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Abstract: The hERG potassium channel serves as an annexed target for drug discovery because the as-
sociated off-target inhibitory activity may cause serious cardiotoxicity. Quantitative structure–activity
relationship (QSAR) models were developed to predict inhibitory activities against the hERG potas-
sium channel, utilizing the three-dimensional (3D) distribution of quantum mechanical electrostatic
potential (ESP) as the molecular descriptor. To prepare the optimal atomic coordinates of dataset
molecules, pairwise 3D structural alignments were carried out in order for the quantum mechanical
cross correlation between the template and other molecules to be maximized. This alignment method
stands out from the common atom-by-atom matching technique, as it can handle structurally diverse
molecules as effectively as chemical derivatives that share an identical scaffold. The alignment prob-
lem prevalent in 3D-QSAR methods was ameliorated substantially by dividing the dataset molecules
into seven subsets, each of which contained molecules with similar molecular weights. Using an arti-
ficial neural network algorithm to find the functional relationship between the quantum mechanical
ESP descriptors and the experimental hERG inhibitory activities, highly predictive 3D-QSAR models
were derived for all seven molecular subsets to the extent that the squared correlation coefficients
exceeded 0.79. Given their simplicity in model development and strong predictability, the 3D-QSAR
models developed in this study are expected to function as an effective virtual screening tool for
assessing the potential cardiotoxicity of drug candidate molecules.

Keywords: hERG channel blockers; 3D-QSAR; structural alignment; molecular ESP descriptor;
artificial neural network

1. Introduction

The ether-à-go-go-related gene (hERG) encrypts the voltage-gated potassium ion
channel that plays a pivotal role in repolarizing the potential of cardiac action [1]. An
impediment in the hERG channel may substantiate the risk of cardiac toxicity by retarding
ventricular repolarization, which can be visualized explicitly through the extension of the
time from ventricular depolarization to repolarization (QT interval) on electrocardiogra-
phy [2]. In this regard, it is remarkable to note that antiarrhythmics represent the drugs with
the highest potential risk of prolonging the QT interval. Furthermore, antihistamines and
serotonin receptor agonists also bring about the prolongation of the QT interval, leading to
withdrawal due to potential cardiotoxicity [3–5]. Hence, the hERG potassium channel has
emerged as an annexed target against which the off-target inhibitory activities should be
measured in the early stage of drug discovery to avoid side effects [6,7].

In accordance with the necessity for drug discovery, a variety of in vitro experimental
methods for measuring the hERG-related cardiotoxicity have become available, including
radioligand binding assays [8], patch clamp assays [9], and rubidium flux assays [10].
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These experimental techniques have often been too ineffective to cope with a huge num-
ber of small molecules in the early stage of drug discovery [11]. Therefore, a reliable
computational method for estimating the binding affinity of a drug candidate to hERG
would be useful for prioritizing molecules in drug discovery. The development of such
computational methods has been facilitated with the accumulation of chemical informa-
tion about hERG channel blockers in public datasets. Several in silico tools to predict
hERG liability have accordingly been developed using ligand-based methods [12–16] and
structure-based simulation studies [17,18]. In particular, quantitative structure–activity
relationship (QSAR) approaches have been most actively pursued because it became plau-
sible to determine the functional relationship between hERG liabilities and numerical
molecular descriptors [19–22]. Although most QSAR modeling studies adopted one- and
two-dimensional (2D) features as individual molecular descriptors, it was demonstrated
that the accuracy could be improved significantly by incorporating the 3D features of
molecules in the dataset [23].

Since the establishment of the comparative molecular field analysis (CoMFA) model [24],
3D-QSAR methods have been applied in predicting the molecular binding affinities to the
hERG potassium channel [25,26]. Although most numerical molecular descriptors used
in 3D-QSAR models were too imperfect to predict various physicochemical properties
with accuracy, replacing the descriptors prepared with empirical potential functions with
quantum mechanical descriptors proved to enhance the predictive capability [27–29]. In
this study, our goal was to develop a potent 3D-QSAR prediction model for hERG inhibitory
activities using an artificial neural network (ANN) algorithm. By virtue of integrating
a rigorous 3D geometrical alignment protocol with the quantum mechanical molecular
descriptors, the experimental hERG inhibition data for a variety of molecules compared
reasonably well with those calculated with the newly obtained 3D-QSAR prediction models.
These computational methods are expected to be useful for virtual screening of hERG
blockers in the early stage of drug discovery.

