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Abstract: Ovarian cancer (OC) is one of the most lethal gynecological malignancies. The use of
biological compounds such as non-coding RNAs (ncRNAs) is being considered as a therapeutic
option to improve or complement current treatments since the deregulation of ncRNAs has been
implicated in the pathogenesis and progression of OC. Old drugs with antitumoral properties have
also been studied in the context of cancer, although their antitumor mechanisms are not fully clear.
For instance, the antidiabetic drug metformin has shown pleiotropic effects in several in vitro models
of cancer, including OC. Interestingly, metformin has been reported to regulate ncRNAs, which could
explain its diverse effects on tumor cells. In this review, we discuss the mechanism of epigenetic
regulation described for metformin, with a focus on the evidence of metformin-dependent microRNA
(miRNAs) and long non-coding RNA (lncRNAs) regulation in OC.
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1. Introduction
1.1. Ovarian Cancer

Ovarian cancer (OC) is a lethal gynecological malignancy. According to the GLOBO-
CAN 2020 statistics, there were 314,000 new cases and 207,000 deaths in the world, project-
ing a 100% increase in OC deaths by 2040 [1]. Epithelial OC (EOC) is the most common
subtype of OCs (representing over 95% of OC) and is characterized by non-specific symp-
toms and late diagnosis, which results in poor prognosis. High-grade serous epithelial OC
(HGS-EOC) is very aggressive and represents 75% of OC [2,3].

From a molecular point of view, inflammation and angiogenesis (the formation of new
blood vessels from pre-existing ones) are two important and connected processes involved
in the progression, chemoresistance, and dissemination of OC [4,5]. Chronic inflammation
is strictly related to cancer risk, producing an increase in cell proliferation and reduced
DNA repair [6]. Both extrinsic and intrinsic inflammation (produced by the immune system
and by the own cancer cells, respectively) contribute to multiple hallmark capabilities by
supplying bioactive molecules to the tumor microenvironment, including growth factors
that sustain proliferative signaling, survival factors that limit cell death, proangiogenic
factors, extracellular-matrix-modifying enzymes that facilitate angiogenesis, invasion, and
metastasis, and inductive signals that lead to the activation of epithelial-mesenchymal
transition (EMT) [7]. In EOC, increased expression of cyclooxygenase (COX)-1 and COX-2,
and the increase in inflammatory mediators, such as prostaglandin E2 (PGE2), have been
associated with poor prognosis [8–10]. The inflammatory signaling promotes the survival
of cancer cells and causes genomic instability, allowing mutant cells to escape cell cycle
arrest and apoptosis [11].

Another key characteristic of EOC is its high angiogenesis potential, since EOC cells
produce several angiogenic factors, such as the vascular endothelial growth factor (VEGF)
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family, angiopoietins, neurotrophins, fibroblast growth factors (FGF), and platelet-derived
growth factor (PDGF), among others [12,13]. This knowledge has served to develop
several anti-angiogenic therapies that are being tested in patients with OC [12], including
Bevacizumab, a monoclonal antibody against VEGF-A that was approved by the FDA in
2018 for use in patients with advanced-stage OC.

1.2. Current and New Approaches for OC

The current treatment for EOC is debulking surgery. Primary cytoreductive surgery
followed by adjuvant chemotherapy remains the standard treatment for EOC in advanced
stages [14]. Despite optimal surgery and chemotherapy, ∼70–80% of patients with EOC
will develop disease relapse [14,15], indicating the need to improve the existing therapies.

New therapeutic alternatives have been studied for OC; some of them are natural
compounds, such as flavonoids and polyphenols, which have shown antitumoral effects in
several kinds of cancer, including OC [16]. Other natural compounds, such as withanolides
(bioactive molecules isolated from Whitania somnifera or Indian ginseng), have shown
enhanced therapeutic activity as anticancer drugs, suppressing growth and metastasis in
OC models [17,18]. In this line, the design of small peptides that inhibit mutant oncogenic
proteins, such as K-Ras, one of the major gene mutations correlated with OC occurrence [19],
has promising results [20]. On the other hand, the use of repurposing drugs (or the
investigation of approved drugs for new therapeutic purposes, such as cancer treatment)
is being considered as a therapeutic approach in OC [14]. Thus, drugs such as metformin
have been studied in in vitro and in vivo models and are currently being tested in several
clinical trials as a complementary therapy for OC.

1.3. Metformin in OC

Evidence from retrospective studies has shown that the use of some drugs, such as
metformin, could decrease OC incidence and mortality in diabetic patients [21]. Metformin
is a widely used drug for the treatment of metabolic disorders, such as type 2 diabetes mel-
litus, metabolic syndrome, gestational diabetes, and polycystic ovarian syndrome [22,23].
Metformin produces normoglycemia by decreasing hepatic glucose production, the in-
testinal absorption of glucose, and improving insulin sensitivity, thus promoting glucose
uptake and utilization by peripheral tissues [22]. Metformin enters the cell through organic
cation transporters (OCTs) and multidrug and toxin extrusion transporters [24,25] and is
accumulated in tissues that express OCT transporters, such as the ovary [26–28], which
are, therefore, adequate targets for metformin action. In the context of cancer, the direct
antitumoral effects of metformin are pleiotropic and involve several molecular targets at
different levels in the tumoral cell, including epigenetic regulation (changes in cell function
without alterations in the DNA sequence) [29].

