of APOE3 (Cys112 Arg158), APOE2 (Cys112 Cys158) and
APOE4 (Arg112 Arg158) represent an inverse effect in the risk of developing AMD and
AD [124–126]. The alleles APOE2 and APOE4 confer increased and decreased risks of AMD,
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respectively, except in the Chinese population. Conversely, APOE2 plays a protective role,
while APOE4 is the primary genetic risk factor for AD, a condition that shares characteristics
with AMD such as neuroinflammation and Aβ deposition [110,127,128]. Studies have also
demonstrated a role for Aβ in the development of angiogenesis and inflammation. The
six axes—C3b, the membrane attack complex, the presence of CFH in amyloid vesicles,
increased expression of CFB in RPE cells, inhibition of CFI, and production of inflammatory
cytokines by macrophages and microglia—are involved in the interaction of Aβ with
complement factors [116,129–133].

Exposure of RPE cells to Aβ leads to increased IL6, IL8, IL33, and VEGF expres-
sion through the AGE-RAGE and TLR4/MyD88/NF-κB signaling pathways; decreased
PEDF expression; increased formation of angiogenic tubules in EC; induction of NLRP3
inflammasome formation; cytokine production; and finally cytoskeleton remodeling of RPE
cells [134–138]. Thus, there seems to be a close relationship among complement factors,
lipoprotein metabolism, Aβ, TLRs, and angiogenic factors. Another classification that
is significant in AMD is the TLR4-UBC13-ABCR4 axis. Recognition of damage-related
molecular patterns (DAMPs) through pattern-recognition receptors (PRRs) such as TLR4
activates the innate immune system [139–143]. Expression of TLR4 both at the RNA and
protein level is observed in retinal EC, RPE cells, Müller glial cells, choroidal EC, and
photoreceptors [144–151]. DAMPs binding to TLR4 activate two distinct downstream sig-
naling pathways that are dependent on MyD88 and TRIF proteins. Both of these molecules
have similar effects on angiogenesis and inflammation by activating the NF-κB and MAPK
signaling pathways [152–154]. The MyD88-dependent signaling pathway leads to the for-
mation of the myddosome complex, which consists of MyD88, IRAK1, and IRAK4 proteins.
IRAK1/4 and UBC13 together play a significant role in the poly-ubiquitination of K63 in
TRAF6 [155,156]. The final consequence of this action is the activation of NF-κB related
genes [152]. Recent studies demonstrated that TLR4 signaling pathway generally plays a
role in four axes: photo-oxidative stress, cell viability, choroidal neovascularization, and
inflammatory pathways [154,157–159]. Moreover, genetic variants associated with TLR4
that affect AMD have been identified [160–162]. Mice with a defect in ATP binding cassette
subfamily A member 4 (Abca4)/retinol dehydrogenase 8 (Rdh8) genes show an AMD-like
phenotype and exhibit long-term sensitivity to light. Increased expression of TLR2/4 and
a wide range of pro-inflammatory cytokines are the consequences of exposing mice with
defects in Abca4/Rdh8 to light [163].

3.5. Autophagy and AMD

Another important mechanism involved in AMD is the autophagy (SQSTM1)–mitophagy
(TOM40) axis. Defects in lysosomal clearance (a lower rate of autophagy flux) along with
increased accumulation of waste substances play a prominent role in the development of
AMD [164–166]. Interaction between the ubiquitin proteasome system (UPS) and autophagy
play a major role in the removal of cellular waste materials [167]. The protein that acts as a
bridge between these two processes is SQSTM1 [168]. LC3 has binding sites for ubiquitin and
SQSTM1. Recognition of the ubiquitinated cargo by SQSTM1 and its further binding to LC3
leads to the initiation of autolysosomal degradation [169]. Mitochondrial dysfunction, mtDNA
damage, and increased ROS production lead to protein aggregation and inflammation in
AMD [170,171]. In order to prevent the increased production of ROS, the damaged mitochon-
dria must be removed through the mitophagy process. The PTEN-induced kinase 1 (PINK1),
Parkin RBR E3 ubiquitin protein ligase (PRKN), and optineurin (OPTN) proteins play key
roles in this process [172]. TOM40 is a translocase that is used to import nascent proteins
through the mitochondrial outer membrane and plays a key role in PINK1-PRKN mitophagy,
autophagy, aging, and mitochondria–endoplasmic reticulum contact sites [169,173–178]. Over-
expression of TOM40 in mitochondria leads to caspase-dependent cell death and plays a role in
the degeneration of the primarily eye nerve tissue. In recent studies, the role of this protein in
the formation of Parkinson’s and late-onset AD (LOAD) has been also demonstrated [179,180].
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3.6. Non-Coding RNAs and AMD

The miRNA–gene regulatory network analysis revealed six miRNAs, including hsa-
miR-661, hsa-miR-29c-3p, hsa-miR-29b-3p, hsa-miR-124-3p, hsa-miR-450a-1-3p, and hsa-
miR-335-5p, along with 14 significant genes involved in nAMD and other neovascular
retinopathies. We found miR-29b-3P and miR-29c-3P interacting with genes including
COL1A1, COL4A1, PDGFA, MUC1, and BMP1. The miR-29 family members could im-
pact some EC functions and neovascularization: miR-29b inhibits angiogenesis and cell
proliferation by targeting VEGF and PDGFB in retinal microvascular EC [181], while miR-
29c suppresses the migration and angiogenesis of human EC by targeting IGF-1 [182].
Consistent with previous studies, our findings also demonstrated that miR-29c targets
collagen gene expression in the retina. The expression of the miR-29 family was reported
to significantly decrease in the ECs of patients suffering from Fuchs endothelial corneal
dystrophy (FECD) [183]. Thus, overexpression of miR-29b and miR-29c resulted in a con-
siderable downregulation of several ECM genes such as COL1A1, COL4A1, and LAMC1 in
corneal EC. These studies suggested that the miR-29 family may affect RPE cells through
the regulation of ECM gene expression [183,184].

miR-661 manifests different functions in a cell-specific manner. The expression of
miR-661 is upregulated in various cancers (including non-small-cell lung cancer (NSCLC))
and promotes the proliferation, migration, and invasion processes in NSCLC cells [185].
A high expression level of miR-661 is observed in serum from both dry and wet AMD
patients. However, a significantly higher expression level of miR-661 (4.7×) was recorded
in patients with dry AMD compared to wet AMD [186]. Thus, miR-661 may function in the
development of AMD through pathological pathways other than angiogenesis. miR-124 is
the most abundant miRNA detected in the central nervous system. In the retina, miR-124 is
also highly expressed in photoreceptors and plays a role in both retinal homeostasis and
pathological conditions like AMD. An anti-inflammatory role for miR-124-3p in retinal
neurons was previously revealed. Accordingly, its dysregulation is documented with the
pathogenesis of inflammatory diseases, neurological disorders in the brain, and pathogene-
sis of AMD in the retina [187]. Chu-Tan et al. (2018) reported that miR-124 directly targets
a number of chemokines like C-C motif ligand 2 (CCL2 or MCP-1) that are upregulated in
nAMD [188]. Our studies showed that miR-124-3p could target a number of genes, includ-
ing COL1A1, COL4A1, and MUC1. As described above for miR-29b and miR-29c, miR-124
is similarly postulated to regulate ECM production by targeting COL1A1 and COL4A1.
Furthermore, miR-124 acts as a tumor suppressor miRNA by inhibiting multiple genes
involved in pathways related to different cancers and degenerative diseases including cell
proliferation, apoptosis, angiogenesis, migration, and invasion [189].

