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Abstract: Bioactive linear choline-based copolymers were developed as micellar carriers for drug
delivery systems (DDSs). The polymethacrylates containing trimethylammonium groups with
p-aminosalicylate anions (PAS-based copolymers: series 1) or chloride anions (Cl-based copolymers:
series 2) differing in ionic content and chain length were selected for drug loading. The diverse
structures of amphiphilic copolymers made it possible to adjust the encapsulation efficiency of a well-
known antibiotic, i.e., p-aminosalicylate in the form of sodium salt (PASNa) or acid (PASA), providing
single drug systems. Goniometry was applied to verify the self-assembly capacity of the copolymers
using the critical micelle concentration (CMC = 0.03–0.18 mg/mL) and the hydrophilicity level
quantifying the surface wettability of polymer film using the water contact angle (WCA = 30–53◦).
Both parameters were regulated by the copolymer composition, indicating that the increase in ionic
content caused higher CMC and lower WCA, but the latter was also modified to a less hydrophilic
surface by drug encapsulation. The drug content (DC) in the PAS-based polymers was increased
twice by encapsulation of PASNa and PASA (47–96% and 86–104%), whereas in the chloride-based
polymer systems, the drug was loaded in 43–96% and 73–100%, respectively. Efficient drug release
was detected for PASNa (80–100% series 1; 50–100% series 2) and PASA as complete in both series. The
strategy of loading extra drug by encapsulation, which enhances the drug content in the copolymers
containing anions of the same pharmaceutics, provided promising characteristics, which highlight
the potential of PAS-loaded micellar copolymers for drug delivery.

Keywords: polymeric carrier; poly(ionic liquid); anti-tuberculosis; drug delivery system; choline;
self-assembly

1. Introduction

Polymers in the development of nanocarriers have garnered significant attention, and
their potential in the field of medical applications is extensive, including in drug delivery
systems (DDSs) [1,2]. The structures of polymers play a crucial role as they can be effectively
utilized to engineer nanoparticles with a wide range of morphologies and architectures [3,4].
The unique feature of polymer carriers is attributed to their nanodimensions [5], which
enables them to reach targeted cells and even intracellular organelles [6]. Drug-loaded
polymer nanocarriers have gained approval for treating a wide range of diseases [7], mostly
by the design of systems for anticancer therapy, tumor-targeted immunotherapy, and
regenerative medicine or modern vaccines [8]. The polymer carriers can enhance the
solubility of drugs, improving their efficient loading and intracellular absorption, and
minimize undesired interactions between drugs and cells, concurrently exhibiting optimal
stability, biocompatibility, and optional biodegradability. Drugs can be conjugated with
polymers [9] and/or loaded in the polymer nanostructures, such as micelles [10], gels [11],
vesicles [12], dendrimers [13], capsules [14], etc.
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Polymeric micelles are common and stable nanostructures formed by amphiphilic
macromolecules in aqueous environments [15,16]. Their self-assembling behavior allows
for the formation of various types of polymeric micelles, depending on the composition of
copolymers, the nature of interchain interactions, and the micellization method. The am-
phiphilic polymers demonstrate a distinct advantage in carrier design [17] in comparison
to low molecular weight surfactants. Their lower values of critical micelle concentration
(CMC) indicate increased stability and enhanced performance of polymeric micelles, en-
suring efficient drug encapsulation, protection, and controlled release, which make them
highly desirable in drug delivery applications.

The specific groups of amphiphilic copolymers are recognized as poly(ionic liquid)s
or polymerized ionic liquids (PILs). They are obtained from ionic liquids (ILs), which are
liquid salts that consist of organic cations and anions [18–20]. ILs are widely recognized for
their exceptional properties, which include low vapor pressure at room temperature, di-
verse solubility profiles, non-flammability, high thermal stability, chemically inert behavior,
adaptable polarity, variable viscosities, and other customizable characteristics [21–25]. In
particular, choline, which is a trimethylammonium salt with a chloride anion and is water
soluble, is often used as a naturally produced cationic component in biocompatible ILs
with antibacterial properties [26–29]. Generally, choline-based ILs have the potential to
improve the pharmacodynamic and pharmacokinetic properties of the carried drug [30].
A commercial choline ester derivative, that is [2-(methacryloyloxy)ethyl] trimethylammo-
nium chloride (ChMACl) as a choline-based monomeric IL (MIL), exhibits considerable
potential in the synthesis of PILs [31]. It has been employed in controlled radical polymer-
ization to achieve choline-based PILs as the universal matrices, which can be modified to
pharmaceutically active polymeric systems by chloride anion exchange into the anions of
drugs like fusidate [32,33], clavulanate [33,34], sulfacetamide [35], piperacillin [31], and
p-aminosalicylate (PAS) [33,34]. The strategy of ion exchange has also been applied in the
choline-based MIL to introduce a pharmaceutical anion. The polymerization of choline
MILs modified with pharmaceutical anions, such as salicylate [31,36,37], fusidate [38],
cloxacillin [38], and PAS [39], have been reported. Cytotoxicity tests on the choline-based
copolymers have demonstrated their non-toxic effects on normal BEAS-2B and cytotoxic
activity against lung cancer cell lines [40,41].