In vitro experiments showed that metformin decreased EOC cell proliferation by
inducing cell cycle arrest and altering glucose and lipid metabolism [30,31]. In vivo exper-
iments showed that metformin treatment decreased OC growth and the presence of cell
proliferation markers (such as Ki-67 and cyclin D1), as well as metastasis [32,33]. Most
of these antitumoral effects exerted by metformin depended on the activation of the en-
zyme 5′ adenosine monophosphate-activated protein kinase (AMPK), which induces p53
phosphorylation (S15), which is required for cell cycle arrest [34]. In addition, high doses
of metformin inhibited the mitochondrial respiratory chain complex I, activating AMPK,
increasing reactive oxygen species (ROS), and producing a glycolytic switch in OC cells [35].

In addition to its anti-proliferative effects, metformin treatment inhibits both angio-
genesis and metastatic spread in OC models [32,33]. In vitro and in vivo studies showed
that mechanistic inhibition of angiogenesis by metformin involves the inhibition of the
expression of angiogenic factors, such as VEGF, as well as a decrease in endothelial cell
migration [36] and the polarization of tumor-associated macrophages (TAMs) [37].

On the other hand, metformin has been described to prevent the EMT phenotype
in vitro [38], which is associated with cell cycle arrest and the accumulation of OC cells
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in the S-phase of the cell cycle [39]. In agreement with the last point, several in vitro and
in vivo studies have shown that platinum or taxane therapy allows OC cells to acquire
a mesenchymal phenotype [40–42]. EMT proteins such as Snail, Slug, Twist-1, and Zeb-
1 contribute not only to OC dissemination but also increase cisplatin and carboplatin
resistance in OC cells [41,43–45]. In addition to these antecedents, evidence suggests
that metformin targets cancer stem cells: a phase II clinical trial showed that metformin
decreased the population of aldehyde dehydrogenase (ALDH)(+) and CD33(+) cells in
ovarian tumors [46]. All of this evidence could explain the inhibitory effects of metformin
on the metastatic behavior of OC cells.

Metformin has pleiotropic effects and targets OC cells at multiple levels. Since non-
coding RNAs (ncRNAs) can regulate several proteins and produce multiple changes at
cellular levels, it is plausible that the antitumoral effects of metformin in OC could be
explained by ncRNA regulation. In fact, recent evidence has shown that metformin treat-
ment could regulate the expression of ncRNAs such as microRNAs (miRNAs) and long
non-coding RNAs (lncRNAs) to exert antitumoral effects.

Few studies have shown that the antitumor effects of metformin can be attributed
directly, or at least in part, to the modulation of ncRNAs in OC. In this review, we dis-
cuss the existing evidence regarding how metformin could modulate the levels of some
important ncRNAs in OC. Since the studies are limited, we decided to discuss a possible
connection between the changes in some ncRNAs in OC progression and their modulation
by metformin, with a focus on miRNAs and lncRNAs.

2. Methodological Approach: Search Strategy and Articles Inclusion Criteria

We searched the PubMed database for articles that described the effects of metformin
on cancer cells and whose antitumoral mechanisms are related to the modulation of ncR-
NAs. Articles were published between 2006 and 2023. The following search terms were
used: (“metformin”) AND (“cancer” OR “carcinoma”) AND ((“noncoding RNAA”; OR
“ncRNA”) OR (“microRNA” OR “miR”) OR (“long noncoding RNA”; OR “lncRNA”) OR
(“circRNA” OR “circular RNA”)). A total of 255 potential studies were found through
database searching, and an initial screening was performed, including only articles written
in English.

The PubMed database was also used to search for articles describing relevant onco-
genic ncRNAs in OC that are regulated by metformin, as indicated in the former articles
found. The following search terms were used: “miR-21” AND (“ovarian cancer”; OR
“ovarian carcinoma”); “miR-27a” AND (“ovarian cancer”; OR “ovarian carcinoma”); “H19”
(long non-coding RNA H19) AND (“ovarian cancer”; OR “ovarian carcinoma”); “SNHG7”
(mall Nucleolar RNA Host Gene 7) AND (“ovarian cancer”; OR “ovarian carcinoma”). The
number of articles found related to relevant oncogenic ncRNAs in OC was 88 (miR-21),
22 (miR-27a), 39 (H19), and 4 (SNHG7).

To discuss and propose the new ncRNAs that metformin could potentially regulate
in OC, we considered those articles from the initial screening that explored modulated
ncRNAs by metformin in cancer cells, including OC cells, according to the following criteria:
(1) the articles describe metformin-regulated ncRNAs that are considered oncogenic in
OC, and (2) ncRNAs that are downregulated by metformin. We further considered these
oncogenic ncRNAs according to their relevance in OC development and progression, and
the number of articles that resulted from the PubMed database search.

