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Abstract: Glioblastoma is the most common and aggressive form of primary brain cancer and the
lack of viable treatment options has created an urgency to develop novel treatments. Personalized or
predictive medicine is still in its infancy stage at present. This research aimed to discover biomarkers
to inform disease progression and to develop personalized prophylactic and therapeutic strategies by
combining state-of-the-art technologies such as single-cell RNA sequencing, systems pharmacology,
and a polypharmacological approach. As predicted in the pyroptosis-related gene (PRG) transcription
factor (TF) microRNA (miRNA) regulatory network, TP53 was the hub gene in the pyroptosis process
in glioblastoma (GBM). A LASSO Cox regression model of pyroptosis-related genes was built to
accurately and conveniently predict the one-, two-, and three-year overall survival rates of GBM
patients. The top-scoring five natural compounds were parthenolide, rutin, baeomycesic acid, lute-
olin, and kaempferol, which have NFKB inhibition, antioxidant, lipoxygenase inhibition, glucosidase
inhibition, and estrogen receptor agonism properties, respectively. In contrast, the analysis of the
cell-type-specific differential expression-related targets of natural compounds showed that the top
five subtype cells targeted by natural compounds were endothelial cells, microglia/macrophages,
oligodendrocytes, dendritic cells, and neutrophil cells. The current approach—using the pharma-
cogenomic analysis of combined therapies—serves as a model for novel personalized therapeutic
strategies for GBM treatment.

Keywords: glioblastoma; pyroptosis; scRNA-seq; systems pharmacology; CADD; GBM;
pharmacogenomics

1. Introduction

Glioblastoma (GBM) is the most common and aggressive form of brain cancer, with no
known cure or prevention [1]. GBM has the worst prognosis of any brain cancer, with an
overall survival rate of approximately three months if untreated and around 14–20 months
if treated with surgery, chemotherapy, and radiotherapy. GBM is prone to metastasis and
high rates of post-treatment progression [2]. The primary reason for its poor prognosis lies
in the diffusion of highly invasive individual tumor cells through the brain parenchyma,
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coupled with the resilience of the brain tumor progenitor cells [3]. A huge unmet clinical
need is the full understanding of the pathogenesis and related pathways of GBM.

Advances in various research areas have brought new insights and therapeutic per-
spectives to GBM research. Single-cell RNA sequencing (scRNA-seq) offers advantages
for cell-type characterization and cell-type heterogeneities based on the dynamic gene
expression of each cell and it is widely applied in cancer and immunology research [4]. The
Human Cell Atlas (THCA) represents one of the recent rapid technological advances in
the single-cell analysis community; it aims to describe each human cell by the expression
level of approximately 20,000 human protein-coding genes. Therefore, compared with bulk
sequencing, scRNA-seq unveils the complex gene expression at the single-cell level and
cell heterogeneity in complex tissues, providing specific information on tumor microenvi-
ronments and drug resistance [5]. However, a bulk analysis of the whole tumor may be
a hurdle to understand, particularly the complicated GBM ecosystem-driven infiltration.
In contrast, a single-cell analysis may provide detailed information on relevant events.
Moreover, single-cell level analyses of the microenvironment may depict tumor invasion
due to the immunosuppressive event blocking effective T cell immune responses [6].

The aggressive and incurable nature of GBM has created an urgency for the develop-
ment of novel therapeutic approaches. The only approved medicinal drug, the benzimida-
zole, only succeeds in slowing down, but not terminating, tumor growth and often fails
due to side effects and drug resistance [7]. Drug repurposing could be an efficient strategy
to test approved or investigational drugs for new uses with the distinct advantage of a
lower overall cost and less time than developing an entirely new drug from scratch [7,8].
Developing specific inhibitors to counteract the detrimental impacts of mutated oncogenic
proteins can be challenging because most current anticancer drug targets are in both normal
and cancerous cells [9]. Nevertheless, cumulative evidence has lent confidence to discov-
ering drug repurposing candidates via the Connectivity Map (CMap) platform [10]. As
an appealing complementary tool to phenotype-based drug screening for lead molecules,
CMap is a useful exploratory tool to identify novel bioactive compounds, with therapeuti-
cally beneficial results from a diseased tissue sample with a transcriptomics dataset. These
novel compounds can be used for pharmaceutical pipelines across disease disciplines [10].
Major hurdles in current GBM treatment include poor clinical outcomes, flawed treatment
strategies, and unwanted adverse side effects. In contrast, naturally derived lead molecules,
with positive anticancer effects and minimal side effects, may present a better treatment
option to be considered [11].