Extensive studies have been conducted on PIL micelles and their uses for the en-
capsulation and delivery of active pharmaceuticals, e.g., curcumin [42,43], paclitaxel [44],
doxorubicin [45,46], dopamine [47], acyclovir [48], etc. The unique combination of am-
phiphilicity in IL-based copolymers facilitates the development of systems with dual
pharmacological actions. In this particular situation, the presence of the ionic drug within
the PIL conjugate grants it a certain level of biological activity. However, by encapsulat-
ing a non-ionic second drug into the core of the micelle, the overall biological activity
of the system can be significantly enhanced. The micellar polymer conjugates working
as dual-drug delivery systems have been studied for choline-based PILs with fusidate
anions and then encapsulated with rifampicin non-ionic drug, which has been released at
pH 7.4 during two days as 31–55% and 19–31%, respectively [32]. Similarly, the salicylate
anions and encapsulated erythromycin have been combined in the polymer matrix, ex-
hibiting a drug release of 40–50% and 60–70%, respectively, within a three-day period [35].
These polymer systems showed potential for combination therapy, particularly against
drug-resistant strains, offering the advantage of delivering two drugs simultaneously in a
single formulation, which eliminates the need for separate drug delivery.

In the present study, we investigate the use of amphiphilic linear choline-based copoly-
mers as a matrix for the encapsulation of drugs to form micellar drug-loaded systems
(Figure 1). In our previous work, we have reported the synthesis of these copolymers uti-
lizing polymerizable MILs, ChMACl and [2-(methacryloyloxy)ethyl]trimethylammonium
p-aminosalicylate (ChMAPAS) [39]. The amphiphilic nature of the matrix created an ad-
vantageous environment for the encapsulation of the selected drug, that is PAS in the
form of acid (PASA) and sodium salt (PASNa) with antibacterial properties [49–51]. Moti-
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vated by the favorable characteristics of the choline-based copolymers, we embarked on
exploring their potential as loaded micelles for the delivery of PAS, aiming to enhance their
therapeutic effectiveness in the copolymer systems. In the case of PAS-based copolymer
conjugates (series 1) already containing the drug, they were enriched extra by encapsulation
with PAS, whereas in the chloride-based copolymers (series 2), the pharmaceutical activity
was generated by PAS encapsulation. Our investigations involved a comparison of the
micellar performance of DDSs containing PASA and PASNa, evaluating their efficacy in
drug delivery. In order to assess the potential enhancement in therapeutic efficacy, we
conducted in vitro drug release studies from the micelles in phosphate buffered saline (PBS)
under conditions designed to simulate human body fluids at pH 7.4.
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Figure 1. Schematic route to drug delivery micellar systems via encapsulation of PAS in the form of
sodium salt (PASNa) and acid (PASA) by linear copolymers based on ChMACl and ChMAPAS.