3. Non-Coding RNAs

Non-coding RNAs (ncRNAs) play a key role in the pathophysiology of many diseases,
including cancer. There are different kinds of ncRNAs: transcripts of less than 200 nt
are small non-coding RNAs, while transcripts bigger than 200 nt are lncRNAs, of which
miRNAs are the main class of ncRNAs [47]. The regulation of the expression of ncRNAs
by metformin may involve epigenetic modifications (for instance, modification of DNA
methylation) as well as transcription regulation and modulation of maturation.
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Figure 1 shows the diagram of miRNA synthesis, which begins with the transcrip-
tion of a primary miRNA (pri-miRNA). Then, an imperfect hairpin structure is cleaved,
producing a smaller hairpin called precursor miRNA (Pre-miRNA). It is exported from
the nucleus to the cytoplasm through exportin 5, a double-stranded RNA-binding protein.
The Pre-miRNA is processed by the RNase III Dicer, a double-stranded RNA nuclease,
producing a small miRNA duplex. In the next step, the miRNA duplex (miR duplex) binds
Argonaute (AGO) proteins, a family of gene-silencing proteins guided by small RNAs,
such as miRNA, that get into specific binding pockets and guide AGO proteins to target
messenger RNAs (mRNA) [48]. After AGO ejects the passenger strand (a strand that will
not be used to form the silencing complex), the guide strand bound to AGO, along with
other proteins, will form the RNA-induced silencing complex (RISC), which will produce
the degradation of the mRNA of complementary sequence to the miRNA or the inhibition
of its translation [49].
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Figure 1. Diagram of microRNA (miRNA) biosynthesis. miR duplex: miRNA duplex comprising
two strands. pri-miRNA: primary miRNA. Pre-miRNA: precursor miR. mRNA: messenger RNA.
Dicer: RNase III double-stranded RNA nuclease. AGO-miR: Argonaute bound to miRNA. RISC:
RNA-induced silencing complex.

4. Mechanisms of ncRNA Biosynthesis Regulated by Metformin

The pleiotropic anticancer effects of metformin have been studied recently through
multiple pathways, including its ability to regulate the expression of ncRNAs [50]. Met-
formin modulates the expression of several ncRNAs in different cancer cells, including OC
cells, affecting their tumor formation and progression capacity [51]. However, most studies
have focused on describing changes in ncRNA levels upon metformin treatment, and very
few have explored the regulatory mechanism by which metformin alters the expression
of these ncRNAs. To help build a more in-depth evidence framework, in this section, we
discuss the previously described mechanisms through which metformin manages to alter
the expression of ncRNAs, with a focus on OC and miR-145.

4.1. Role of Transcriptional Factors in the Metformin-Mediated Modulation of miRNA Expression
p53-Dependent Metformin Effects

The p53 protein is an important and well-studied tumor suppressor transcription
factor. It can regulate the expression of miRNAs either through transcriptional-dependent
modulation and/or post-transcriptional processing and maturation to induce tumor sup-
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pressor biogenesis of miRNAs in several human cancers [52]. Metformin’s ability to
regulate transcription factors to modulate miRNA expression has been studied in cancer
cells. Two reports have shown that increasing levels of miR-34a and miR-23a tumor sup-
pressors by metformin treatment require a concomitant induction of p53 in breast cancer
and hepatocellular carcinoma cells, respectively [53,54]. Neither of these miRNAs were
induced by metformin in p53-deficient or p53-mutant cells, suggesting that wild-type p53
is necessary for metformin to induce tumor suppressor miRNA. Notably, miR-145 is a p53
transcriptional target, and additionally, the direct interaction of p53 with Drosha promotes
miR-145 pri-miRNA processing into its mature and active form in colorectal and breast
cancer cells [55,56]. Studies conducted in the A2780 EOC cell line, which harbors wild-type
p53 [57], have shown that metformin increases p53 protein levels [58] and that doxorubicin
(a p53 activator) treatment causes upregulation of miR-145 levels [59].

Unfortunately, most human malignancies possess mutations in the TP53 genes, includ-
ing high-grade serous carcinomas, which often involve p53 mutations [60]. As reported,
mutants of the p53 protein can exert opposite effects to its wild-type counterpart; that is,
disrupt the processing of pri-miRNAs, lowering the maturation of miR-145 in colorectal
cancer cells [56]. Interestingly, metformin has been shown to downregulate p53 expression
in OV90 cells (EOC cells that carry a mutated TP53 gene [61]). Considering that mutant
p53 downregulates miR-145, a metformin-mediated decrease in mutant p53 levels could
possibly lead to an induction of miR-145 in EOC cells. However, studying the effects of
metformin on miR-145 in this type of cancer cell is still required to prove this mechanism.
In summary, wild-type p53 is necessary for the induction of tumor suppressor miRNAs
(such as miR-34a and miR-23a) by metformin in breast cancer and hepatocellular carcinoma
cells [51,62]. In the case of OC cells, metformin possibly increases miR-145 levels through
the upregulation of wild-type p53 or downregulation of mutant p53, highlighting the
potential versatility of metformin in terms of p53 regulation to positively alter miR-145
levels, whereas miR-145 induction in p53-lacking cells could also be a possibility.

The E2F transcription factor 3 (E2F3) has also been shown to play a role in the
metformin-mediated modulation of miRNA expression. E2F3 belongs to the E2F fam-
ily of transcription factors that have crucial roles in regulating cell cycle progression and
tumorigenesis [63]. E2F3 can have both activating and repressing transcriptional activ-
ity [64]. Metformin negatively regulates oncogenic miR-21 by increasing the expression
of E2F3, favoring the repression of transcription at the miR-21 promoter in breast cancer
cells [65]. In addition, another study carried out by the same authors, conducted in a similar
experimental context, revealed that metformin treatment increases the activity of E2F3 on
the DICER promoter, increasing its expression [66]. In consequence, Dicer-sensitive miR-
NAs, such as tumor suppressor miR-33a, were upregulated by metformin treatment. The
authors of these two reports discuss that their results indicate that both effects mediated by
metformin may be independent of each other and could reflect a tumor- and stage-specific
mechanism. Thus, these results suggest that metformin can influence the activity of E2F3
to repress oncogenic miRNA expression and/or upregulate Dicer expression to promote
tumor suppressor miRNA processing and maturation.