More than 50% of chemically synthesized drugs are derivatives from plant isolates [12].
The predictive toxicology of these plant metabolites has made great progress due to ad-
vances in computational approaches, systems biology, and pharmacogenomic analyses [2].
As an innovative strategy in drug discovery, polypharmacology can expedite drug explo-
ration by integrating systems biology and pharmacology by deploying biology, chemistry,
and systems modeling across human diseases [13]. Two aspects need to be considered for
a polypharmacological approach with a potentially beneficial therapeutic result: (1) an
effective drug candidate that targets multiple proteins; and (2) several drug candidates
targeted at one hub protein, leading to the activation of multiple signaling and functional
pathways [12]. However, a polypharmacological strategy faces two challenges: (1) the
identification of a target protein/combined targets in a disease sample with a predictable
response to drug perturbation; and (2) the discovery of a multi-target molecule with the
desired polypharmacological profile to perturb those targets [12]. In this sense, systems
pharmacology likely estimates the matching modes between the combined drugs and
cell complexity in pathological states to decode the drug’s mechanisms of action (MOA)
by integrating systems biology, pharmacokinetics, and pharmacodynamic methods. The
definition of clinical and genetic alterations within methylation classes has allowed the
identification of numerous new diagnostic models for a personalized approach to patient
care [14]. Not all individuals are in an identical disease state. Therefore, future therapeu-
tic strategies should move toward more personalized and targeted therapies based on
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highly sensitive and accurate biomarkers. This could lead to a successful application of
an omics-based personalized clinical approach. Although the genome-wide investigation
of driver mutation has provided a clear road map to guide precision and customized can-
cer drugs [15], intratumoral heterogeneity remains a considerable challenge. Fortunately,
single-cell technologies have been developed to meet this challenge [16]. Although drug
development is a fast-developing area, multi-target drug discovery as personalized and
predictive medicine is still in its infancy stage at present. This research aimed to discover
biomarkers to inform disease progression and develop personalized prophylactic and
therapeutic strategies by combining state-of-the-art technologies such as scRNA-seq, The
Cancer Genome Atlas (TCGA) cohort, systems pharmacology, and computer-aided drug
design (CADD), which could serve as a new model for the conception and design of novel
personalized therapeutic approaches for cancer treatment.

2. Results
2.1. Single-Cell Sequencing Analysis

The R package Seurat could separate the GBM cells into 15 clusters based on differ-
entially expressed genes (DEGs) after a QC analysis and PCA (Supplementary Figure S1).
The data were visualized using a t-SNE plot in a two-dimensional projection space. A
set of signature marker genes for each cluster was identified to define the cell types. The
cluster numbers were assigned from the largest cell (Cluster 0) to the smallest (Cluster 14).
By identifying highly enriched marker genes for each cluster, the cells were classified
into 15 cell types as well as the number of cells and characteristic genes in each cluster.
The Cluster 0, Cluster 2, and Cluster 7 cells were microglia-expressing signature genes,
including P2RY12, P2RY13, SLC1A3, and CX3CR1. Cluster 1 and 13 were different sub-
types of microglia or macrophages expressing SLC1A3 and DAB2, respectively. Cluster 3
characterized macrophage cells with high CD163 and APOC1, whereas Cluster 9 repre-
sented macrophage cells expressing CD163, F13A1, and APOC1. Cluster 4 represented B
cells expressing CD52. Cluster 5 represented glia and neuronal cells that expressed CCL4.
Cluster 6 represented proliferating macrophages expressing PKM and PFN1. Cluster 8
comprised mural cells expressing CALD1 and IGFBP7. Cluster 10 comprised neutrophils
expressing FPR2, IL1R2, and CSF3R. Cluster 11 represented dendritic cells expressing
CD1C, FCER1A, CD1E, HLA-DPB1, and HLA-DQA1. Cluster 12 comprised T cells with
signature genes of CD48. Cluster 14 represented endothelial cells expressing CAVIN2, VWF,
ABCG2, and CLDN5.