2. Results and Discussion

The entire molecular dataset involved a broad spectrum of organic compounds with
varying sizes and inhibitory activities, such that the MWs and pIC50 values ranged from 250
to 600 amu and from 2.40 to 9.41, respectively. Therefore, a total of 490 organic compounds
were divided into the seven subgroups according to MW to ensure that the 3D structural
alignment process would be specific and relevant to each subgroup. Table 1 provides the
breakdowns of the seven molecular subsets for which the 3D-QSAR models for hERG
inhibitory activity were derived and validated separately. For a balanced representation
for model training and validation, the number of molecular elements was kept consistent
among the subsets, and then further subdivided into a 4:1 ratio for training and test sets.

Table 1. Attributes of the seven molecular subsets employed in establishing and validating a 3D-
QSAR prediction model for hERG inhibitory activity.

Molecular
Subset MW Range pIC50 Range No. of Training-Set

Molecules
No. of Test-Set

Molecules

Subset 1 250–300 3.66–8.29 56 14
Subset 2 301–350 3.86–8.82 56 14
Subset 3 351–400 3.49–9.12 56 14
Subset 4 401–450 4.03–9.17 56 14
Subset 5 451–500 4.05–9.06 56 14
Subset 6 501–550 2.40–9.41 56 14
Subset 7 551–600 4.06–8.77 56 14

Achieving an accurate 3D-QSAR prediction model relies critically on the precise 3D
structural alignment of molecules within a dataset. Because only a small deviation from the
perfect molecular superposition may cause a large error in predicting the physicochemical
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properties [30], 3D molecular alignment has been considered the most problematic bottle-
neck in 3D-QSAR modeling. While the majority of molecular alignment techniques involve
superimposing similar chemical groups, there have been innovative approaches proposed
to align entire molecular structures by leveraging the 3D distribution of physicochemical
properties [31–34]. We used the alignment method termed AlphaQ [35], in which pairwise
3D structural alignments were carried out by optimizing the Eij values in relation to the
template molecule. This method has distinct advantages over the conventional ones in
handling structurally diverse molecules without identical chemical moiety because the
calculation of Eij values on the fully quantum mechanical basis adds a layer of accuracy
and sophistication to the approach. Figure 1 illustrates the outcomes of the 3D structural
alignments within each molecular subset. The concentration of core structures in the central
region across all seven cases suggests a consistent pattern in the alignment of molecules
within each subset. The variations in sidechain orientations may provide valuable infor-
mation about the structural diversity of the compounds. These 3D structural alignments
cannot be scored quantitatively like the conventional atom-by-atom matching protocol
because no common molecular core is present. Therefore, it would be desirable to assess the
accuracy of the alignments with the predictive capabilities of 3D-QSAR prediction models
derived from the optimized molecular atomic coordinates.

The reliability of the 3D-QSAR models in predicting molecular pIC50 values was
validated based on their correlation with the corresponding experimental data. Briefly, the
squared Pearson correlation coefficient for both the training set (R2

train) and the test set
(R2

test) were used as metrics to assess the accuracy of the pIC50 prediction models. The
mathematical expressions for these two statistical parameters are as follows:

R2
train = 1−

train
∑

i=1
(yi − ŷi)

2

train
∑

i=1
(yi − ytrain)

2
and R2

test = 1−

test
∑

i=1
(yi − ŷi)

2

test
∑

i=1
(yi − ytest)

2
(1)

Here, y is the average of experimental pIC50 data while yi and ŷi represent the experi-
mental and calculated pIC50 data of molecule i, respectively. The summations in R2

train and
R2

test parameters extend across the molecules in both the training and test sets, respectively.
In Figure 2, the linear correlation diagrams depict the relationship between the ex-

perimental pIC50 values and those computed using the 3D-QSAR models involving the
Eij-based molecular alignments and the quantum mechanical ESP descriptors. The 3D-
QSAR models for pIC50 prediction appear to converge successfully in all seven molecular
subsets as can be inferred from the R2

train value of 0.98 as the smallest. This indicates a
successful optimization of weighting parameters using the ANN algorithm. It is note-
worthy that this optimization holds true irrespective of the MW range in the training set.
The contrast between the high similarity in R2