As reported, E2F3 is overexpressed [67], and miR-145 is downregulated [68] in human
OC tissues. In addition, E2F3 was shown to be a direct target of miR-145 in EOC cells [69].
Accumulating evidence has described that E2F3 and miRNAs form negative feedback loops,
where their expression is mutually influenced [64]. Therefore, this kind of relationship
could exist for E2F3 and miR-145 in EOC cells, thus impairing miR-145 expression. Since
metformin can influence E2F3 activity and upregulate miR-145 levels, it could possibly
modulate the E2F3/miR-145 ratio in OC to produce a net increase in miR-145 levels.
However, the role of E2F3 in metformin-mediated regulation of miRNAs, such as miR-145,
remains to be elucidated in EOC.
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4.2. Role of Metformin on Epigenetic Modification of ncRNAs
4.2.1. DNA Methylation of ncRNAs

Epigenetic regulation involves changes in cell function without alterations in the DNA
sequence. It includes DNA methylation, histone modifications, and post-transcriptional
gene regulation by ncRNAs [70].

Metformin downregulates the oncogenic lncRNA H19 (H19) in OC cells by increasing
the methylation level in the H19 promoter region [71]. Additionally, H19 acts as a molecular
sponge to sequester let-7 [72], a miRNA family that acts as a tumor suppressor in EOC [73].
As reported, metformin-mediated downregulation of H19 frees let-7 from sequestration,
thereby increasing its bioavailability in OC cells [71]. A similar effect was observed in
hypopharyngeal cancer cells, where metformin increased the methylation in the promoter
of the oncogenic lncRNA SNHG7 to repress its expression [74]. Consistently, metformin
was also shown to downregulate SNHG7 expression in EOC cells [75]. Notably, as observed
in the H19/let-7 interaction, downregulation of SNHG7 releases miR-3127 (which acts as
a tumor suppressor) from its sequestration, increasing its expression and bioavailability.
Therefore, metformin downregulates oncogenic lncRNAs by inducing hypermethylation
of their promoters, and due to this effect, it also favors the release of tumor suppressor
miRNAs sequestered by lncRNAs, increasing their bioavailability.

However, a contrasting effect of metformin was observed on the methylation status of
miRNA genes. In pancreatic cancer cells treated with metformin, the promoter of the tumor
suppressor miR-663 was hypomethylated, and its expression was increased [76]. Another
study showed that metformin increased tumor suppressor miR-570 by DNA demethylation
of its promoter in osteosarcoma cells [77]. Moreover, a strong body of evidence suggests
that the promoter of the miR-145 gene is highly hypermethylated and that inhibitors of
DNA methylation and DNA methyltransferases (DNMTs) are able to increase miR-145
expression in EOC cells [78,79]. Given all of this background regarding how metformin
upregulates the expression of miR-145 in EOC cells [80], it could achieve this effect through
epigenetic-related mechanisms that lead to hypomethylation of the miR-145 gene promoter.
However, this idea has not been studied yet.

The mechanisms by which metformin alters the methylation state of ncRNA genes
have been related to the ability of metformin to regulate the activity of S-adenosylmethionine
(SAM)-dependent DNMTs. Metformin has been shown to decrease intracellular
S-adenosylhomocysteine (SAH), a strong feedback inhibitor of SAM-dependent DNMTs,
by promoting the enzymatic activity of SAH hydrolase (SAHH) in non-cancerous cells and
breast, endometrial, and hypopharyngeal cancer cells [74,81,82]. Metformin can also modu-
late the expression of DNMTs, downregulating their expression in lung cancer cells [83] and,
conversely, upregulating their expression in hypopharyngeal cancer cells [74]. Therefore,
the influence of metformin on DNMTs and its effects on the methylation status of ncRNAs
appear to be tumor-dependent. Additionally, it seems that metformin could “select” ncRNA
genes for epigenetic regulation since it specifically hypermethylates oncogenic ncRNAs
and hypomethylates ncRNAs. Although this behavior of metformin is consistent with
its proposed anticancer mechanism of action, the relationship between methylation and
gene expression is more complex, and the widely used assumption that hypermethylation
results in gene expression inhibition (and vice versa) may not always be accurate.

4.2.2. Methylation of miRNAs

Metformin can also regulate the expression of miRNAs through mechanisms involving
N6-methyladenosine (m6A) methylation. The role of m6A modifications in ncRNAs is a
new topic of research in cancer that has been extensively reviewed by Ma et al. [84]. One
study reported that metformin decreased the activity of DNMTs on the methyltransferase-
like 3 (METTL3) promoter (an enzyme that causes m6A modifications in RNA), decreasing
its methylation and favoring its expression and activity to promote let-7b expression in lung
cancer cells [85]. Mechanistically, METTL3 methylates pri-let7b, allowing its recognition
by NF-kappa-B-activating protein (NKAP) and heterogeneous nuclear ribonucleoproteins
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A2/B1 (HNRNPA2B1), which assist the Drosha-DGCR8 complex in processing pri-let7b
into mature let-7b. Overall, the evidence shows that metformin can promote the m6A
modification of primary miRNAs, such as let-7b, to favor their maturation.

In OC, METTL3 has been considered an oncogenic gene [86]. Importantly, metformin
has been shown to decrease METTL3 in a mouse breast cancer model [87]. Thus, it is
possible that metformin could alter METTL3 expression in OC to induce tumor suppressor
miRNAs, such as let-7, by an m6A modification-associated mechanism. However, the
findings on the role of m6A modification in ncRNAs are recent, and further studies are
necessary to understand how metformin actually exerts this effect.