2.2. Pyroptosis-Related Gene Analysis

The 185 pyroptosis-related genes were collected from GeneCards with screening
criteria of a relevance score > 1 (102 genes) (Supplementary Table S1). The intersection
yielded 30 PRGs in GBM samples for mutation frequency, oncoplot waterfall plot, and
PRG-TF-miRNA regulatory network (Figure 1A). The PRG-TF-miRNA regulatory network
showed that TP53 was the hub gene in the related PRG network. The gene expression profile
across all tumor samples and paired normal tissues is presented in a dot plot in Figure 1B.
The mutation distribution and protein domains of TP53 in the GBM samples are labeled as
current hotspots on the lollipop plot in Figure 1C. The plot title and subtitle represent the
somatic mutation rate and transcript name. The oncoplot in Figure 1D demonstrates the
somatic landscape of the TP53 cohort, where the x-axis shows the mutation frequency of
the genes and the disease tissues are ordered by an annotation bar (bottom). The oncoplot
shows the gene mutation information from each sample; the different colors with specific
annotations at the bottom represent different mutation types. A cohort summary plot
represents the distribution of variants according to the variant classification, type, and
single nucleotide variant (SNV) class. A stacked bar plot shows ten mutated genes. The
bottom part, from left to right, shows the mutation load for each sample and variant
classification type (Figure 1E). The overall expression of the 30 PRGs from three different
brain tissues (normal, GBM, and low-grade gliomas (LGGs)) from the TCGA cohort was
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analyzed. APOE, TP53, CASP6, CASP8, and DHX9 showed a high expression in the tumor
tissues (Figure 1F). The clustering of 30 genes in the PPI using the K-means clustering
algorithm showed that CASP1, IL18, and IL1B were the hub genes of one cluster and TP53
was the hub gene of another cluster (Supplementary Figure S2).

2.3. The Prognostic Value of Pyroptosis-Related Genes

The prognostic value of pyroptosis-related genes with the top eight HR values in GBM
patients in the high-/low-expression groups was 5.18 for CASP6, 5.17 for GBP1, 4.73 for
CASP8, 4.24 for CASP4, 4.1 for GBP5, and 4.07 for GSDMD (Figure 2). The coefficients of
selected features were shown using the lambda parameter and a partial likelihood deviance
versus log (λ) was drawn using the LASSO Cox regression model (Equation (1)). The
model was a risk factor if HR > 1 and the model was a protective factor if HR < 1; a 95%
CI represented the HR confidence interval. The median time or the median survival time
represented the survival rate of the two groups, corresponding with 50% of the time in
units of years. For example, the survival times in the high- and low-expression groups were
1.7 years and 8 years, respectively (Figure 3). The higher the area under the curve (AUC)
value, the stronger the model’s predictive ability. The dotted line represented the median
risk score and divided the patients into low-risk and high-risk groups. A greater number of
dead patients corresponded with a higher risk score. A heatmap of the expression profiles
of the prognostic genes in the low- and high-risk groups was produced accordingly. The
time-dependent receiver operator characteristic (ROC) curve and AUC showed that the
higher the AUC value, the stronger the predictive ability of these genes. The AUCs were
0.857, 0.892, and 0.815 for 1 year, 2 years, and 3 years, respectively; all were greater than the
predictive threshold of 0.5 and the accurate prediction threshold of 0.7.
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Figure 1. Landscape of genetic and expression variations of pyroptosis-related genes in GBM. (A) The
PRG-TF-miRNA regulatory network of 30 PRGs using the miRNet database. (B) The gene expression
profile across all tumor samples and paired normal tissues (dot plot). (C) The lollipop plot of the
mutation distribution and protein domains of TP53 in cancer. (D,E) The mutation frequency and
classification of TP53 from the TCGA GBM cohort. The middle panel shows the variant classification
summary in the cohort, using the same mutation-specific color code. (F) The expression of 30 PRGs
in three different brain tissues. The horizontal axis represents PRGs. The vertical axis represents the
PRG expression distribution, where different colors represent different groups (normal, GBM, and
LGG). The upper left corner represents the significant p-value of the Wilcox test method.
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Figure 2. The prognostic value of pyroptosis-related genes with top 8 HR values of GBM patients
in the high-/low-expression groups. A log-rank test was used to compare differences in survival
between these groups. For Kaplan–Meier curves, log-rank tests and univariate Cox proportional
hazard regressions generated p-values and hazard ratios (HRs) with a 95% confidence interval (CI).
The Kaplan–Meier curve shows the cumulative survival probabilities. A steeper slope indicates a
higher event rate (death rate) and a worse survival prognosis. A flatter slope indicates a lower event
rate and a better survival prognosis.

The LASSO model was as follows:

Lambda.min = 0.0047
Riskscore = (0.4066) × CASP6 + (0.0316) × GBP1 + (0.7417) × CASP4 + (0.1422) × GBP5 + (0.1563) × GSDMD +

(0.2342) × CASP3 + (−0.1911) × CASP1
(1)