Another anti-angiogenic miRNA is miR-450a-1-3p. According to our findings, miR-
450a-1-3p targets several genes, including COL1A1, COL4A1, and UBC. Thus, miR-450a-1-
3p could control angiogenesis by repressing EC proliferation and migration in nAMD. The
last reported anti-angiogenic miRNA is miR-335-5p, which is similarly known as a tumor
suppressor that modulates cell proliferation and migration in various cancers [190,191].
Most gene targets of miR-335-5p emerged from miRNA–gene regulatory networks, in-
cluding BMP1, MUC1 [192], P3H3 [193], FN1 [194], SERPING1 [195], and C1S [196]. Thus,
miR-335 is thought to regulate ECM homeostasis and cell proliferation and migration by
modulating these genes. Since anti-angiogenic therapy is accepted as a viable therapeutic
approach for nAMD, taking advantage of anti-angiogenic miRNAs targeting multiple sig-
nificant genes may be promising in combination therapies to control angiogenesis pathways
in nAMD.

In parallel with the lncRNA-miRNA interaction network, we made a prediction
of four lncRNAs, including nuclear-enriched abundant transcript 1 (NEAT1), KCNQ1
opposite strand/antisense transcript 1 (KCNQ1OT1), small nucleolar RNA host gene
17 (SNHG17), and X-inactive specific transcript (XIST), with possible involvement in
nAMD and other neovascular retinopathies. Nuclear-enriched abundant transcript 1
(NEAT1) has been extensively studied in choroidal, retinal, and corneal neovascularization.
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NEAT1 is one of the long non-coding RNAs classified as ocular neovascular LncRNAs
and performs its regulatory function through epigenetic mechanisms including DNA
methylation, histone methylation, and histone acetylation [197]. miR-194-5p/DNMT3A
prevent NEAT1 promoter region methylation (promote NEAT1 expression) and increase
cell migration and invasion [198]. Moreover, NEAT1 expression is regulated by the EGFR-
STAT3 and NF-κB (p65) axis, and H3K27 trimethylation—via the binding of NEAT1 to
EZH2—activates the Wnt/β-catenin signaling [199]. NEAT1 regulates neovascularization
by sponging miR-377 and increasing expression of VEGFA, SIRT1, and BCL-XL through
a possible histone acetylation mechanism [200]. Microphthalmia-associated transcription
factor (MITF) is a key transcription factor in RPE cells. The NEAT1–splicing factor proline-
and glutamine-rich (SFPQ)–MITF axis plays a critical role in RPE cell proliferation [201].

Pyroptosis is a kind of programmed cell death that, in terms of appearance and process,
varies from apoptosis to autophagy, necroptosis, ferroptosis, and NETosis. Cytokines like IL-
1 and IL-18 must be released for pyroptosis. Several ocular illnesses, including AMD, glau-
coma, DR, dry eye disease, keratitis, uveitis, and cataract, are linked to pyroptosis [202–207].
Development of dry eye disease is significantly influenced by the miR-214-3p–caspase 1
axis and KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) [208]. Additionally,
miR-486a-3p inhibition and NLRP3 upregulation are responsible for KCNQ1OT1-induced
pyroptosis [209]. Furthermore, KCNQ1OT1 may enhance EMT and angiogenesis via over-
expression of RAB11A [210]. Small nucleolar RNA host gene 17 (SNHG17) is another
essential lncRNA that plays a crucial part in angiogenesis. SNHG17, a new member of
the SNHG family, is significantly expressed in a variety of malignancies and may have
carcinogenic properties. Several studies have shown the connection between SNHG17 and
the growth, invasion, migration, apoptosis, and drug resistance of tumor cells. Clinical
research has linked high SNHG17 expression to a poor prognosis [211]. Colorectal adeno-
carcinoma cell proliferation and migration are facilitated by SNHG17 through inhibition of
miR-23a-3p, which modifies CXCL12-mediated angiogenesis [212]. Hence, SNHG17 acts in
angiogenesis (and possibly in nAMD) and deserves further investigation.

The most well-known lncRNA to date is X-inactive specific transcript (XIST) [213]. It
was discovered that when high glucose concentration stressed ARPE-19 cells, XIST was
downregulated, and the cells showed enhanced apoptosis and reduced migration [214].
By reducing apoptosis and regaining migratory capacity, XIST overexpression shielded
ARPE-19 cells from the stress brought on by high glucose levels. In those cells, XIST bound
to and inhibited miR-21-5p, indicating that it may serve as a sponge for miRNA-21-5p.
These interactions may present the hypothesis that female sex is a potential risk factor for
AMD [215]. XIST lncRNA is also essential for angiogenesis. Expression of VEGF signaling
in human brain microvascular EC under hypoxic conditions was dependent on XIST, and
XIST also plays a critical role in hypoxia-induced angiogenesis via the miR-485-3p/SOX7
axis [216]. Moreover, a mechanistic study showed that by modulating the miR-92a/Itg5
(integrin α5) or KLF4 (Kruppel-like transcription factor 4) axis, the lncRNA XIST may
control angiogenesis and reduce cerebral vascular damage after cerebral ischemic stroke,
respectively [217].

3.7. Metabolic Activity in nAMD and Neurodegeneration

Investigation of the metabolic profiles in an AMD–Alzheimer’s–schizophrenia axis
demonstrated that there were three pathways in common: L-glycine, L-arginine, and
L-lysine. If L-arginine is metabolized, various products such as nitric oxide (NO) and L-
citrulline (via three different isoforms of NO synthase (eNOS/nNOS/iNOS)), agmatine (via
arginine decarboxylase), and L-ornithine and urea (via arginase) are produced [218]. Nitric
oxide has an indispensable role in a wide range of processes such as synaptic plasticity,
neurodevelopment, cerebral blood flow, release of mediators (such as glycine and taurine),
neurotoxicity, inflammatory functions, and neurodegeneration [219–223]. Increased NO
and NOS expression and decreased arginase activity are noted in people with schizophre-
nia [224–227]. In addition, agmatine is considered as a potential schizophrenia-related
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biomarker [228]. L-arginine and L-lysine compete for connection to the cationic amino acid
transporter (CAT). Therefore, L-lysine can be considered a NO synthesis inhibitor [229,230].
Recent studies revealed that betaine is a metabolite that is decreased in the plasma sample of
patients with a first episode of schizophrenia and the second sample set. As a consequence,
betaine (tri-methyl glycine) could also be considered a biomarker for schizophrenia [231].
The expression of eNOS and nNOS (including as a result NO production) are significantly
downregulated in the eyes of patients with AMD [232]. Additionally, iNOS may promote
(and downregulation of the iNOS/NO/VEGF signaling pathway may reduce) CNV forma-
tion [233,234]. Peroxynitrite (ONOO−), which is produced via the interaction of NO and
ROS, also compromises vascular endothelial function [235].