4.3. Role of Metformin in miRNA Maturation

Several studies have suggested that post-transcriptional maturation, rather than tran-
scription, is often altered in cancer [88]. Accordingly, pri-miRNAs accumulate and deplete
mature miRNAs in human cancer [89], indicating that the machinery for processing and
maturation of miRNAs is dysregulated in cancer. Notably, metformin has been shown to in-
duce the expression of key processing enzymes of miRNA biogenesis. Metformin treatment
upregulates Drosha and Dicer expression in cholangiocarcinoma and breast cancer cells,
respectively, to modulate miRNA expression [66,90]. On the other hand, decreased Dicer
and Drosha levels represent an oncogenic event in EOC cells and are associated with poor
patient outcomes [91–93]. Interestingly, p70S6 kinase (p70S6K), a downstream effector of
phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt)/mechanistic target of rapamycin
(mTOR) signaling, was shown to affect the miRNA biogenesis machinery in EOC cells [94].
P70S6K phosphorylates tristetraprolin (TTP), preventing its interaction with Dicer, which
specifically promotes the maturation of miR-145. Metformin may also regulate miRNA
expression by influencing the activity of miRNA processing enzymes in OC. As reported,
metformin impairs PI3K/Akt/mTOR signaling and thus decreases the active phosphory-
lated form of P70S6K in EOC cells [58,95,96]. Since metformin can increase miR-145 levels
in EOC cells [80], these findings suggest that metformin may prevent p70S6K activation to
favor miR-145 expression through Dicer and TTP interaction in EOC cells.

5. ncRNA-Related Therapeutic Effects of Metformin in OC

Very few studies have reported that metformin’s anticancer effects may involve the
regulation of ncRNAs in OC. Together with the studies that our group has carried out
regarding the regulation of tumor suppressors miR-145 and miR-23b by metformin [80],
only two additional studies reported an influence of metformin on ncRNAs in OC [71,75].
These studies showed that treatment of OC cells with metformin reduced the expression
of the lncRNAs H19 and SNHG7, which was associated with anticancer effects. Because
there are few studies related to this topic in OC, in this section we describe some important
ncRNAs in the pathogenesis and progression of OC and discuss their potential as relevant
metformin targets.

5.1. miR-23b and miR-145 in OC

miR-23b and miR-145 are two oncosupressor miRNAs that are downregulated in EOC
cell lines and EOC tissues, as we have reported [97]. To date, our group has shown that met-
formin increases the expression levels of tumor suppressors miR-145 and miR-23b in EOC
cells and prevents the nerve growth factor (NGF)-induced decrease in these miRNAs [80].
These changes coincided temporarily with a decrease in the expression and transcriptional
activity of c-MYC upon metformin treatment. Other authors have shown that c-MYC can
reduce the expression of both miR-145 and miR-23b in cancer [98,99]. Furthermore, a study
performed with a small sample of EOC patients showed that metformin intake reduced
the presence of oncoproteins related to cell proliferation, such as c-MYC and survivin [80].
Consistent with these findings, we have further shown that NGF reduces the transcriptional
activation of the miR-145 promoter while inducing c-MYC protein levels in EOC cells [68].
Therefore, NGF could repress miR-145 and miR-23b, and these effects could be mediated by
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c-MYC activation, while in the presence of metformin, this NGF ability is impaired. These
observations suggest that metformin potentially modulates transcription factors, such as
c-MYC, to increase tumor suppressor miRNA levels in OC cells.

5.2. miR-21 in OC and Other Cancers

miR-21 is considered a pro-tumoral miRNA in EOC since its overexpression increases
cell proliferation, invasion, and migration abilities of EOC, and decreases apoptotic cell
death in EOC tumors [100–103]. Additionally, miR-21-5p is involved in paclitaxel resistance
in EOC cells because it can sensitize OC cells to paclitaxel, reducing cell proliferation,
migration, invasion, and EMT [104].

Although there is vast evidence of the pro-tumoral role of miR-21 in EOC, and met-
formin has been shown to downregulate this miRNA in several kinds of cancer, the direct
effect of metformin on miR-21 in EOC has not been studied yet. Nevertheless, a con-
nection must exist between metformin and miR-21 since metformin downregulates this
miRNA in a diversity of human cancer models. For instance, a reduction of miR-21 levels
in breast cancer cells following metformin treatment has been assessed both in vitro and
in vivo [65,105]. Also, in chemo-resistant colon cancer cells (highly enriched in cancer stem
cells), metformin causes a marked reduction of miR-21 expression, and this effect is further
accomplished in combination with oxaliplatin treatment [106]. Metformin has been shown
to act synergistically with oxaliplatin to induce cell death, inhibit colonosphere formation
and cell migration, and inhibit tumor growth of colon cancer cells. In the case of renal
cancer cells, metformin treatment can decrease miR-21 expression and increase PTEN levels,
impairing PI3K/Akt signaling and cell proliferation [107]. A similar effect has been shown
in hypopharyngeal cancer cells, in which metformin treatment inhibited miR-21 expression,
causing a decrease in cell proliferation [54].

Additionally, metformin has shown anti-angiogenic effects in EOC cells; it improves
OC sensitivity to paclitaxel and platinum-based drugs and decreases the metastatic po-
tential of OC cells [31,80,108]. Since the upregulation of miR-21 has been described in
these processes [109,110], it is possible that these effects could be mediated by a metformin-
dependent decrease in miR-21.