The HR and p-value of the constituents were involved in univariate and multivariate
Cox regressions as well as some parameters of the top five PRGs. The nomogram to predict
the 1-, 2-, and 3-year overall survival of GBM patients was based on the risk signature
CASP4 and age (Figure 4). The line segment corresponding with each variable in the
nomogram was marked with a scale that represented the value range of the variable;
the length of the line segment reflected the factor’s contribution to the outcome event.
The nomogram’s prediction efficiency demonstrated that the model’s C-index was 0.619
(CI: 0.544–1) with a p-value of 0.002, suggesting the moderate accuracy of this predictive
model. In addition, a calibration plot showed that the bias-corrected line was close to the
ideal curve (45 degree line), suggesting a satisfactory agreement between the prediction and
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the observation. Therefore, this nomogram could be a clinically useful tool for prognostic
predictions in GBM patients.
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Figure 3. Construction of a prognostic pyroptosis-related gene model. (A) LASSO coefficient profiles
of the eight pyroptosis-related genes. (B) Plots of the ten-fold cross-validation error rates. (C) Distri-
bution of risk score, survival status, and expression of top seven prognostic pyroptosis genes in GBM.
(D,E) Overall survival curves for GBM patients in the high-/low-risk group and ROC curve used to
measure the predictive value.
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Figure 4. Construction of a predictive nomogram. (A,B) Hazard ratios and p-values of the constituents
involved in univariate and multivariate Cox regressions considering clinical parameters and top
5 pyroptosis-related genes in GBM. (C,D) Nomogram to predict the 1-year, 2-year, and 3-year overall
survival rate of GBM patients. Calibration curve for the overall survival nomogram model in the
discovery group. A dashed diagonal line represents the ideal nomogram.

2.4. The Abundance of Immune Cells and TMB in GBM

The correlation of tumor purity as well as the expression of the top eight HR genes
with six infiltrating immune cells (including CD8+ T cells, CD4+ T cells, B cells, dendritic
cells, macrophages, and neutrophils) (Supplementary Figure S3) were analyzed. Based on
the TIMER algorithm, the infiltration level of immune cells was positively and significantly
correlated with the expression level of these genes using the Spearman correlation at p < 0.05
(Supplementary Figure S4). The x-axis represented the gene expression distribution and the
y-axis represented expression distribution. The correlation coefficient ranged from −1 to 1;
negative numbers indicated a negative correlation between two genes. The closer the value
was to 1 or −1, the stronger the correlation between the immune cells and PRG expression;
the closer to 0, the weaker the correlation between them. These findings suggested that
these PRGs could trigger a better immune response than other genes.

2.5. Drug Prediction, Drug Sensitivity, and Drug Validation

The cancer therapeutic drug prediction from the relationship between diseases and
the drug database (DSigDB) as well as the half inhibitory concentration (IC50) analyses
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of these repurposed drugs are shown in Figure 5A. A Sankey plot showcasing the drugs
repurposed to the pyroptosis-related phenotype of GBM showed that 20 out of 30 genes
were involved in each repurposed drug obtained via the DSigDB database. The dot plot
showed the ratio between pyroptosis-related genes specific to repurposed drugs and the
total number of genes targeted by each drug (false-discovery rates (FDRs); p < 0.05). IC50 is
an important indicator for the evaluation of drug efficacy or sample treatment responses.
This tool is based on the largest public pharmacogenomic database, Cancer Drug Sensitivity
Genomics (GDSC). The GDSC drug sensitivity analysis of GBM showed that the IC50
values for vorinostat, 5-fluorouracil, pyrimethamine, gefitinib, tamoxifen, and sorafenib
tosylate were 8.25 mM, 2.80 mM, 3.20 mM, 1.19 mM, 3.3 mM, and 1.75 mM, respectively.
The natural compounds were selected from the drug prediction results of CMap (Figure 5B).
The potential compounds with therapeutic benefits were obtained by querying the CMap
database with the GBM subgroup samples’ signature expression. The top 21 natural
molecules with negative connectivity scores were selected from 49,313 agents to repress
the signature gene expression profile of each cell cluster of GBM (Figure 6). The top 5
of the 21 natural compounds were parthenolide, rutin, baeomycesic acid, luteolin, and
kaempferol, with NFKB inhibitor, antioxidant, lipoxygenase inhibitor, glucosidase inhibitor,
and estrogen receptor agonist MOAs, respectively (Table 1). In contrast, the analysis of
the cell-type-specific differential expression-related targets of the 21 natural compounds
showed that the top 5 subtype cells targeted by natural compounds were endothelial cells,
microglia/macrophages, T cells, dendritic cells, and neutrophil cells.

Table 1. The top-scoring five natural compounds selected from CMap.

No. Name of Natural Products Structures

1
Parthenolide
(PubChem CID 7251185)
(ADMET_BBB_Level: good)
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Table 1. Cont.