L-lysine plays two potential roles in AMD pathophysiology. First, it works with
methionine to create carnitine. Second, it serves as a substrate for mitochondrial electron
transport flavoproteins. As a critical characteristic of nAMD, the altered carnitine shuttle
and retinal autofluorescence of mitochondrial flavoproteins are found in metabolomics
investigations [236,237]. These results demonstrate that three flavoprotein substrates for
mitochondrial electron transfer—lysine, proline, and valeryl carnitine—are elevated in
patient blood [238]. When triggered by blue light under stress, flavoproteins connect to
mitochondrial enzymes in the electron transport chain, oxidize, and emit a green autofluo-
rescence [239,240]. Flavoprotein fluorescence (FPF) can be utilized non-invasively as an
indicator of mitochondrial oxidative stress in the retina [241]. Significant FPF elevation is
detected in nAMD patients [242]. Discovery of FPF led to a quantifying technique for FPF
emission from a patient’s retina, developing imaging tests based on metabolic indicator for
predicting disease progression in the retina [243–246].

The overall angio-regulatory role of glycine has been examined in multiple studies on
three contradictory axes. (i) Glycine is a powerful anti-angiogenic nutrient because it activates
a glycine-gated chloride channel. By hyperpolarizing the cell membrane, it prevents Ca(2+)
inflow and reduces VEGF-mediated signaling [247]. (ii) Glycine stimulates angiogenesis by
activating the glycine transporter 1 (GlyT1)–glycine–mTOR–voltage-dependent anion channel
1 (VDAC1) axis [248]. (iii) Glycine affects vascular development in a dose-dependent manner
through modulation of VEGF and NOS gene expression. Glycine acts as an anti-angiogenic
agent at high concentrations, with a pro-angiogenic effect at low doses [249]. Additionally, a
study in a diabetic rat model showed that glycine supplementation reduces retinal neuronal
damage [250]. The presence of glycine [251], L-lysine [238,251–253], and L-arginine [254] has
also been reported in numerous investigations as changed metabolites in AMD.

The L-arginine/NO pathway and related metabolites play a fundamental role in the
formation of vascular dementia and AD. Several processes related to neurodegeneration
are affected by a lack of NO. These involve reducing synaptic plasticity, brain atrophy and
ischemia, activating microglia, severity of dementia, amyloid peptide formation and accu-
mulation, evoking neuroinflammation, and promoting endothelial dysfunction [255,256].
Methylation of L-arginine through class I or II protein arginine methyltransferase leads
to the production of asymmetric or symmetric dimethylarginine (ADMA or SDMA), re-
spectively. ADMA ultimately leads to the endogenous synthesis of L-arginine. In people
suffering from AD, SDMA and DMA are increased, whereas ADMA, Arg/ADMA, L-
arginine, and L-citrulline are decreased [256–258].

Glycine also has neuroprotective effects through attenuation of D-galactose (D-gal)-
induced oxidative stress. D-gal is an artificial senescence inducer that is used to model brain
aging in animals [259]. Moreover, glycine depletion facilitates synaptic dysfunction, apop-
totic neurodegeneration, memory impairment, and neuro-inflammatory responses [260].
Oxidative stress activates the c-Jun N-terminal kinase (JNK) signaling pathway and medi-
ates neuroapoptosis [261]. Glycine exhibits its neuroprotective effect by inactivating the
JNK signaling pathway [260]. Additionally, systemic or central nervous system investi-
gation of energy metabolism in AD revealed lower concentrations of glycine in plasma
and lower concentrations of lysine in plasma and cerebrospinal fluid. Thus, changes in
metabolic activities may provide novel indications of pathological changes.
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4. Materials and Methods
4.1. First Data Sources

The Network-based Drug Repurposing and Exploration (NeDRex) platform (https:
//nedrex.net/ (accessed on 11 February 2019 related to DisGenNET and 6 March 2022
related to OMIM)) was used to identify genes involved in the disease modules for nAMD.
This process was undertaken using two algorithms: Multi-Steiner Trees (MuST) and DIs-
eAse MOdule Detection (DIAMOnD). Based on merged results from these two algorithms,
the first list of genes involved in nAMD pathogenesis were identified (gene list 1 = 230
genes) (Supplementary Table S1) [21]. The second step for target identification and deter-
mination of the genes involved in nAMD disease entangled examining related studies and
the valid databases such as DisGenNET (https://www.disgenet.org/ (accessed on 4 May
2020)) [262], STRING (https://string-db.org/ (accessed on 17 October 2020)) [263], Disnor
(https://disnor.uniroma2.it/ (accessed on 4 January 2018)) [264], the Therapeutic Target
Database (TTD) (http://bidd.group/group/cjttd/ (accessed on 28 October 2021)) [265],
KEGG disease (accessed on 1 August 2018)) [266,267], and the comparative toxicoge-
nomics database (CTD) (http://ctdbase.org/ (accessed on 17 October 2020)) [268] (gene list
2 = 7061 genes) (Supplementary Table S2).

In the third step, various studies were considered, such as those on signaling path-
ways, protein–protein interaction networks, text-mining-related data, human gene–disease
association networks, and microarray data. Several keywords consisting of 14 general
headings were used in the process, such as “angiogenesis signaling pathways”, “vessel
cooption-related factors”, “vascular mimicry-related factors”, “angiogenesis-related protein-
protein interaction networks”, “angiogenesis-related inflammatory factors”, “endothelial
cell metabolism”, “endoplasmic reticulum stress”, “angiogenesis-related immune check-
points”, “autophagy signaling pathways”, “cytoskeleton remodeling factors”, “wound re-
sponse”, “neurogenesis”, “aging-related factors”, “vision-related genes”, “vitamin D-related
signaling pathways”, “G protein coupled receptor signaling pathways”, and “prostaglandin
signaling pathways”. We then analyzed the Kyoto Encyclopedia of Genes and Genomes
(KEGG) (https://www.genome.jp/kegg/ (accessed on 1 January 2021)) and WikiPathways
(https://www.wikipathways.org/index.php/WikiPathways (accessed on 19 November 2020))
databases [269,270] to identify genes involved in 89 signaling pathways directly or indirectly
related to anti-VEGF resistance (Figure 8). The results were combined to create three inde-
pendent lists linked to disease modules of nAMD (gene list 1 = 230 genes), the AMD-related
protein–protein interaction network (AMD-PPIN) (gene list 2 = 7061 genes), and the anti-
VEGF-resistance-related network (AV-DRN) (gene list 3 = 4340 genes) (Supplementary Table
S3). The schematic diagram of the process is shown in Figure 8A–D.
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process of identifying pathogenic modules associated with AMD disease involves several steps.
Through the combination of the results from two algorithms (MuST and DIAMOnD), a collection of
genes associated with the AMD disease modules was identified (gene list 1 = 230 genes). (C) The
process and databases utilized to identify the proteins associated with AMD disease were designed
and employed to construct the AMD-related protein–protein interaction network (gene list 2 =
7061 genes). (D) The third set of genes (4340 genes) are involved in developing resistance to anti-
VEGF drugs. They were identified by analyzing 89 signaling pathways in the KEGG database and
reviewing articles.