2. Results and Discussion
2.1. Encapsulation and Self-Assembly-Based Polymer Matrix

The amphiphilic linear choline-based copolymers (Table 1, Figure 2) with PAS anions
(series 1) and Cl anions (series 2) were used as matrices for encapsulating drugs, resulting
in the formation of micellar drug-loaded systems (Figure 1). Previously, these copolymers
have been designed by utilizing polymerizable ILs, ChMACl and ChMAPAS, by its copoly-
merization with methyl methacrylate (MMA) via atom transfer radical polymerization
(ATRP) [39]. The amphiphilic properties of the polymer matrix provided a favorable en-
vironment for drug loading. In this case, PAS (Figure 2), both in acid form (PASA) and
sodium salt (PASNa), were selected for encapsulation studies to explore their potential by
enhancement of the therapeutic efficacy in the polymer systems. Both PASA and PASNa
can be physically trapped in the self-assembled polymers of ChMAPAS and ChMACl, but
the presence of chloride anions in the latter series makes them additionally beneficial for
ionic exchange with the sodium salt of the drug, providing ionic conjugates (Figure 1). Be-
cause of that, we focused on three types of drug-loaded systems: (i) PAS-based copolymer
conjugates with the ionically incorporated drug in the polymer (drug-loaded) and extra
loaded PAS by encapsulation, (ii) chloride-based copolymers (non-loaded drug) with PASA
physically introduced by encapsulation, and (iii) chloride-based copolymers (non-loaded
drug) with PASNa physically and ionically introduced by encapsulation. The analysis of
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CMC and WCA techniques, as shown in Table 2, played a crucial role in this approach. By
evaluating and comparing the performance of the drug-loaded micelles, valuable insights
into their potential for delivering PAS and improving the overall efficiency of the drug
delivery system were investigated.

Table 1. Basic characteristics of copolymer matrices P(ChMAPAS-co-MMA) (series 1) and P(ChMACl-
co-MMA) (series 2) [39].

No FM1(%) DPn/DPM1 Mn NMR (g/mol) Mn SEC (g/mol) ÐSEC

IA 25 272/68 42,500 65,900 1.29
IB 42 133/56 25,800 67,300 1.25
IC 74 190/139 50,300 51,600 1.33
ID 93 279/261 86,500 212,200 1.55

IIA 18 390/71 46,700 47,900 1.12
IIB 26 203/52 26,900 22,400 1.26
IIC 45 497/224 73,800 67,700 1.96
IID 50 179/90 27,600 29,600 1.13
IIE 74 178/132 31,900 29,900 1.14

IA-ID: M1 = ChMAPAS, IIA-IID: M1 = ChMACl; M2 = MMA; conditions: [M1+M2]0:[EBiB]0:[CuBr]0:[PMDETA]0 =
400:1:1:1 (except IC, ID, IIA, and IIC where [M1+M2]0:[EBiB]0 = 600:1), MeOH:ChMA = 1:1 (v/w), MeOH:THF=3:1
(v/v), 40 ◦C; FM1—content of ionic fraction in the copolymer; DPn/DPM1—total polymerization degree and
polymerization degree of ionic units, respectively.
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Table 2. Characteristics of copolymers by micellization ability and surface wettability properties as
well as drug encapsulation and release data.

No
CMC

(mg/mL)

WCA (◦) DC (%) Released Drug (%)

Polymer
Matrix

PASA
Loaded

PASNa
Loaded

PAS Anions
in Polymer

PASA
Loaded

PASNa
Loaded PASA PASNa

IA 0.03 48 51 53 24 99 23 100 100

IB 0.13 44 48 49 33 104 52 100 85.6

IC 0.16 42 47 48 42 44 28 100 87.6

ID 0.18 30 42 47 47 53 36 100 81.5

IIA 0.04 53 - 60 0 - 76 - 99.5

IIB 0.05 46 49 53 0 73 43 100 61.9

IIC 0.06 39 - 52 0 - 90 - 49.2

IID 0.07 35 44 50 0 100 83 100 49.2

IIE 0.13 34 43 48 0 100 96 100 61.9
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2.2. Amphiphilic Properties and Wettability

The critical micelle concentration (CMC) was employed to evaluate the ability of the
linear copolymers (IA-D and IIA-E) to form self-assembling micellar structures in aqueous
solution, which confirms their amphiphilic nature and stability. The measurements of the
interfacial tension (IFT) using the pendant drop method on a goniometer were performed
for the series solutions with copolymer concentrations in the range of C = 0.03–0.18 mg/mL.
The crossover point on the plot of IFT vs. logC (Figure 3) was used to determine the CMC
value as the concentration at which the copolymer starts to self-assemble and form micelles,
indicating amphiphilic behavior.
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IB and IID in an aqueous solution.