No. Name of Natural Products Structures

4
Luteolin
(PubChem CID 5280445)
(ADMET_BBB_Level: low)
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Figure 5. Cancer therapeutic drug prediction from the relationship between diseases and the drug
database (DSigDB) as well as IC50 analyses of these repurposed drugs. (A) Sankey plot showcasing
that the drugs repurposed to the pyroptosis-related phenotype of GBM (20 out of 30 genes) were
involved in each repurposed drug obtained via the DSigDB database. In addition, the dot plot shows
the ratio between pyroptosis-related genes specific to repurposed drugs and the total number of
genes targeted by each drug (FDR; p < 0.05). (B) The GDSC drug sensitivity analysis of GBM (IC50).
ns means p > 0.05, *** represents p ≤ 0.001 and **** p ≤ 0.0001.
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Figure 6. The association between natural products from CMap with their targeted subtype cells.
(A) A t-SNE plot visualizing single-cell RNA-seq data of 8 GBM samples with 97,584 cells. (B) Sankey
plot showcasing natural products specific to the subtype cells of GBM samples. The dot plot shows
the gene ratio of each subtype cell targeted by natural products (p < 0.05). PART: parthenolide; RUTI:
rutin; BAEA: baeomycesic acid; LUTE: luteolin; RETI: retinol; ACRO: acronycine; SCOU: scopolamine;
KEAM: kaempferol; GALA: galangin; GOSS: gossypol; EUGE: eugenol; SCOP: scopolamine; INDI:
indirubin; ACON: acronycine; VINB: vinblastine; CHLO: chloroquine; EMOA: emodic acid; DAUN:
daunorubicin; STRO: strophanthidin; EMET: emetine; PACL: paclitaxel.
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3. Discussion

As a newly discovered programmed cell death (PCD) system, pyroptosis is a hot
topic in cancer initiation and progression [17]. This type of PCD is also called secondary
necrosis due to the complete apoptosis process of releasing inflammatory mediators. The
macrophages can phagocytize the initiated apoptotic cells and if macrophages cannot
phagocytize the apoptotic cells, secondary necrosis occurs. Consequently, a series of inflam-
matory responses arise [17]. The complex relationship between pyroptosis and cancer has
attracted increased attention because pyroptosis can provide a favorable microenvironment
for tumor proliferation. In contrast, excessive pyroptosis activation inhibits tumor cells [18].
Therefore, the dual effects of pyroptosis on tumors may help to develop an important
cancer therapy strategy. Recent studies on the relationship between pyroptosis and gastric
cancer, breast cancer, and GBM have provided new research ideas for cancer prevention and
treatment [19]. In this study, as predicted in the PRG-TF-miRNA regulatory network, TP53
was the hub gene in pyroptosis-related GBM, which is common across tumor types [20].
Common tumor cell variants generally include SNVs, multiple nucleotide variants (MNVs),
insertion, deletion, complex variants, and structural variants (SVs). The popular soft-
ware used for variant calling, such as Genome Analysis Toolkit (GATK, Broad Institute,
gatk-4.4.0.0), FreeBayes (https://github.com/freebayes/freebayes (accessed on 18 October
2023)), and VarScan (https://varscan.sourceforge.net/using-varscan.html (accessed on
18 October 2023)), was designed to detect SNVs, small insertions, and deletions, but not
for complex variants. However, tumor-suppressed genes such as TP53, PTEN, BRA1/2,
RB1, STK11, and NF1 often consist of large fragments of frameshift insertions, deletions, or
complex variants as well as SVs, which are often missed by detection software [21]. In this
study, the SNV analysis showed that TP53 was one of the most frequently mutated genes
in GBM. Therefore, it could serve as a biomarker of particular molecular characteristics and
a prognostic tool for unfavorable survival in GBM [22].

It is essential to tailor the specialized management of GBM patients. Therefore, we
also investigated the prognostic value of other PRGs by constructing a LASSO Cox model.
The LASSO Cox regression model of six pyroptosis-related genes (CASP6, CASP8, CASP4,
GBP1, GBP5, and GSDMD) was built to accurately and conveniently predict the 1-, 2-,
and 3-year overall survival rates of GBM patients based on the dataset from TCGA. Pre-
vious research demonstrated that GBP5 is a driving factor for GBM malignancy via the
Src/ERK1/2/MMP3 pathway and its high expression may represent a poor prognosis in
GBM [23]. Our result showed that GBP5’s HR was high, consistent with previous research.