4.2. Network Construction

To identify nAMD disease modules, we first used the NeDRex plugin (version 1.0.0) im-
plemented in Cytoscape software (version 3.7.2). In the second step, disease modules were
identified using two different algorithms: Multi-Steiner Trees (MuST) and Disease Module
Detection (DIAMOnD). Reconstruction of comprehensive nAMD and anti-VEGF-resistance-
related networks for the Homo sapiens organism was conducted with the GeneMANIA
plugin (version 3.5.1) [271] implemented in Cytoscape software (version 3.7.2).

4.3. Topological Network Analysis

The CentiScaPe plugin (version 2.2) [272] was used to determine nodes with a high
centrality index in both the nAMD (gene list 2) and anti-VEGF-resistance-related (gene
list 3) networks individually. Several types of centralities were considered, such as degree,
betweenness, centroid value, closeness, bridging, eccentricity, and eigenvector central-
ity [20] (Supplementary Tables S4 and S5). Nodes with a high centrality index are often
referred to as hubs and play crucial roles in networks. According to the results of the two
aforementioned networks, we integrated the first 20 genes with the highest scores from
each centrality. Following processing of 4340 and 7061 genes, the two gene lists contain-
ing 39 and 52 genes were created, respectively (Supplementary Tables S6 and S7). Three
criteria were considered when creating the final gene list. These included: (i) The genes
associated with the NeDRex platform (230 genes), hub genes determined by analyzing
the protein–protein interaction networks involved in nAMD disease (52 genes), and the
signaling pathways involved in resistance (39 genes) were integrated together to create a
comprehensive gene list (313 genes) (Supplementary Table S8). (ii) As part of the centrality
analysis, 12 parameters (degree, betweenness, centroid value, closeness, stress, bridging,
radiality, eccentricity, eigenvector centrality, clustering coefficient, topological coefficient,
and neighborhood connectivity) were considered, and the top five genes from each cen-
trality were chosen (Supplementary Table S9). (iii) The identified genes were integrated
to yield a final gene list that contained 31 essential genes (Supplementary Table S10). Our
remaining efforts focused on these genes. A schematic diagram of the procedure carried
out is shown in Figure 9.
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Figure 9. The schematic presentations show the sequential steps taken to construct the network and
its topological analysis. (A) Data collection and topological network analysis were used to identify
key proteins related to AMD or (B) anti-VEGF drug resistance. (C) The final gene list consisting
of 313 genes was created by integrating data from the NeDRex platform, an AMD-related protein–
protein interaction network, and information on drug resistance related to anti-VEGF treatment.
(D) To identify the significant genes from the 313 identified genes, a topological network analysis
was carried out again while taking into account 12 centrality parameters. The top 5 genes in each
centrality were then chosen and combined to create a list of 31 genes, which is referred to as list
number 7.

4.4. Gene Regulatory Network Construction

Considering 31 genes as the input data, NetworkAnalyst (https://www.networkanalyst.
ca/ (accessed on 15 November 2016)) [273] and miRTarBase v8.0 were applied to create the
miRNA–gene regulatory networks [274]. Fourteen genes and six critical microRNAs were found
when two centrality criteria (degree and betweenness) were considered. The lncRNA-miRNA
interaction network was then created using the miRNet database (https://www.mirnet.ca
(accessed on 18 December 2019)) and six miRNAs as the input data [275]. At this point, four
indispensable lncRNAs were identified while considering the two aforementioned factors. A
schematic diagram of the procedure is represented in Figure 10A.

https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
https://www.mirnet.ca


Pharmaceuticals 2023, 16, 1555 28 of 52

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 32 of 57 
 

 

carried out again while taking into account 12 centrality parameters. The top 5 genes in each cen-
trality were then chosen and combined to create a list of 31 genes, which is referred to as list number 
7. 

4.4. Gene Regulatory Network Construction 
Considering 31 genes as the input data, NetworkAnalyst (https://www.networkana-

lyst.ca/ (accessed on 15 November 2016)) [273] and miRTarBase v8.0 were applied to create 
the miRNA–gene regulatory networks [274]. Fourteen genes and six critical microRNAs 
were found when two centrality criteria (degree and betweenness) were considered. The 
lncRNA-miRNA interaction network was then created using the miRNet database 
(https://www.mirnet.ca (accessed on 18 December 2019)) and six miRNAs as the input 
data [275]. At this point, four indispensable lncRNAs were identified while considering 
the two aforementioned factors. A schematic diagram of the procedure is represented in 
Figure 10A. 

 
(A) 

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 33 of 57 
 

 

 
(B) 

Figure 10. (A) A schematic presentation of the sequential steps taken and tools used to construct the 
gene regulatory network and its topological analysis. By considering the two parameters of central-
ity (degree and betweenness), 6 key miRNAs were identified through the gene–miRNA network 
analysis. In the following, 4 lncRNAs that were able to target all the miRNAs were also obtained 
through analyzing the lncRNA-miRNA network. (B) The tools used to collect nAMD-related data 
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polymorphisms (SNPs) [101,280–293] relevant to nAMD disease. As a result, 317 SNPs 
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tive in the development of nAMD were identified. Pathway and joint pathway analyses 
were used to study the function of these metabolites. The metabolite–gene–disease inter-
action network was further reconstructed to identify 10 important metabolites via central-
ity parameters (degree and betweenness) and the potential relationship of the nAMD-re-
lated metabolic profile with other neurodegenerative disorders. The MetaboAnalyst 5.0 
database (https://www.metaboanalyst.ca/ (accessed on 1 December 2018)) was used for all 
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Figure 10. (A) A schematic presentation of the sequential steps taken and tools used to construct the
gene regulatory network and its topological analysis. By considering the two parameters of centrality
(degree and betweenness), 6 key miRNAs were identified through the gene–miRNA network analysis.
In the following, 4 lncRNAs that were able to target all the miRNAs were also obtained through
analyzing the lncRNA-miRNA network. (B) The tools used to collect nAMD-related data (metabolites
and SNPs) and to perform the topological network analysis. By analyzing multiple networks, 10 key
metabolites related to AMD and 30 critical SNPs related to AMD were identified by considering the
two centrality parameters: degree and betweenness.
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4.5. Second Data Sources: nAMD-Related Metabolites and SNPs

At this point, the procedure of reviewing recent studies, data extraction, and classi-
fications were performed in order to identify metabolites [276–279] and single-nucleotide
polymorphisms (SNPs) [101,280–293] relevant to nAMD disease. As a result, 317 SNPs
(Supplementary Table S11) and 115 metabolites (Supplementary Table S12) that are effec-
tive in the development of nAMD were identified. Pathway and joint pathway analyses
were used to study the function of these metabolites. The metabolite–gene–disease interac-
tion network was further reconstructed to identify 10 important metabolites via centrality
parameters (degree and betweenness) and the potential relationship of the nAMD-related
metabolic profile with other neurodegenerative disorders. The MetaboAnalyst 5.0 database
(https://www.metaboanalyst.ca/ (accessed on 1 December 2018)) was used for all analyses
related to metabolites [294].