train values and the extensive range in R2
test

parameters is quite intriguing. It suggests that while the model performs well on the
training sets across different MW ranges, its predictive power varies when applied to the
test sets. The worst prediction results are observed in Subset 3 (Figure 2c) and Subset 6
(Figure 2f), which include the molecules with MWs ranging from 351 to 400 and from
501 to 550 amu, respectively. Such relatively low R2

test values in the two subsets may be
understood on the grounds that Subset 3 and 6 contain the widest range of experimental
pIC50, values including those lower than 3.5 as well as those higher than 9.1 (Table 1).
Despite the potential imperfection in the molecular pIC50 datasets, the difference between
the R2

train and R2
test parameters falls into 0.198 in all seven test cases. This implies that the

issue of overtraining is substantially mitigated in the present 3D-QSAR prediction models
for hERG inhibitory activity.
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Figure 1. Outcomes of 3D structural alignments within the molecules of (a) Subset 1, (b) Subset 2, (c)
Subset 3, (d) Subset 4, (e) Subset 5, (f) Subset 6, and (g) Subset 7. Carbon atoms of the template and
target molecules are denoted in black and green, respectively.
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Figure 2. Correlation diagrams illustrating the relationship between experimental and calculated
hERG pIC50 values for (a) Subset 1, (b) Subset 2, (c) Subset 3, (d) Subset 4, (e) Subset 5, (f) Subset 6,
and (g) Subset 7. Molecules in the training set are marked with black circles, while those in the test
set are highlighted with red circles.
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With respect to the predictive capability of the present 3D-QSAR prediction models
for hERG inhibitory activities, it is worth noting that the R2

test parameters for all seven
molecular subsets are higher than those for predicting hERG inhibition using biomimetic
HPLC measurements [36] and those of QSAR prediction models derived by operating ma-
chine learning algorithms on 2D pharmacophore descriptors [16]. The outperformance of
the present 3D-QSAR prediction model is attributed most probably to the appropriateness
of 3D structural alignments using the quantum mechanical Eij values, as the preparation
of the optimal molecular atomic coordinates plays a crucial role in achieving an accurate
3D-QSAR model. The hERG pIC50 prediction models derived in this work also appear
to outperform the conventional 3D-QSAR methods that involved 3D pharmacophore de-
scriptors in terms of the R2

test values [37]. This suggests that quantum mechanical ESP
descriptors outperform the ensemble of 3D pharmacophore models for hERG binders

The performances of the 3D-QSAR models were further addressed with the external
predictivity parameter (r2

pred) that has been widely used for validating statistical prediction
methods [38,39]. Mathematically, the r2

pred parameter can be expressed as follows:

r2
pred = 1−

test
∑

i=1
(yi − ŷi)

2

test
∑

i=1
(yi − ytrain)

2
(2)

Here, yi and ŷi denote the experimental and calculated data for the molecules in the test
set, while ytrain is the averaged value for molecules in the training set. The r2

pred parameter
has an advantage over the corresponding R2

test parameter in the context that characteristics
of the training set are also reflected in evaluating a prediction model as well as those of the
test set. As shown in Figure 2, the r2

pred parameters associated with predicting hERG pIC50
values range from 0.758 to 0.880 among the seven training and test sets, which exceed the
threshold (0.6) for the qualification of a statistical prediction model [38]. This confirms the
reliability of the present 3D-QSAR models for predicting hERG inhibitory activities. It is
also noteworthy that the disparity between the r2

pred and R2
test values is negligible (less

than 5%) in Subsets 3–7, implying that the training and test sets were divided reasonably
well in coping with the molecules with MWs larger than 350 amu. In contrast, the predictive
capability was affected significantly by the compositions of training and test sets in Subsets
1 and 2, as can be inferred from the relatively large differences between the r2

pred and R2
test

values (Figure 2). Overall, both statistical validation parameters support the reliability of
the present 3D-QSAR models in predicting the molecular pIC50 values of hERG blockers.