Moreover, the multivariate Cox model showed that CASP4 had the highest HR ratio,
indicating that CASP4 could be an independent prognostic parameter for GBM patients.
Following this, a further exploration of the role of CASP4 in the prognosis of GBM patients
was carried out using a nomogram and calibration plots, which indicated that CASP4
could predict the overall survival of GBM patients. Therefore, this nomogram could be
used to provide a more accurate survival prognostic judgment on GBM patients. These
results demonstrated that CASP4 was a potential prognosis factor for GBM. The current
GBM prognosis is abysmal, with a median survival time of 12–15 months under standard
treatments [24]. Recent evidence from clinical trials showed that targeted therapy does
not improve the prognosis of patients with GBM [25]. TMB has been reported to influence
immunotherapeutic effectiveness across tumor types and can be used to predict the survival
of diverse tumors with CTLA-4 or anti-PD-1 treatments [26]. Therefore, these PRGs are
highly expressed in GBM and their high expression is related to poor survival and disease
progression. They also correlate with tumor infiltration by immune cells and immune
therapy indicators such as TMB genes. PRGs offer valuable GBM biomarkers for prognostic
and immune therapy response evaluations.

The induction of other PCDs, such as necroptosis and pyroptosis, may improve
chemotherapy performance as other PCDs could overcome apoptosis [18]. Upregulated
genes are involved in protein folding (e.g., HSP90AA1 and HSP90AB1) and molecular
chaperones (e.g., HSPB1 and CRYAB) are also associated with autophagy, apoptosis, and
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generalized stress responses [27]. Autophagy is an additional form of cell death to those
previously mentioned. Autophagy plays a complex role in tumor development; it is trig-
gered by ROS and is cross-linked with apoptosis and pyroptosis to promote or inhibit
apoptosis under different microenvironmental conditions [28]. Therefore, natural prod-
ucts with a dual role of autophagy inhibition and pyroptosis induction could be an ideal
adjuvant to chemotherapy. Previous research showed that kaempferol could decrease the
mitochondrial membrane potential and increase ROS in glioma cells, which can induce
autophagy and subsequently trigger pyroptosis, indicating that kaempferol has a clinical
potential as a natural molecule against GBM [28]. Baeomycesic acid, derived from the
lichen Thamnolia, is reported to have an anti-inflammatory activity and is specifically active
against 5-LOX [29]. As the main compound in feverfew, parthenolide has been used to
cure migraines and rheumatoid arthritis for a long time. It induces apoptosis in human
cancer cells, with its gene enrichment showing that it mainly regulates apoptosis [30]. So,
parthenolide can be used as a cooperating pharmaceutical agent for the cancer chemother-
apy of various malignancies. Combining drugs with multiple targets and MOAs can inhibit
cancer cell proliferation or reduce metastasis under cooperation with parthenolide [31].
In this research, parthenolide could suppress the expression of most subtype cells, in-
cluding endothelial cells, microglia, macrophages, T cells, dendritic cells, etc. Therefore,
parthenolide could function as a lead molecule in a combined therapy for GBM. Rutin
(quercetin glycoside) is a natural product that is widely found in fruit and vegetables and
has significant anticancer effects [32]. However, its anticancer mechanisms have not been
clearly elucidated. Nevertheless, its enrichment analysis showed responses to oxidative
stress. Luteolin also has an anti-inflammatory and neuroprotective effect via the inhibition
of NF-kB and MAPK activation [33].

Our study aimed to support the use of natural lead molecules as adjuvants with
chemotherapeutic drugs for GBM treatment. Precision/personalized herbal medicines are
both timely and essential for modern therapeutics due to unsatisfactory clinical outcomes,
defective treatment strategies, and adverse effects to existing drugs. In addition, biomarker
innovations stand the test of real-life practice and their implementation in clinical settings
and societies. Therefore, the strategy developed in this study could serve as a model for
personalized chemotherapy with natural products as treatment adjuvants that have an
excellent therapeutic effect and low toxic side effects.

4. Materials and Methods

A workflow chart based on an integrative strategy of pharmacogenomic analyses to
investigate combined therapies is shown in Figure 7.Pharmaceuticals 2023, 16, x FOR PEER REVIEW 25 of 30 
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4.1. Single-Cell Sequencing Analysis

The scRNA-seq raw sequencing data of GSE162631 were downloaded from the
GEO database [34]. These included eight sample datasets, including (R1–4) tumor cores
(GSM4955731, GSM4955733, GSM4955735, and GSM4955737) and tumor peripheral tissue
(GSM4955732, GSM4955734, GSM4955736, and GSM4955738). These samples were ana-
lyzed using GPL24676 Illumina NovaSeq6000 (Homo sapiens). These datasets for the eight
samples were analyzed using the R package (Seurat) [35]. The percentage of mitochondrial
genes was calculated to collect high-quality single-cell data with a high fraction of reads in
cells (80%) and a low fraction of cells enriched in mitochondrial genes (5%). The cells were
filtered after analyzing the distribution correlation between the genes, mitochondrial genes,
and RNAs. A standardized gene expression was used to calculate the differentially ex-
pressed genes using the R function (FindVariableFeatures) [36]. The normalized data were
used to perform principal component analysis (PCA) and subsequently plotted by a shared
nearest-neighbor algorithm (t-SNE), which colored various clusters with specific features to
visualize the gene expression. The differentially expressed genes (DEGs) between subpop-
ulations were presented in annotated matrices and the top 16 DEGs related to each cluster
were used to plot a heatmap. The Seurat function (FindAllMarker) was used to identify a
set of signature marker genes for each cluster compared with all other cells [37]. The top
four cell markers were based on each cluster’s expression level (15 clusters in the t-SNE
figure) to show these four genes with cell-specific expressions (Supplementary Figure S5).
Each cluster’s cell type was identified by searching the CellMarker database [38].