Two different types of networks—the SNP–Gene–Disease network and the SNP–Gene–
Metabolite–Disease network—were reconstructed to address important SNPs related to
nAMD disease via centrality parameters (degree and betweenness) and potential associa-
tion of the nAMD-related SNP profile with other neurodegenerative disorders. The first
10 cases from each network were chosen based on their degree and betweenness centralities.
A list of 30 critical SNPs was created by merging the results (Supplementary Table S13). A
detailed schematic presentation of these analysis is shown in Figure 10B.

4.6. Enrichment Analysis

Functional enrichment analysis was performed at three distinct levels, including genes,
miRNAs, and metabolites, using ExpressAnalyst (https://www.expressanalyst.ca/) (ac-
cessed on 18 February 2021) [273], microRNA enrichment analysis and annotation (miEAA)
(https://www.ccb.uni-saarland.de/mieaa tool/ (accessed on 1 December 2022)) [295], and
MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/ (accessed on 9 September 2022)) [294],
respectively. The most enriched pathway of the network was determined using the KEGG
enrichment analyses. An FDR < 0.05 was considered as representing statistical significance.

4.7. Data Pre-Processing for the First Fuzzy Logic Model

Despite identification of a significant number of metabolites based on the network param-
eters, it remained unclear which metabolite had the most impact on the degree, betweenness,
closeness, and FDR. To determine the most significant metabolite, a model was created that
considered both the lowest FDR value and the highest impact value after the joint pathway
analysis. The subsequent step involved identifying metabolite interactions required for this
model. This was accomplished using fuzzy logic (for metabolites and pathways indices) and
deep learning techniques. To achieve this goal, specific metabolite indicators and factors
related to metabolic pathways underwent two stages of data pre-processing. Initially after
the joint pathway analysis, a total of 33 crucial pathways were chosen based on FDR < 0.05
(Supplementary Table S14). Subsequently, by transforming CPD codes into compound names,
all the metabolites that participated in these pathways were identified (Supplementary Table
S15). These metabolites were represented by the numbers 0 or 1 to indicate their absence
or presence, respectively, in each individual pathway (Supplementary Table S16). The sub-
sequent phase involved assessment of the degree and betweenness of each metabolite by
reconstructing two different types of networks: (i) a metabolite–metabolite interaction network
(MMIN) and (ii) a metabolite–gene–disease interaction network (MGDIN) (Supplementary
Table S17). The metabolite’s four parameters (degree MMIN, betweenness MMIN, degree MGDIN,
and betweenness MGDIN) were normalized within the range of 0 to 1 (Supplementary Tables
S18 and S19). Each of the four parameters was analyzed separately to determine the quartiles,
and then four categories were established to represent weak (Minimum to Q1), medium (Q1 to
Q2), good (Q2 to Q3), and excellent (Q3 to Maximum) effects (Table 6). After evaluating four
parameters and their respective impact ranges, a total of 256 rule bases were established, and
decisions were made on their consequences (Supplementary Table S20). These rules were used
to create the first fuzzy logic model, and the number 1, which was previously used to indicate

https://www.metaboanalyst.ca/
https://www.expressanalyst.ca/
https://www.ccb.uni-saarland.de/mieaa
https://www.metaboanalyst.ca/
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the presence of a metabolite in the metabolic pathway, was replaced by numerical output of
the fuzzy logic model obtained for each specific metabolite (Table 7 and Supplementary Table
S21). Figure 11A displays a schematic representation of the initial stage of the first fuzzy logic
model outlining actions that were taken.

Table 6. The range of four triangular membership functions.

Weak Moderate Good Excellent

Normalized Weight 1 −1 to 0.040625 0.040625 to 0.178125 0.178125 to 0.346875 0.346875 to 1

Normalized Weight 2 −1 to 0.005215122 0.005215122 to
0.035244476

0.035244476 to
0.114987363 0.114987363 to 1

Normalized Weight 3 −1 to 0.036363636 0.036363636 to
0.090909091

0.090909091 to
0.145454545 0.145454545 to 1

Normalized Weight 4 −1 to 0.005028148 0.005028148 to
0.046520343

0.046520343 To
0.093742947 0.093742947 to 1

Table 7. The calculated merits for each metabolite.

No. Metabolites Normalized
Weight 1

Normalized
Weight 2

Normalized
Weight 3

Normalized
Weight 4

Calculated
Merits

1 Maltotriose 0.059375 0.012879969 −1 −1 12.33015695

2 L-Glutamic acid 0.95625 0.892826812 0.090909091 0.043457267 42.4297409

3 Pyruvic acid 0.778125 0.558492981 0.272727273 0.088754688 88.06311429

4 L-Tryptophan 0.296875 0.107651537 0.109090909 0.109603133 62.5

5 Citric acid 0.45 0.170635833 0.181818182 0.137017563 90.33333333

6 L-Alanine 0.39375 0.112928955 0.218181818 0.093742947 87.32827717

7 L-Serine 0.36875 0.084920841 0.127272727 0.045147312 62.5

8 Betaine 0.15625 0.027372191 0.090909091 0.048277571 42.63825352

9 Dimethyl sulfone 0.021875 0.000196837 −1 −1 11.6245581

10 L-Arginine 0.371875 0.131651201 0.290909091 0.14684817 89.35621737

11 Sphinganine 0.06875 0.015722582 −1 −1 11.6568779

12 L-Glutamine 0.371875 0.075654603 0.109090909 0.047897573 62.5

13 L-Tyrosine 0.25 0.068912558 0.090909091 0.037760448 42.4297409

14 Cholesterol sulfate 0.003125 0 0.418181818 0.475029838 90.25525526

15 Sucrose 0.178125 0.06483723 0.018181818 0 12.90686029

16 L-Phenylalanine 0.28125 0.049343156 0.109090909 0.091631965 62.5

17 L-Cysteine 0.4125 0.143670141 0.090909091 0.080663464 62.5

18 L-Aspartate-semialdehyde 0.040625 5.06488 × 10−5 −1 −1 13.82051282

19 L-Methionine 0.334375 0.075768988 0.181818182 0.20829445 86.56442358

20 Creatine 0.1 0.016946398 0.090909091 0.070195678 42.4297409

21 L-Cystine 0.00625 0 0.127272727 0.041291699 62.5

22 L-Lysine 0.403125 0.136364416 0.272727273 0.147600818 90.33333333

23 L-Isoleucine 0.2 0.009885279 0.127272727 0.046520343 44.40997593
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Table 7. Cont.