5.3. miR-27 in OC and Other Cancers

Another important miRNA is miR-27a, which represents an important oncomiR in-
volved in OC development, progression, and chemoresistance. It stimulates cell prolifera-
tion, cell cycle progression, migration, invasion, and EMT of EOC cells by directly targeting
a tumor suppressor transcription factor, forkhead box O1 (FOXO1). Metformin has been
shown to downregulate miR-27a in cancer cells of several origins. For example, in breast
cancer cells, metformin inhibits growth and promotes apoptosis by decreasing miR-27a
levels [111]. Additionally, the expression of miR-27a is upregulated in taxol-resistant EOC
cells, which in turn could increase multidrug-resistant 1 (MDR1) expression. Since miR-27a
could directly target AMPK [111], metformin could activate AMPK by downregulating
miR-27a in cancer cells. On the other hand, miR-27a levels decreased upon metformin treat-
ment in pancreatic cancer cells, upregulating transcription factor repressors (zinc finger and
BTB domain-containing protein 10 (ZBTB10)) [112] of the specificity protein (Sp). This leads
to downregulation of Sp1/3/4 transcription factor and several pro-angiogenic Sp-regulated
genes, including bcl-2, survivin, cyclin D1, VEGF, VEGF receptor, and fatty acid synthase,
which may account for the antitumoral effects of metformin in pancreatic tumor growth.
The effect of metformin on miR-27a has not been assessed yet in OC. Since miR-27a is also
an important oncomiR that has overlapping target genes with miR-21, its downregulation
could explain in part the anti-angiogenic, anti-metastatic, and chemo-sensitizing effects of
metformin in OC.

In summary, solid scientific evidence has shown that metformin can regulate miRNA
abundance, such as miR-145 and miR-23b, in EOC. On the other hand, metformin regulates
miR27a and miR21 in different kinds of cancer, suggesting that metformin could be impli-
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cated in the regulation of these miRNAs in OC. However, metformin not only modulates
the expression and abundance of miRNAs but also lncRNAs (Table 1 and Figure 2). In
fact, a wide variety of these ncRNAs can be regulated by metformin. Next, we will review
the evidence of the effects of metformin on two very important lncRNAs in EOC: H19
and SNHG7.

Table 1. Effects of metformin on lncRNA levels and its biological effects in different models of cancer.
SAHH: S-adenosyl homocysteine hydrolase. d: day. n/a = not assessed in the study.

Cancer Experimental Model Metformin Dose lncRNA Regulation Target Biological Effects Ref.

Bladder 5637 cells 10 and 20 mM UCA1 Down n/a Inhibits cell proliferation and
glycolysis [113]

Breast

MCF-7 cells 2 mM H19 Down SAHH Reduces cell viability [82]

MDA-MB-231 cells 10 and 20 mM HOTAIR Down n/a
Decreases cell viability,

migration, and invasion, and
suppresses EMT

[114]

MCF-7 cells

1, 5, and 20 mM MALAT1

Up n/a

Inhibits cell proliferation and
migration, induces apoptosis,

and induces autophagy and ER
stress markers

[115]1 and 20 mM HOTAIR

20 mM DICER1-
AS1

10 and 20 mM LINCO01121

20 mM TUG1

MCF-7 cells 2, 5, and 10 mM H19 Down n/a Induces ferroptosis by inhibiting
autophagy [116]

MCF-7 cells resistant
to tamoxifen 5 mM GAS5 Up n/a

Increases sensitivity to tamoxifen
by inhibiting cell growth and

inducing apoptosis
[117]

Cervical HCC-94 cells 100 uM
H19

Down n/a Inhibits cell viability [118]
FTX

Colorectal SW480 and SW620
cells 20, 40, and 80 mM UCA1 Down n/a Suppresses cell proliferation and

promotes apoptosis [119]

Endometrial

ARK2 cells and
endometrial cancer

patients

2 mM in cells, 750
mg/d up to 2250
mg/d in patients

H19 Down SAHH
Alters DNA methylation genome
widely. Reduces cell viability and

tumor cell proliferation
[82]

Endometrial cancer
patients

750 mg/d up to 2250
mg/d H19 Down n/a Reduces H19 expression [120]

Gastric

AGS cells 20 mM H19 Down n/a
Inhibits cell proliferation,

invasion, and migration, and
suppresses metastasis

[121]

HR, AZ-521,
NCI-N87, and TSGH

cells

10 mM H19
Down

n/a Inhibits cell proliferation and
invasion

[122]
1, 5, and 10 mM RBMS3-AS3 n/a

Hypopharyngeal
FaDu cells and

xenograft mouse
model

2,4,6,8, and 10 mM in
cells and 8 mM in

mice
SNHG7 Down SAHH

Inhibits cell proliferation and
tumor growth. Sensitizes to taxol

and radiotherapy
[74]

Liver cancer
HepG2, SNU-449,

and SK-Hep-1 cells 10 and 20 mM HULC Down n/a Decreases cell growth [123]

HepG2 cells 7.57 µg/ml AF085935 Down n/a Inhibits cell proliferation [124]