The CMC results shown in Figure 4 indicate the influence of copolymer structures,
including the ionic content, on the amphiphilic behavior of the system. The chloride-based
copolymers containing 18–74% of the ionic fraction exhibited CMC values ranging from
0.04 to 0.13 mg/mL, while the CMC for PAS-based copolymers with the higher maximum
of ionic content (25–93%) was correlated to a broader range of concentration (0.03 to
0.18 mg/mL).
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Additionally, for both series of linear copolymers, there was a noticeable trend indi-
cating that the CMC value increased with the increase in the ionic fraction content. The
nature of anions in the copolymer matrix is another significant factor, which could affect
the interactions between the copolymer chains and alter the overall self-assembly behavior.
Comparing the analogical co-polymers with similar content of PAS vs. chloride anions,
the latter ones were expected to be slightly more hydrophilic and better soluble in water.
Such a relation was observed for a pair of IA and IIB copolymers (FM1 ~ 25%), where the
presence of PAS anions yielded less hydrophilic polymer and its self-assembling in lower
concentration (0.03 vs. 0.05 mg/mL, respectively). Even though IB vs. IID and IC vs. IIE
with similar ionic fraction contents (~45% and 74%, respectively) displayed the opposite
CMC correlation (0.13 vs. 0.07 mg/mL and 0.16 vs. 0.13 mg/mL, respectively), suggesting
the influence of the relative chain lengths, the chloride-based polymers in both pairs were
characterized by higher or comparable DPn below 200 of repeating units (133 vs. 179 and
190 vs. 178) in contrast to the pair of IA vs. IIB (272 vs. 203). Overall, the copolymers
exhibited low CMC values, which are favorable for self-assembly behavior, making them
promising candidates for the encapsulation of drugs in the micellar ionic polymers.

Hydrophilicity degree defining the dissolution ability of the amphiphilic copolymers
in water was assessed by the wettability of their film surfaces, where a water droplet was
placed to measure WCA (Table 2). The wettability changes are visually demonstrated in
the photos for representative polymer samples with different types of anions and content
of ionic fraction (Figure 5). The increase in ionic fraction content resulted in the decrease in
WCA values for PAS polymer series 1 from 44◦ to 30◦ and for chloride polymer series 2 from
53◦ to 44◦. Additionally, the PAS anions in comparison to Cl ones provided reduced inter-
action of water with the polymer surface as less wettable, exhibiting higher contact angles
as was demonstrated by IA vs. IIB, IB vs. IIC-IID, and IC vs. IIE (Figure 6). The hydrophilic
character of the self-assembling copolymers can also be changed by encapsulation of the
drug. In our studies, the used PASNa is less hydrophilic than PASA, which was confirmed
by higher WCA for the systems with encapsulated PASNa, whereas the PASA-encapsulated
systems showed higher WCA than those of the non-encapsulated polymer matrices. It
means that the WCA values were ordered as the following: non encapsulated < PASA
encapsulated < PASNa encapsulated, both for the PAS- and chloride-based systems with
comparable ionic content. The most spectacular differences in WCA were observed for the
systems based on ID, that is 30◦ vs. 42◦ vs. 47◦, respectively. These findings also suggest
different molecular arrangements of polymer chains and surface characteristics.
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2.3. Drug Content in Micellar Copolymers

The UV–vis measured drug content (DC), which refers to the amount of introduced
drug in copolymer micelles, can assess the efficiency of drug loading. The total DC varied
depending on the chemical nature of the pharmaceutical substances and differences in the
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polymer composition, including the anion type. The values for both series were remarkable,
achieving 47–86% (series 1) and 43–96% (series 2) for PASNa-loaded systems, as well as
86–137% (series 1) and 73–100% (series 2) for PASA-loaded systems (Table 2, Figure 7).
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However, the micellar systems based on IA-D are the unique combination of different
drug binding due to the PAS counterions introduced via polymerization of ChMAPAS
monomer into the trimethylammonium polymethacrylate matrix (24–47% of ionically
loaded PAS anions [39]) and that then encapsulated PASNa (23–52%) or PASA (44–104%)
through physical interactions, which successfully contributed to improving the drug con-
tent efficiency of these systems. It suggests that the ionic conjugates of polymer–drug have
the potential to accommodate a higher drug load. In the case of polymers in series 2, there
is the possibility that during the encapsulation process, the sodium salt of PAS can also
participate in the ionic exchange of chloride anions contained in the polymer, resulting in
two types of drug binding, physically and ionically. Comparing the encapsulation ability by
PAS-based vs. chloride-based polymers, the latter ones showed better efficiency, probably
because of lower steric hindrance. Additionally, DC values are higher for the encapsula-
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tion of more hydrophilic PASA than for PASNa. This phenomenon can be attributed to
the ability of the micelle to encapsulate an excess amount of drug beyond its theoretical
capacity. The reduced steric hindrance allows for more efficient incorporation of PASA into
the polymer matrix, leading to a higher DC.