The reasonably good predictive capability of the present 3D-QSAR model may also
be elucidated in the context that 3D distribution of quantum-mechanically calculated ESP
would be superior to classical 1D and 2D molecular properties as numerical descriptors [35].
The suitability of quantum mechanical ESP distribution as a numerical molecular descriptor
was also demonstrated in estimating the potencies of ice recrystallization inhibitors [40].
The 3D ESP descriptors developed in this study differ from those in other research, as the
ESP values were computed at every 3D grid point within a shared box encompassing all
molecules in the dataset, rather than focusing solely on surface points. This modification
is actually necessary to obtain an accurate 3D-QSAR prediction model for complicated
biological properties such as hERG inhibitory activity. Such fully quantum mechanical ESP
distribution may also serve as an effective numerical molecular descriptor to derive other
3D-QSAR prediction models for a variety of biochemical and pharmacological properties.

Although the calculated pIC50 values of some molecules deviated substantially from
the experimental counterparts (Figure 2), it was difficult to further enhance the predictive
capability of 3D-QSAR models either by upgrading the quantum chemical methods for
preparing the ESP descriptors or by increasing the number of hidden layers in ANN pa-
rameterizations. The largest errors in hERG pIC50 prediction are observed for CID11692293
and CID71720519 (Figure 3), with the absolute errors of 1.56 and 1.52, respectively. The
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subpar prediction outcomes illustrate that altering just a few molecules in the dataset can
significantly impact the performance of a QSAR model [41]. If CID11692293 is excluded in
the dataset, for instance, the R2

test parameter of Subset 6 increases significantly from 0.808 to
0.915. With respect to the poor predictive capabilities of the two molecules, it is noteworthy
that both CID11692293 and CID71720519 contain a tertiary amine moiety that must be
partially protonated under physiological conditions. Therefore, the large errors in the
calculated pIC50 values of the two molecules may stem from neglecting the contributions
of the protonated form to 3D structural alignments as well as to ESP descriptors. It can
thus be argued that the accuracy of a 3D-QSAR prediction model would increase through
proper modeling of molecular hydrophobicity and hydrophilicity. In this regard, the use
of molecular conformations derived through consideration of solvation effects would be
more desirable than those obtained with quantum chemical calculations in vacuo.
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Figure 3. Chemical structures of CID11692293 and CID71720519.

Similar to other 3D-QSAR methods, it is a limitation of the present hERG pIC50
prediction models that only a single conformation of a molecule can be used both in the
calculation of ESP descriptors and in 3D structural alignments. This restraint seems to
cause an error in predicting the hERG pIC50 values due to the imperfection of the 3D-QSAR
models. We note in this regard that CID11692293 and CID71720519 have seven and six
rotatable bonds, respectively, indicating the presence of multiple conformational degrees
of freedom. Nonetheless, only one conformer was taken into account in predicting hERG
inhibitory activities on the grounds that its potential energy calculated at the RHF/6-31G**
level corresponded to a local energy minimum. A large error can therefore be accumulated
in the predicted hERG pIC50 values because the contributions of other conformational
isomers were excluded during the derivation and the validation of the final 3D-QSAR
models. In a strict sense, the enumeration of all molecular conformations is necessary to
derive accurate 3D-QSAR prediction models because the experimental data utilized in
constructing the model were measured, taking into account all torsional degrees of freedom.
To enhance the predictive capability of a 3D-QSAR model for hERG inhibitory activities,
therefore, it is required to reflect the contributions of multiple conformers of each dataset
molecule both in ESP descriptor calculations and in 3D structural alignments.

The error accumulation problem may become severe when the dataset involves a
number of molecules possessing high conformational degrees of freedom. In this case,
implementing the 4D-QSAR formalism to calculate molecular descriptors, considering the
conformational diversity of individual molecules, would enhance the predictive capabil-
ity [42]. Because a variety of simulation methods for rigorous conformational sampling are
available in the literature, our future research will aim to enhance the performance of the
hERG pIC50 prediction model within the 4D-QSAR framework using an advanced graphics
processing unit architecture.
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3. Materials and Methods
3.1. Preparation of the Molecular Dataset for hERG Channel Binders