5.4. lncRNA H19 in EOC and Its Regulation by Metformin

H19 is a lncRNA widely considered an oncogene in various types of cancer, including
EOC, and it is critically involved in tumor development, malignant progression, and
chemoresistance [125]. H19 is highly expressed in human ovarian tumor tissues and has
been associated with cancer progression and poor patient prognosis [126,127]. Moreover,
high levels of H19 can also be detected in ascite fluids from OC patients [128], suggesting
a role in metastasis development. Knockdown of H19 has been shown to decrease cell
proliferation, migration, and invasion in OC cells [129–131]. In addition, H19 acts as a
molecular sponge of miRNAs [127,132], and controls OC metabolism (favoring the Warburg
effect) [133]. Moreover, H19 also participates in the development of chemoresistance in
EOC. H19 can enhance the chemoresistance of OC cells to carboplatin by antagonizing
miR-29, which increases multidrug resistance proteins, such as MDR1 and MRP1 [134].
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LncRNA H19 contributes to enhancing the growth and cell cycle of cancers and inducing
EMT and, therefore, promotes metastasis [135]. Importantly, the knockdown of H19 in
cisplatin-resistant EOC cells improves cisplatin sensitivity in vitro and in vivo through
glutathione metabolism impairment [136]. This report indicated that H19 is involved in
tumor development, malignant progression, and resistance to chemotherapy in EOC, and,
therefore, it profiles as a relevant therapeutic target.
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Figure 2. Mechanisms of ncRNA biosynthesis by metformin. (A) Metformin induces the expression
and activity of wild-type p53 to upregulate miR-34a and miR-23a in carcinoma cells and represses
miR-21 expression by promoting the activity of E2F3 on the miR-21 promoter while inducing miR-
33a by E2F3-mediated upregulation of DICER. In EOC cells, metformin prevents the NGF-induced
decrease in miR-145 and miR-23b and increases the expression levels of these miRNAs. We propose
that miR-145 is upregulated by metformin in EOC cells through the induction of p53 (which regu-
lates transcription and maturation), inhibition of mutant p53 expression (which disfavors Drosha
activity on pri-miR-145), and Akt/mTOR/p70S6K signaling impairment (which hinders pre-miR-145
processing by Dicer). (B) In EOC cells, metformin treatment induces hypermethylation in the H19
and SNHG7 promoters, increasing the bioavailability of let-7 and miR-3127 by releasing them from
lncRNA sequestration. Metformin-mediated SNHG7 promoter hypermethylation has been associated
with DNMT induction in hypopharyngeal cancer cells. In contrast, metformin treatment produces
miR-663 and miR-570 promoter hypomethylation (upregulating their expression) in pancreatic and
osteosarcoma cancer cells, respectively. We propose that miR-145 is upregulated by metformin
through hypomethylation of its promoter in EOC cells. Metformin inhibits DNMTs binding to the
METTL3 promoter, lowering its methylation status, and increases METTL3 expression, allowing m6A
modification of pri-let-7b, which binds m6A reader factors (HNRNPA2B1 and NKAP). These produce
Dicer recognition and processing of pri-let-7b into mature let-7b.
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In terms of how metformin regulates H19 in EOC cells, Yan et al. demonstrated
that metformin decreases H19 expression by altering its promoter methylation, inhibiting
EOC cell migration and invasion [71]. Accordingly, it was previously shown that histone
H1.3 directly represses the expression of the H19 gene in EOC cells through a similar
epigenetic mechanism involving DNA methylation [137]. Downregulation of H19 relieves
let-7 inhibition from H19 sponging, leading to decreased metastasis-promoting genes
such as c-MYC, the high-mobility group AT-hook 2 (HMGA2), and U3 small nucleolar
ribonucleoprotein (IMP3) [71]. Although evidence suggests that the use of metformin
might be useful in targeting H19 in OC therapy, these findings are limited to cell lines, and
further studies are needed to test this metformin effect in vivo. Nevertheless, according to
the above, studies in other cancer types have supported the idea that metformin could be
clinically useful in targeting H19 and producing antitumor effects. For instance, endometrial
cancer patients receiving antidiabetic doses of metformin have reduced H19 expression
levels in the endometrial tumor tissue [82,120]. In preclinical studies, metformin treatment
has been shown to inhibit cell migration and invasion by downregulating H19 expression in
gastric cancer cells [121]. Furthermore, in a mouse model injected intravenously with gastric
cancer cells, metformin suppressed metastasis in a similar way to that of mice that were
injected with H19-knockdown cells. Similarly, a recent study conducted in breast cancer
cells showed that metformin may induce ferroptosis by downregulating H19 [116]. All this
evidence shows that metformin decreases H19 in different cancers, and the pivotal role of
H19 in EOC supports further metformin research as a relevant H19-targeting therapeutic
agent in OC.

5.5. Metformin Regulation of lncRNA SNHG7 in OC

The lncRNA SNHG7, along with the lncRNA H19, is one of the well-studied onco-
genes involved in the development of multiple cancers [138]. However, its study in EOC is
rather scarce. In ovarian tumor tissues, SNHG7 expression was shown to be elevated [139],
suggesting its role as an oncogene. Consistently, the knockdown of SNHG7 in OC cells
decreased their growth, migration, and invasion abilities and inhibited tumorigenesis
in vivo [139]. Additionally, silencing SNHG7 expression enhanced the sensitivity of resis-
tant OC cells to paclitaxel and reduced their migrative and invasive potential [140].

A recent study reported for the first time that metformin enhances paclitaxel sensitivity
and inhibits cell viability, migration, and invasion by decreasing SNHG7 expression in
paclitaxel-resistant OC cells [75]. Simultaneously, metformin was shown to promote miR-
3127 expression, which proved to be a direct target of SNHG7, which acts as a molecular
sponge. Importantly, the regulatory effect of metformin on the SNHG7/miR-3127 ratio was
confirmed in a xenograft model of OC, in which metformin prevented the promotion of tu-
mor growth by SNHG7 overexpression [75]. In addition, metformin can also downregulate
SNHG7 expression in hypopharyngeal cancer cells to inhibit cell proliferation and improve
paclitaxel sensitivity [141]. There is still very little evidence of the SNHG7 oncogenic role
and its regulation by metformin as an anticancer mechanism in OC. However, we hope that
the existing results will encourage further research as metformin increasingly continues to
profile as an attractive therapeutic alternative in OC.