2.4. Drug Release

The in vitro drug release studies were conducted under physiological conditions
(pH 7.4 at 37 ◦C) over a period of 72 h. The release of the drug from the samples was
monitored at specific time intervals. The drug concentration in the release medium was
determined using UV–vis spectrophotometry at λ = 265 nm. For the micellar systems
based on PAS copolymers series 1 (Figure 8a) and chloride-based co-polymers series 2
(Figure 8c) with encapsulated PASNa, an initial burst release was observed within the
first hour followed by a slower release over a period of up to 12 h. In most cases, the kinetic
profiles reached a plateau after 1.5 h, demonstrating a controlled and sustained drug release
from the micelles, whereas for IA and IIB, characterized by a low content of ionic fraction
in the polymer matrices and the lowest DC of PASNa, complete drug release was attained
within the first hour, indicating a rapid release from these systems. Comparing both series,
it became evident that the amounts of released PASNa were higher for series 1 (80–100%)
than those for series 2 (40–100%). In the case of systems with the encapsulated PASA,
where the drug was released within half an hour in a percentage of 100% from series 1
(Figure 8b) and 88–100% from series 2 (Figure 8d), the polymer composition was influenced
very slightly on the kinetic drug release.
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It is worth to notice that in the PAS-encapsulated micelles formed by the conjugates of
polymer containing PAS anions, the driving forces for drug release are attributed to the
ionic exchange of PAS anions from the polymer conjugates by phosphate anions present
in the PBS solution as well as to the diffusion process of the physically loaded drug by
encapsulation within the polymer matrix. Previously investigated copolymers with PAS
anions in a maximal content of 47% demonstrated 80% of drug release from IA, 98% from
IB within 4 h, and complete release from IC-ID within 1 h [39]. Comparison of the release
behavior of encapsulated vs. non-encapsulated systems indicates that the encapsulated
drug slightly increases the total rate of released PAS.

The present results confirmed that the polymer matrix containing PAS anions with the
extra loading PASNa or PASA enhanced the drug content in the micellar systems, which
was correlated to a higher concentration of the released drug, providing a more efficient
drug release process.

3. Materials and Methods

Methyl methacrylate (MMA), obtained from Alfa Aesar (Warsaw, Poland), was dried
using molecular sieves and purged under argon gas. [2-(Methacryloyloxy)ethyl]trimethyl-
ammonium chloride (ChMACl), 80% aq. solution, purchased from Sigma-Aldrich (Poznan,
Poland), was dried under reduced pressure until a constant weight was achieved. [2-
(Methacryloyloxy)ethyl]trimethylammonium p-aminosalicylate (ChMAPAS) was prepared
by anion exchange reaction, as has been described previously [39]. Ethyl 2-bromoisobutyrate
(EBiB), N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDETA), and phosphate buffered
saline (PBS) were obtained from Sigma-Aldrich (Poznan, Poland) and used as received.
Copper (I) bromide (CuBr), 98%, from Fluka (Steinheim, Germany), was purified by stirring
with glacial acetic acid, followed by filtration, washing with ethanol and diethyl ether, and
drying under vacuum. Methanol (MeOH) from Chempur (Piekary Slaskie, Poland) and
tetrahydrofuran (THF) from Sigma-Aldrich (Poznan, Poland), were dried using molecular
sieves and purged under with argon gas. p-Aminosalicylate acid (PASA) and sodium
p-aminosalicylate (PASNa), both with a purity of 98%, were obtained from Alfa Aesar
(Warsaw, Poland) and used without further purification. Deionized water was obtained
using equipment of Hydrolab HLP Uv5 (Straszyn, Poland).