Although the accuracy of 3D-QSAR models depends critically on the structural align-
ments among the molecules, it is very difficult to align the 3D molecular structures in
appropriate directions, especially when the dataset involves a broad range of molecular
weight (MW) [43]. The difficulty in achieving an accurate structural alignment is ascribed
in a large part to the ambiguity in selecting a prototypical molecule that has to serve as the
template to align all the other molecules. The alignment errors would be ameliorated if a
dataset contained the molecules with similar MWs [41]. Therefore, the entire molecular
dataset was divided into seven subsets with MW ranges of 251–300, 301–350, 351–400,
401–450, 451–500, 501–550, and 551–600 atomic mass unit (amu). Individual subsets were
then filled with 70 molecular datapoints for the half-maximal inhibitory concentration
(IC50) against the hERG potassium channel, which were extracted at random from the
dataset used in developing the artificial intelligence method for topology-inferred drug
addiction learning [44]. A total of 490 experimental IC50 datapoints for the molecules with
a variety of atomic compositions, shapes, and sizes were thus used to derive and validate
the seven 3D-QSAR prediction models, which were adequate for a certain MW range.
PubChem CID’s, molecular weights, and experimental and calculated pIC50 values of all
the molecules in the dataset were provided in Supplementary Materials. For simplicity, the
experimental IC50 values expressed in molar concentration were converted to the numbers
given by taking the negative decadic logarithm (pIC50). All seven molecular subsets were
then subdivided into training and test set at the ratio of 56:14 to construct a 3D-QSAR
model and to validate the predictive capability, respectively.

3.2. Pairwise 3D Structural Alignments of the Molecules in the Dataset

To prepare the starting point for structural alignments, 3D structures of all the
molecules in the dataset were fully optimized via quantum chemical calculations at the
RHF/6-31G** level of theory. These preliminary calculations were carried out using Gaus-
sian09 program on Linux desktop 64-bit platforms. The molecule with the highest MW in a
subset was selected as the template for the multiple pairwise structural alignments in the
common 3D grid box. Three-dimensional atomic coordinates of all the other molecules
in a subset were determined with respect to the template molecule whose position was
fixed in the grid box. The dimension of the grid box that was common to the molecules
in a subset were set equal to the maximal distances along the three coordinate axes of the
van der Waals volumes of individual molecules. During the 3D structural alignments, the
marginal distance of 2.7 Å was appended to the length, width, and height of the common
grid box to ensure enough space for translational and rotational movements. This 3D grid
box was completed via the uniform spacing of grid points at 0.106 Å along the three axes.

Translating and rotating each molecule (target) to maximize the overlap with the
template molecule was a key step in the pairwise structural alignments. For each target
molecule, a total of 2000 rotamers along the three axes were taken into account to determine
the optimal atomic coordinates with respect to the template. The Hopf fibration method [45]
for sampling in the SO(3) rotation group was used as a systematic way to cover the rotational
degrees of freedom. It was used as a strategy for saving computational cost, as the charge
density distribution of a molecule was calculated only once for the starting structure,
whereas those of the rotamers were interpolated at each grid point.

Using 2000 rotamers for a target molecule (j) along with the charge density distribution
in the 3D grid box, the optimal structural alignment with the template molecule (i) was
searched exhaustively by systematically translating each rotamer. These translational
shifts were iterated by changing the displacement vectors until the quantum mechanical
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cross correlation (Eij) between i and j reached the maximum. Eij was defined using the
electrostatic potential (ESP) of i (φi(x, y, z)) and the charge density of j (ρj(x, y, z)).

Eij =
y

V

ϕi(x, y, z)ρj(x, y, z)dV (3)

In terms of molecular interactions, Eij typically represents the energy associated with
the repulsive electrostatic interactions between molecule i and j. All Eij values were
calculated via the fast Fourier transform algorithm [46]. The optimal alignment for j
was determined by selecting the rotamer with the highest Eij value, and this selected
configuration was then employed as input for computing the molecular ESP descriptor.

3.3. Calculations of the 3D Molecular Descriptors

The three-dimensional distribution of ESP surrounding a molecule, which harbors 2n
electrons, was derived from its determinantal wavefunction. This comprised n molecular
orbitals calculated using an ab initio quantum chemical method at the RHF/6-31G** level.
By employing the individual molecular wavefunctions, charge density (ρ) values were
computed at every 3D grid point positioned with uniform spacing of 0.212 Å within a
shared rectangular box. The ESP (φ) value at each grid point was ascertained through the
solution of Poisson’s equation.