No. Metabolites Normalized
Weight 1

Normalized
Weight 2

Normalized
Weight 3

Normalized
Weight 4

Calculated
Merits

24 Phytosphingosine 0.034375 0.005215122 −1 −1 13.61538462

25 Adenosine 0.346875 0.119206393 0.054545455 0.0280831 37.5

26 L-Valine 0.2375 0.020285683 0.145454545 0.068937066 62.5

27 Glycine 0.4875 0.217186109 0.363636364 0.259194216 90.33333333

28 L-Leucine 0.28125 0.039149797 0.145454545 0.080064075 62.5

29 cis-Aconitic acid 0.121875 0.018639401 0.054545455 0.01249794 37.5

30 Hypotaurine 0.03125 0.000358991 −1 −1 13.08960132

31 S-Adenosylhomocysteine 0.571875 0.575112844 0.036363636 0.005028148 37.5

32 L-Aspartic acid 0.359375 0.114987363 0.054545455 0.013255836 37.5

33 Glutathione 0.296875 0.105460029 0.072727273 0.085964538 62.5

34 Arachidonic acid 0.228125 0.167812851 0.036363636 0.027691555 37.5

35 Adenine 0.3 0.12548383 −1 −1 11.49545672

36 Urea 0.153125 0.059641216 0.090909091 0.011850264 42.4297409

37 Serotonin 0.3375 0.226082231 0.072727273 0.062262961 54.87490171

38 Taurine 0.153125 0.047879708 0.090909091 0.077994031 62.5

39 L-Lactic acid 0.1 0.013350728 1 1 89.44287908

40 p-Hydroxyphenylacetic
acid 0.028125 0.000479396 0.054545455 0.035107811 37.5

41 Inosine 0.153125 0.021684479 0.054545455 0.029713312 37.5

42 SM(d18:1/18:0) 0.040625 0.014353102 −1 −1 13.82051282

43 Hypoxanthine 0.175 0.029327862 0.090909091 0.108400157 62.5

44 Dopaquinone 0.01875 0.000234529 −1 −1 11.19413764

45 L-Proline 0.2125 0.042078003 0.2 0.10544835 87.16355188

46 L-Histidine 0.23125 0.035244476 0.127272727 0.048363647 53.99094217

47 Guanine 0.165625 0.023106832 0.018181818 0 11.96511859

48 Cytidine 0.134375 0.02976407 0.018181818 0 11.41056611

49 Glycerol 1 1 0.109090909 0.169397158 89.55878284

50 Calcium −1 −1 0.327272727 0.318269183 90.33333333

51 Acetoacetic acid −1 −1 0.127272727 0.064575489 62.5

52 Formic acid −1 −1 0.018181818 0 11.41056611

53 Zinc (II) ion −1 −1 0.072727273 0.025154387 37.5

54 Acetic acid −1 −1 0.054545455 0.012651199 37.5

55 Cortisol −1 −1 0.418181818 0.65988514 90.33333333
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Figure 11. (A) In the first fuzzy logic model, the preliminary step of data pre-processing was per-
formed on metabolites. To achieve this objective, a series of 8 steps was created. The specifics of each 
step are outlined in the diagram. (B) Metabolite merit calculations using the fuzzy logic model. 
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Figure 11. (A) In the first fuzzy logic model, the preliminary step of data pre-processing was
performed on metabolites. To achieve this objective, a series of 8 steps was created. The specifics of
each step are outlined in the diagram. (B) Metabolite merit calculations using the fuzzy logic model.



Pharmaceuticals 2023, 16, 1555 33 of 52

4.8. Metabolites Merit Calculation Using Fuzzy Logic Model

The first step in our methodology involved calculating a numerical merit for each
metabolite. This merit was derived from four independent parameters: two degree values
and two betweenness values. The degree values quantified the number of interactions a
metabolite had with other metabolites and genes within the network. The betweenness
values captured the centrality and influence of a metabolite in mediating interactions
between other metabolites and genes. By considering these four parameters, we could
comprehensively evaluate the importance of metabolites within the metabolic network.
To integrate the four parameters into a single merit, a fuzzy logic model was developed.
Fuzzy logic is a potent computational framework that simulates human thinking under
ambiguity. It has emerged as a valuable tool in various domains, including decision making,
control systems, and pattern recognition. In the context of metabolomics research, fuzzy
logic presents a viable method for combining many factors and capturing the intricate
interactions seen in metabolite networks. Fuzzy logic makes it possible to represent
metabolite properties in a more understandable way and makes it easier to calculate
a single merit by using linguistic variables and fuzzy membership functions [296–298].
Based on a variety of variables, including interactions between metabolites and between
metabolites and genes, this merit represents the overall significance of metabolites.

In this research, the fuzzy logic model took the four parameters as inputs, and each
input was represented by four triangular membership functions: Weak, Moderate, Good,
and Excellent. These membership functions captured the linguistic values associated with
inputs, allowing for a more intuitive representation of the metabolite’s characteristics. The
fuzzy logic model processed these inputs and produced an output, termed Merit, which
was also defined by four triangular membership functions representing Weak, Moderate,
Good, and Excellent values within the range of 0–100. After calculating the numerical merit
for all metabolites, the metabolic route database was updated. The calculated merit values
were assigned to each metabolite within their respective routes. This process ensured that
the importance of metabolites was reflected accurately within the database, providing a
reliable foundation for subsequent analyses and evaluations. This process facilitated the
development of a standardized and extensible algorithm for evaluating the importance of
metabolites within metabolic routes and could be utilized to prioritize metabolites based on
their merit values. It facilitated targeted investigations and interventions within metabolic
pathways. The general flowchart of the process is shown in Figure 11B. The range of the
four triangular membership functions and the applied rule bases are shown in Table 6 and
Supplementary Table S20. The calculated merits for each metabolite are shown in Table 7.

4.9. Data Pre-Processing for the Second Fuzzy Logic Model

The input data for the second fuzzy logic model were derived from the table listing
33 significant pathways from which the outcomes of the first phase of the fuzzy logic
model were implemented. During this stage, the impact and FDR of the pathway-related
indicators (degree/betweenness/closeness) were analyzed, and their data were sorted into
quartiles independently. The quartile results for the three indicators—degree, betweenness,
and closeness impact—were established by defining their range as “Minimum to Q1 = D,
Q1 to Q2 = C, Q2 to Q3 = B, and Q3 to Maximum = A”. However, the defined range for
FDR was determined differently and is presented as “Minimum to Q1 = A, Q1 to Q2 = B,
Q2 to Q3 = C, and Q3 to Maximum = D” (Table 8). After evaluating four parameters and
their respective impact ranges, a total of 52 rules were established, and decisions were
made on their consequences (Supplementary Table S22). These rules were used to create
the second fuzzy logic model, and the numbers related to four pathway-related indicators
were replaced with the numerical output of the fuzzy logic model obtained for each specific
pathway (Table 9). Figure 12A displays a schematic representation of the initial stage of the
second fuzzy logic model outlining the actions that were taken.
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Table 8. The range of four independent parameters.