4.2. Pyroptosis Gene Analysis

The pyroptosis-related genes were collected from The Human Gene Database (GeneCards)
with screening criteria of a relevance score > 1 (102 genes). GeneCards is a compre-
hensive database of functions involving proteomics, genomics, and transcriptomics [39].
The intersection of DEGs associated with the GBM single-cell sequencing dataset and
pyroptosis-related genes (PRGs; 102) was determined as GBM-related pyroptosis genes.
These intersected genes could be used in subsequent prognostic prediction, immune abun-
dance, and drug prediction analyses. The mutation frequencies and oncoplot waterfall plots
of the 30 intersected PRGs in the GBM scRNA-seq samples were generated by analyzing
the expression distribution of the mRNA of 30 PRGs in tumor and normal tissues. For the
GBM patients from the TCGA database, tumoral RNA-seq data were downloaded from the
Genomics Data Commons (GDC) data portal (TCGA) and the paired normal tissue samples
were downloaded from the same portal. Somatic datasets and copy number variation
(CNV) data for GBM were also downloaded from TCGA and the University of California
Santa Cruz (UCSC) Xena website. The genetic mutation data and clinical data from the
TCGA database were downloaded to identify the somatic mutations of the PRGs. Mutation
data were downloaded and visualized using the matfools package in R (R Foundation
for Statistical Computing, Vienna, Austria, RRID:SCR_003302). A horizontal histogram
showed that the genes had a higher mutation frequency in GBM patients [40,41]. The
PRG-TF-miRNA regulatory network was constructed using the miRNet database, an online
tool with information generated from miRNA investigations. This database is associated
with various miRNA databases such as TarBase and miRTarBase. Briefly, 30 PRGs were
uploaded to the query box of GENES, specifying the organism (Homo sapiens), ID type
(official gene symbol), tissue (human-only, with brain), which were targeted by miRNA
and TF in the database of TRUST. The protein–protein interaction (PPI) network of PRGs
was built using the STRING database.

4.3. The Prognostic Value of Pyroptosis-Related Genes

Raw counts of RNA-seq data and corresponding clinical information were down-
loaded from the TCGA database. The survival difference of PRGs between the above two
groups was compared using a log-rank test with a Kaplan–Meier (KM) survival analysis.
For the KM curves of the 30 PRGs, p-values and hazard ratios (HRs) with a 95% confidence
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interval (CI) were created by a univariate Cox proportional hazard regression using the R
packages survival and survminer [42]. The top eight genes with the highest hazard ratio val-
ues were selected to build the prognostic model based on the least absolute shrinkage and
selection operator (LASSO) regression algorithm for the feature selection using a ten-fold
cross-validation via the R package glmnet [43]. Nomogram, another predictive prognostic
model based on biomarkers and clinical parameters (i.e., age, gender, and stage), was used
to perform the univariate and multivariate Cox regressions. The forest plots showed the
p-value, HR, and 95% CI of each variable obtained using the R package forestplot [44]. The
nomogram was developed based on multivariate Cox proportional hazard analysis results
to predict 1-, 2-, and 3-year overall recurrence. The factors used to calculate the recurrence
risk for individual patients were visualized as a graphical presentation via the R package
rms [45]. The closer the nomogram model was to the calibration curve, the better the model
prediction results.

4.4. The abundance of Immune Cells and Tumor Mutation Burden in GBM

The association between prognostic PRGs and immune infiltration was investigated
using the Tumor Immune Estimation Resource (TIMER) based on the LASSO model with a
risk score. According to the model, the higher the score, the greater the risk. Several im-
mune cell markers in TIMER and Gene Expression Profiling Interactive Analysis (GEPIA)
were used to characterize immune cells, including B cells, CD8+ T cells, CD4+ T cells,
macrophages, neutrophils, and myeloid dendritic cells [28]. In addition, the correlation
between PRGs and tumor mutation burden (TMB) was examined using Spearman’s calcu-
lation between gene expression and TMB using the R package ggstatsplot. A p-value of
less than 0.05 was considered to be statistically significant [46,47].