6. Future Directions

The antitumoral effects of metformin, as evidenced in in vitro and retrospective studies,
have supported the study of metformin in non-diabetic patients with different kinds of
cancer. There are more than 400 clinical trials registered in ClinicalTrials.gov that have
tested metformin in patients with and without diabetes with different kinds of cancer.
Several of these trials yielded results; however, the results are contradictory. For instance,
in patients with breast cancer cells, the use of metformin vs. placebo did not significantly
improve invasive disease-free survival in the entire arm. However, ERBB2+ patients had
longer invasive disease-free survival [142]. Similarly, a study of patients with advanced
pancreatic cancer showed that metformin does not improve outcomes in the group treated
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with gemcitabine, erlotinib, and metformin, but the overall survival was significantly
longer in the 16 patients with higher concentrations of metformin [143]. In this line, a
study performed on patients with breast cancer shows two different patterns: metformin
responders and non-responders, suggesting that patients with an increase in oxidative
phosphorylation gene transcription could be resistant to metformin treatment [144].

However, there are some pilot studies that tested the effects of metformin in patients
without diabetes or metabolic abnormalities in a “preoperative window” or in patients
with pre-malignant lesions, which show more consistent results. Table 2 summarizes some
of these studies and their main findings.

Table 2. Summary of findings obtained by studies that tested the pre-operative use of metformin
before cytoreduction or in pre-malignant lesions. IGF-1: insulin-like growth factor 1. IGFBP-7:
insulin-like growth factor-binding protein 7. mTOR: mechanistic target of rapamycin.

Pathology Findings in the Metformin-Treated Group Ref.

Adenoma and polyp recurrence in patients
with a high risk of adenoma recurrence

Reduced the prevalence and number of metachronous
adenomas or polyps after polypectomy [145]

Oral pre-malignant lesions Decrease in cell proliferation in the squamous
epithelium and inhibition of mTOR signaling [146]

Endometrial cancer Decrease in Ki-67 and pS6 staining. Decrease in
plasma IGF-1 and IGFBP-7 [147]

Newly diagnosed women with breast cancer Reduced expression of p53, BRCA1, and cell cycle
pathways following metformin treatment [148]

Localized prostatic cancer Metformin reduced the Ki-67 proliferation index and
trended toward prostatic-specific antigen reduction [149]

Endometrial cancer
Decreased phosphorylated extracellular
signal-regulated kinase (ERK1/2), cyclin D1, Ki-67,
and topoisomerase IIα. Increased p27

[150]

Taking this into consideration, the different metformin responses observed in several
studies could be a consequence of the different metformin concentrations allowed in blood
or tissue, the presence of specific mutations, or a metabolic signature. We think that a
miRNA profile could be useful to characterize patients who may respond better to met-
formin treatment. Even though almost every clinical trial that tested metformin in cancer
patients did not consider the study of the miRNA profile (enrolled in ClinicalTrials.gov),
some of them attempted to measure changes in miRNAs, which are listed in Table 3. The
information provided by these studies can be very valuable in clarifying the differential
response observed in cancer patients treated with metformin.

Table 3. Clinical trials registered in ClinicalTrials.gov that tested metformin and considered
measuring miRNAs.

Study Patient Treatment Aim of Investigation miRNA

NCT05468554
Thyroid cancer
(Phase 3) [151]

Women of reproductive age
diagnosed with thyroid
carcinoma

Metformin
500 mg, 3
times a day

Evaluate the metformin
effect on the fertility of
women treated with 131I
for thyroid cancer

Difference in the
expression of selected
miRNAs (uninformed)

NCT03685409
Oral cancer
(Phase 3) [152]

Both genders (20–70 years),
clinically diagnosed and
histologically confirmed as
having potential oral
malignant lesions

Metformin
500 mg, twice
a day

Effect of systemic
metformin hydrochloride
on the millimeter change in
the largest diameter of the
potential oral
malignant lesion

Numerical differences
between miR-21 and
miR-200 in tissue biopsies
versus saliva at baseline
and at 3 months
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Table 3. Cont.

Study Patient Treatment Aim of Investigation miRNA

NCT03684707
Oral cancer
(Phase 4) [153]

Both genders (20–70 years),
clinically diagnosed and
histologically confirmed as
having potential oral
malignant lesions

Metformin
500 mg, daily

Evaluate lesion size
in millimeters

Measured miRNA31 and
210 in saliva and tissue
biopsy

NCT05292573
Endometrial
cancer
(Phase 3) [154]

Women aged ≥20 years with
histological diagnosis of
simple hyperplasia/complex
hyperplasia (SH/CH)

Metformin
500 mg, twice
a day

Longitudinal follow-up in
women with endometrial
hyperplasia without atypia

The area under the receiver
operating characteristic
curve (ROC curve) (AUC)
of the miRNA panel

7. Conclusions

Increasing scientific and clinical evidence supports the antitumor effects of metformin
in cancer, including OC. Several of its antitumoral effects can be explained as multiple effects
at the post-transcriptional level, which include the modulation of miRNAs and lncRNAs
studied in different models of cancer. Some possible mechanisms that could be implicated
in the antitumoral effects of metformin in OC are the upregulation of miR-145 and miR-
23b and the downregulation of miR-21 and miR-27a. Furthermore, metformin could
downregulate some lncRNAs, such as H19 and SNHG7, which in turn could modulate
miRNA expression and many protein targets of metformin. However, the evidence for the
regulation of ncRNAs by metformin in OC is still scarce and needs to be further investigated.
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