D C B A

Degree Impact 0 to 0.044118 0.044118 to
0.11111 0.11111 to 0.213095 0.213095 to

0.4918

Betweenness Impact 0 to 0 0 to 0 0 to 0.02748 0.02748 to
0.17737

Closeness Impact 0.062116 to
0.0994065

0.0994065 to
0.13354 0.13354 to 0.21584 0.21584 to

0.67273

A B C D

FDR 4.3423 × 10−27 to
2.41705 × 10−5

2.41705 × 10−5 to
0.0092785

0.0092785 to
0.0282315

0.0282315 to
0.046353

Table 9. The calculated merits for each pathway.

No. Metabolic Pathway Degree
Impact

Betweenness
Impact

Closeness
Impact FDR Calculated

Merits

1 ABC transporters 0 0 0.2 4.3423 × 10−27 90.04878049

2 Protein digestion
and absorption 0 0 0.26027 5.1706 × 10−26 90.04878049

3 Central carbon metabolism
in cancer 0 0 0.15789 5.2636 × 10−20 88.17843178

4 Aminoacyl–tRNA
biosynthesis 0.18557 0 0.1887 3.0666 × 10−16 89.04243328

5 Mineral absorption 0.058824 0 0.16361 7.8109 × 10−13 88.29666352

6 Glyoxylate and
dicarboxylate metabolism 0.19318 0.005094 0.14279 2.6159 × 10−7 65

7 Taurine and
hypotaurine metabolism 0.27586 0 0.26261 4.1941 × 10−7 90.04862

8 Cysteine and methionine
metabolism 0.23301 0.17737 0.17003 0.000016837 88.72511315

9 Glycine, serine, and
threonine metabolism 0.37647 0.14892 0.23869 0.000031504 90.03666656

10 Alanine, aspartate, and
glutamate metabolism 0.4918 0.12764 0.1311 0.0005232 88.6812472

11 Ferroptosis 0.094595 0 0.16278 0.00080319 50

12 Sulfur metabolism 0 0 0.10345 0.00080319 36.6802727

13 Arginine biosynthesis 0.37143 0.067227 0.42256 0.00083089 89.70463799

14 Amoebiasis 0.016667 0 0.13142 0.0012241 36.7479835

15 Valine, leucine, and
isoleucine biosynthesis 0.15385 0 0.15685 0.0016043 88

16 Sphingolipid metabolism 0.34426 0.11199 0.67273 0.0072172 89.00877813

17 Phenylalanine metabolism 0.11111 0.011281 0.076586 0.0092785 43.91079969

18 Purine metabolism 0.16832 0.014208 0.11081 0.010746 66.68460826

19 Thiamine metabolism 0.026316 0 0.11902 0.010746 36.7661384
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Table 9. Cont.

No. Metabolic Pathway Degree
Impact

Betweenness
Impact

Closeness
Impact FDR Calculated

Merits

20 Pantothenate and
CoA biosynthesis 0.095238 0 0.1303 0.010746 36.78520447

21 Arginine and
proline metabolism 0.1453 0.039309 0.10489 0.01168 65

22 Staphylococcus aureus
infection 0.093023 0.0011074 0.095363 0.021438 36.83966667

23 Gap junction 0.076923 0 0.24965 0.021454 50

24 Neuroactive
ligand–receptor interaction 0.061798 0 0.062116 0.023787 30.30921831

25 Primary bile acid
biosynthesis 0.09375 0 0.23168 0.027448 50

26
AGE-RAGE signaling

pathway in
diabetic complications

0.029412 0 0.13354 0.029015 36.71982118

27 Tyrosine metabolism 0.1129 0.04149 0.094005 0.032855 65

28 Butanoate metabolism 0.16364 0.016498 0.089484 0.032855 88

29 Pyruvate metabolism 0.33962 0.038462 0.25425 0.032855 88.14549064

30 Taste transduction 0.14085 0 0.12007 0.032961 36.73783459

31 Nitrogen metabolism 0.065217 0 0.069877 0.036419 14.3852384

32 Carbohydrate digestion
and absorption 0 0 0.080645 0.036419 13.94718423

33
Phenylalanine,
tyrosine, and

tryptophan biosynthesis
0.29268 0.0093496 0.085978 0.046353 50

4.10. Calculating the Output Merit of the Metabolite Route Using the Fuzzy Logic Model

The second step involved the calculation of the output merit for the metabolic route
using fuzzy logic. This step considered four independent parameters that collectively reflected
the performance of the metabolic route, namely degree impact, betweenness impact, closeness
impact, and FDR. The degree impact, betweenness impact, and closeness impact parameters
exhibited a better performance with higher values, while the FDR parameter demonstrated
a better performance with a lower value. To integrate these four parameters and calculate
a single output merit, a second fuzzy logic model was developed. This model consisted of
four inputs and one output. Three inputs, namely degree impact, closeness impact, and FDR,
were represented by combined triangular–trapezoidal membership functions, including Weak,
Moderate, Good, and Excellent. The second input, betweenness impact, was represented by
three combined triangular–trapezoidal membership functions, including Weak, Good, and
Excellent, based on the network analysis values. The fuzzy logic model processed these inputs
and generated an output termed the Output Merit of Metabolic Route, which was defined by
four trapezoidal membership functions representing Weak, Moderate, Good, and Excellent
values within the range of 0–100. The overall process flowchart is illustrated in Figure 12B.
The range of four independent parameters and the applied rule bases are shown in Table 8
and Supplementary Table S22. The calculated merits for each metabolite are shown in Table 9.
After updating the database based on calculated output merits for each metabolic route, a
database with 33 metabolic routes, 55 metabolites, and one output merit was developed.
This database is ready for development of a metabolic route model using a Long Short-Term
Memory (LSTM) network and a deep learning technique.
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4.11. Metabolic Route Model Development Using Long Short-Term Memory (LSTM) Network

The Long Short-Term Memory (LSTM) network, a type of recurrent neural network
(RNN) capable of analyzing sequence and time-series data, is a network architecture that is
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ideally suited for the goal of creating an intelligent metabolic pathway classifier. By using a
training set of sequences and goal values, an LSTM neural network can be used to predict a
numerical answer within a sequence. An LSTM network processes input data as a recurrent
neural network by looping over time steps and updating the network state. The network
state includes data that have been stored for earlier time steps. A common LSTM network
for regression starts with a sequence input layer and then moves on to an LSTM layer. A
fully connected layer and a regression output layer make up the network’s final layers. The
general architecture of an LSTM network is shown in Figure 13A.
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To construct an LSTM network for sequence-to-one regression, a layer array was
created containing a sequence input layer, an LSTM layer, a fully connected layer, and a
regression output layer [299,300]. A sequence input layer was employed with an input
size that matched the number of channels of input data, which was 55. An LSTM layer
with 100 hidden units was used. The amount of information learned by the layer was
determined by the number of hidden units. While larger values may yield more accurate
results, they can also increase susceptibility to overfitting to training data.