4.5. Drug Prediction, Drug Sensitivity, and Drug Validation

The drug prediction for GBM treatment was carried out using Enrichr platforms based
on the GBM-related PRGs (30 genes); an adjusted p-value threshold of 0.05 was used to
screen the repurposed drugs. A Sankey diagram was constructed based on the results
of Enrichr with the p-value, gene ratio, and gene counts calculated via the R package
ggaluval [48]. The top 300 DEGs, which included 150 upregulated and 150 downregulated
genes ranked by the absolute log 2 or fold change values in descending order, were selected
to query CMap for therapeutic agents. The connectivity scores in the result of the CMap
query ranged from −1 to 1, indicating the similarity of the gene expression profile between
the query signature and the CMap instance. Among the scores, a positive connectivity score
indicated the similar induction of an expression change by a query signature from diseased
samples compared with the pertubagen in the CMap database, which could serve as an
inducer. In contrast, the therapeutic agents could be selected from those with high negative
connectivity scores because they displayed reverse effects on the gene expression [49]. The
top-scoring 21 natural products with the highest relevance scores from the CMap results
were selected to query their targets via the SymMap platform or to predict their targets
using the PharmMapper Server or Similarity ensemble approach (SEA) Server, based on
their 3D structures downloaded from PubChem. The targets of these 21 natural products
were intersected with each cell type’s top 50 signature genes (15 clusters from the scRNA-
seq GBM dataset). The intersected results were used to build a Sankey diagram to show
these 21 natural products’ combined therapy on 15 different cell types of GBM.

5. Conclusions

Our study identified five top-scoring natural products: parthenolide, rutin, baeomycesic
acid, luteolin, and kaempferol. These natural products exhibited different mechanisms of ac-
tion, including NF-kB inhibition, antioxidant activity, lipoxygenase inhibition, glucosidase
inhibition, and estrogen receptor agonism, respectively. Furthermore, our analysis of cell-
type-specific differential expression-related targets revealed that the top five subtype cells
targeted by natural compounds in GBM were endothelial cells, microglia/macrophages,
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T cells, dendritic cells, and neutrophils. Notably, parthenolide demonstrated the ability
to suppress the expression of most subtype cells, including endothelial cells, microglia,
macrophages, and dendritic cells. Therefore, parthenolide shows promise as a lead molecule
in a combined therapy for GBM cases. Our findings support the potential of a polypharma-
cological approach using natural lead molecules to overcome chemotherapy drug resistance
and enhance the effectiveness of GBM treatment. This approach offers a new model for the
development of personalized therapeutic strategies and identifying first-in-class clinical
leads. It can also contribute to the emergence of biomarker-informed personalized herbal
medicine. However, it is important to acknowledge the limitations of our study; further
experiments are needed to validate the efficacy and safety of these natural lead molecules
in combination with chemotherapeutic drugs. Nonetheless, our study provides valuable
insights and lays the foundation for future innovative research on combined therapies
against GBM.

Supplementary Materials: The following information can be downloaded at: https://www.mdpi.
com/article/10.3390/ph16111533/s1, Figure S1: Single cell data manipulation and QC analysis.
(A) Percentage of mitochondria; (B) Feature scatter of mRNA distribution; (C) Principal component
analysis (PCA) of the dataset; (D) Volcano scatter of gene expression; Figure S2: Protein-protein
interaction (PPI) network and the correlation analysis of pyroptosis-related genes in GBM; Figure S3:
The overall association between the abundance of immune cells and the expression of pyroptosis-
related genes; Figure S4: The correlation between top 8 pyroptosis-related genes (PRGs) and TMB
(TIMER) in GBM. The horizontal axis in the figure represents the expression distribution of the
gene, and the ordinate is the expression distribution of the TMB score. The density curve on the
right represents the distribution trend of the TMB score. The upper-density curve represents the
distribution trend of the gene, the value on the top side represents the correlation p-value, correlation
coefficient, and correlation calculation method. Figure S5: The top 4 cell markers are based on
each cluster’s expression level (15 clusters in TSNE figure) to show these 4 genes with cell-specific
expression. Row 1 represents cluster 0 to cluster 3 (from left to right); row 2 represents cluster 4
to cluster 7 (from left to right); row 3 represents cluster 8 to cluster 11 (from left to right), row 4
represents cluster 12 to cluster 14 (from left to right). Table S1: The 185 pyroptosis-related genes
collected from The Human Gene Database (GeneCards) with screening criteria of relevance score > 1
(102 genes).
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