→
∇

2
ϕ(x, y, z) = ρ(x, y, z) . . . (4)

It might be a technically sound approach to prepare a numerical molecular descriptor
in the form of a K-dimensional vector comprising the ESP values at the K grid points
in the common 3D grid box. Owing to a large number of grid points (K = 1,191,016), it
was reasonable to reduce the dimensionality so as to be adequate for QSAR modeling.
The principal component analysis (PCA) would be effective in this case, which has been
widely used to extract essential information from high-dimensional numerical data while
simplifying representation [47,48]. We used these reduced molecular ESP descriptors to
derive 3D-QSAR prediction models for the activities of hERG blockers through the ANN
algorithm. It was intriguing that these descriptors, derived from fully quantum mechanical
calculations, were expected to outperform conventional descriptors in terms of correlation
with experimental data.

3.4. Derivation of the Prediction Models for the Activities of hERG Blockers

Deriving a 3D-QSAR model for predicting pIC50 values of hERG channel blockers
using advanced computational protocols was a commendable effort. This was made
possible by the adoption of the ANN algorithm with a feed-forward architecture and
backpropagation of error network [49]. The network included input, hidden, and output
layers, each serving a specific role in the prediction process, as depicted in Figure 4. The
input layer had 56 neurons representing the projected ESP vectors of the training-set
molecules. All these input neurons ( Îks) were then processed using a sigmoidal function
after multiplying the weighting factors (wki’s) to form the hidden layer with 35 intermediate
neurons (Ĥis). Similarly, Ĥis were combined in turn to define a single output neuron (Ô)
that consisted of the predicted pIC50 values of N molecules in the training set.

Ĥi = sgm

(
N

∑
k=1

wki Îk

)
and Ô = sgm

(
M

∑
i=1

wijĤi

)
(5)
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The optimization of the 3D-QSAR model for pIC50 prediction could be simplified by 
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Figure 4. Schematic diagram of N×M× 1 neural network to derive a 3D-QSAR model for predicting
the pIC50 data of hERG blockers. Column I, H, and O denote the input, hidden, and output layer,
respectively. Neurons in these three layers are interconnected through the weighting matrices wki

and wij.

Here, sgm(x) denotes the sigmoidal function given by (1 + e−x)−1. The output neuron
can therefore be expressed with the input vectors as follows:
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The optimization of the 3D-QSAR model for pIC50 prediction could be simplified
by limiting the number of neurons in the hidden layer (M) to 35. To facilitate the whole
training process, the experimental pIC50 values were normalized to a range of 0 to 1 to
be processed with the sigmoidal function. The 3D-QSAR prediction models were thus
trained on a consistent and standardized scale by using the normalized experimental pIC50
values. Finally, the model building proceeded via a gradient-based minimization on the
error hypersurface (F), given by the sum of the square differences between the experimental
(Dj) and the estimated (Oj) pIC50 values of N molecules in the training set.

F =
N

∑
j=1

(
Dj −Oj

)2 (7)

The F value of 10−4 was used as the criterion for the convergence of weighting
parameters.

4. Conclusions

To obtain a reliable computational tool for estimating molecular hERG inhibitory
activities, the QSAR prediction models were derived using the 3D distribution of quantum
mechanical ESP values as the mathematical molecular descriptors. It is a strategic move
to enhance the predictive capability of the QSAR models by carrying out the pairwise 3D
molecular structural alignments by maximizing the quantum mechanical cross correla-
tions between the template and other molecules in the dataset. This alignment protocol
demonstrated merit compared to the conventional atom-by-atom matching method. It
was effective in handling structurally diverse molecules with the same rigor as chemical
derivatives sharing an identical scaffold. Nonetheless, the ambiguity in determining the
optimal structural alignments between small and large molecules made it difficult to de-
rive an accurate 3D-QSAR prediction model. This problematic alignment bottleneck was
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alleviated to a substantial degree by dividing the dataset molecules into seven subsets,
each of which contained the molecules with similar MWs. Consequently, highly predictive
QSAR models were obtained for all seven molecular subsets, indicating that the pairwise
3D structural alignments and the quantum mechanical ESP descriptors would be appropri-
ate to develop QSAR prediction models for hERG inhibitory activities. Given their high
predictive capability and the simplicity of model development, the 3D-QSAR prediction
models developed in this study are anticipated to function as an effective virtual screening
tool for potential cardiotoxicity.
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