To specify the number of values to predict, a fully connected layer with a size matching
the number of responses was included, followed by a regression layer. Here, there was a
single response. The training options were specified as follows:

- The training was performed using the Adam optimizer.
- The network was trained for 100,000 epochs. For larger data sets, a lower number of

epochs may suffice for achieving a good fit.
- The sequences and responses used for validation were specified.
- The learning rate was set at 0.0005.
- The network that gave the best validation loss, i.e., the lowest validation loss, was

outputted.

To evaluate the performance of the developed model in predicting the outputs of
unknown inputs, five metabolic pathways were used as test data. After training the model,
these test data were used for evaluation of the model output. The mentioned process was
repeated 10 times; two of these are shown in Figure 13B as examples. Although the number
of dataset instances was not high, the developed model showed its potential to predict
output pattern and values. The calculated average R-squared value was about 0.64.

4.12. Utilizing AI and Genetic Algorithms to Identify Key Metabolites in the Metabolic Route

The integration of artificial intelligence (AI) in studying metabolic pathways has
emerged as a valuable tool for identifying key metabolites that significantly influence



Pharmaceuticals 2023, 16, 1555 39 of 52

diverse biological processes. The potential to discern these crucial metabolites can provide
invaluable insights into various disease mechanisms, drug development, and therapeutic
interventions. In the previous section of this research, a Long Short-Term Memory (LSTM)
network-based model capable of processing 55 input metabolite sequences representing
the metabolic routes was developed. The output merit of these metabolic routes was
determined through a fuzzy logic model, which provided valuable context to our analysis.
By searching through a 56-dimensional space, our objective was to optimize the model
and pinpoint the most effective metabolites within the metabolic route. To achieve this,
we leveraged the powerful genetic algorithm (GA) search and optimization technique,
enabling us to efficiently explore the vast solution space. A comprehensive depiction of the
entire process is presented in Figure 13C.

The strong optimization method known as the genetic algorithm (GA) is based on
the concepts of natural selection and genetics. GAs have emerged as a popular and effi-
cient technique for resolving challenging optimization issues in a variety of disciplines,
including engineering, computer science, finance, and biology. By using a population of
potential solutions and iteratively evolving them through selection, crossover, and muta-
tion procedures, GAs simulate the process of evolution. GAs may effectively search huge
solution spaces using this genetically inspired strategy, finding optimal or nearly optimal
solutions to complex problems that would otherwise be difficult to solve using conven-
tional optimization techniques. This section will delve into the fundamentals and uses of
genetic algorithms, emphasizing their importance as a flexible and reliable approach for
optimization [301,302]. To accomplish our ultimate goal of identifying the most influential
metabolites in the metabolic route, we performed an optimization process. Our approach
involved traversing a 56-dimensional space in which each dimension corresponded to the
55 metabolite inputs along with an additional dimension representing the output merit
of the metabolic route. The optimization process was guided by a binary-GA search tech-
nique, which efficiently explored the solution space to find the optimal configuration of
metabolite inputs that yielded the highest output merit [303]. The parameters that were
used in developing the binary-GA search method for maximization of the model in the
56-dimensional space are indicated in Table 10.

Table 10. The parameters that were used in the developed binary-GA search method for maximization
of the model in the 56-dimensional space.

Maximum iteration 300

Population size 100

Number of chromosomes 55

Mutation coefficient 0.09

Proportion of crossover 1

5. Conclusions

In summary, we identified 30 genes, six miRNAs, and four lncRNAs that may play
significant roles in nAMD pathogenesis. We also found three key metabolites that drive
AMD development that are also common with AD and schizophrenia. Moreover, we
identified nine key SNPs and their related genes with a critical role in nAMD pathogenesis
and that are common with AD, schizophrenia, MS, and PD. These results will contribute to
the development of diagnostic and therapeutic biomarkers for nAMD in the near future and
could open new avenues to the design and/or repurposing of drugs related to novel targets.
In addition, in a family with an AMD patient, screening other family members for SNPs may
be useful in predicting their susceptibility to other neurodegenerative diseases. Obviously,
if SNPs shared between AMD and other neurodegenerative diseases are identified in these
family members, the necessity of controlling metabolic, transcriptomic, and proteomic
profiles may also be beneficial.
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This study also demonstrates the effectiveness of using artificial intelligence (specifi-
cally, an LSTM network), a fuzzy logic model, and a genetic algorithm to identify important
metabolites in complex metabolic pathways. The 25 chosen metabolites had a significant
impact on the output quality of the metabolic pathways. Our findings shed light on the
underlying mechanisms governing diverse biological processes. This study contributed to
the broader comprehension of metabolic regulation, which has significant implications for
drug development and precision medicine, by focusing on the most effective metabolites.
We outline a promising method for exploring and unraveling complex biological networks,
establishing the groundwork for future advancements in the field of metabolic and disease
pathway analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph16111555/s1, Table S1: The first list of genes involved in
nAMD pathogenesis were identified from the MuST and DIAMOnD algorithms; Table S2: The
second list of genes involved in nAMD disease were identified from the the valid databases; Table S3:
The third list of genes involved in the anti-VEGF resistance related network (AV-DRN); Table S4:
Topological network analysis related to nAMD disease; Table S5: Topological network analysis related
to anti-VEGF resistance; Table S6: A total of 39 genes were generated through the processing of 4340
genes associated with anti-VEGF resistance; Table S7: A total of 52 genes were generated through
the processing of 7061 genes associated with nAMD disease; Table S8: The integration of the MuST
and DIAMOnD results, anti-VEGF resistance and nAMD related Hub genes; Table S9: The top genes
were selected from various centralities; Table S10: The final gene list that contained 31 essential genes;
Table S11: The final nAMD-related SNPs; Table S12: The final nAMD-related metabolites; Table S13:
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were chosen based on FDR < 0.05; Table S15: The identification of all metabolites in specific pathways
by converting CPD codes into compound names; Table S16: The representation of the absence or
presence of metabolites in each pathway is indicated by the numbers 0 or 1; Table S17: The results of
two distinct networks were reconstructed to evaluate the multiple centralities of every metabolite;
Table S18: The normalized results within the metabolite-metabolite interaction network (MMIN);
Table S19: The normalized results within the Metabolite-gene-disease interaction network (MGDIN);
Table S20: 256 rule bases were established and decisions were made on the consequences; Table S21:
A numerical output of the fuzzy logic model obtained for each specific metabolite; Table S22: A total
of 52 rule bases were established and decisions were made on their consequences.
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