3.1. Synthesis of Linear ChMA-Based Copolymers

The copolymerization of ChMACl or ChMAPAS and MMA with various molar ra-
tios of comonomers (25/75, 50/50, 75/50) using EBiB as a monofunctional initiator and
CuBr/PMDETA catalytic system in MeOH and THF solvent at various ratios of monomer
to initiator (M:I= 400:1, 600:1) were performed using the atom transfer radical polymeriza-
tion (ATRP), according to previously reported procedure [39]. The obtained copolymers,
P(ChMAPAS-co-MMA) as the series 1 and P(ChMACl-co-MMA) as the series 2, were
characterized using 1HNMR to confirm their structures, including evaluation of the ionic
fraction contents (FM1), degree of polymerization (DPn), and to calculate molecular weights
(Mn NMR), whereas SEC was applied to determine their molecular weights (Mn SEC) and
dispersity indices (ÐSEC), as is presented in Table 1.

3.2. Polymer Micellization and Drug Encapsulation

The amphiphilic linear copolymer (20 mg) and PAS drug (PASA vs. PASNa, 20 mg)
were dissolved in methanol (2 mL). Deionized water (4 mL, two-fold excess of water
relative to the solvent) was added dropwise to the mixture, which was then stirred for 24 h.
Afterward, the methanol was evaporated, and the resulting aqueous fraction was collected
and next lyophilized by freezing to obtain a solid product.

3.3. Drug Release from Micellar Copolymer Systems

The polymer micelles (1.0 mg) were dissolved in 1 mL of PBS solution with a pH of 7.4.
To conduct the drug release study, a dialysis cellulose membrane bag (MWCO = 3.5 kDa)
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was filled with 1 mL of micelle solution and placed in a glass vial containing 44 mL of
PBS. The solution was stirred during the 72-h dialysis period at 37 ◦C. During the dialysis
process, the progress of drug release was monitored by measuring its concentration in the
receiving PBS solution outside the dialysis bag. Samples (1 mL) containing the released
drug were collected at various time points. UV–vis spectroscopy was employed to analyze
the samples and determine the amount of released drug by measuring absorbance at
λ = 265 nm for PASNa and PASA. After analysis, the samples were returned to the glass
vial to maintain a constant volume of the PBS medium. The calculations of the drug
concentration in the release medium were performed using the Lambert–Beer law and
the linear range of the calibration curve for the drug solution in PBS. Each reported result
represents an average of three parallel measurements.

3.4. Characterization

Proton nuclear magnetic resonance (1H NMR) spectra data were acquired using a
UNITY/NOVA spectrometer (Varian, Mulgrave, Victoria, Australia) operating at a fre-
quency of 300 MHz. Deuterated dimethyl sulfoxide-d6 served as the solvent, whereas
tetramethylsilane was employed as an internal standard. Size exclusion chromatography
(SEC) measurements were carried out using an Ultimate 3000 chromatography (Thermo
Fisher Scientific, Waltham, MA, USA) equipped with a precolumn TSKgel Guardian Su-
perMP (HZ)-H (4.6 mm× 2 cm, particle size of 6 µm), two columns of TSKgel SuperMilipore
HZ-H (4.6 mm × 15 cm, particle size 6 µm), and a differential refractometer RefractoMax
521 detector. The analysis was conducted at 40 ◦C in de-ionized water with a flow rate of
0.45 mL/min using poly(ethylene oxide)/poly(ethylene glycol) standards ranging from
982 to 227,000 g/mol. Ultraviolet visible light spectroscopy (UV–vis) was employed using
a spectrometer model Evolution 300 from Thermo Fisher Scientific (Waltham, MA, USA)
to determine the content of anionic drugs (DC) in conjugates and micelles as well as to
quantify the amount of drug released during in vitro studies. The measurements were
performed using quartz cuvettes as the sample containers. The polymer sample in PBS
at a concentration of 0.05 mg/mL was transferred to a quartz cuvette and measured at
a wavelength of 265 nm. A calibration curve was generated using drug concentrations
ranging from 0.1 mg/mL to 0.006 mg/mL in PBS. The critical micelle concentration (CMC)
was assessed using the pendant drop method on a goniometer (OCA 15EC, DataPhysics,
Filderstadt, Germany) to measure the interfacial tension (IFT). To determine the CMC, a
series of aqueous polymer solutions with concentrations ranging from 0.003 to 0.1 mg/mL
were prepared. The water contact angle (WCA) measurements were conducted using the
sessile drop method on the same goniometer apparatus as mentioned above. A polymer
solution in methanol with a concentration of 0.3 mg/mL was spin-coated onto a thin glass
plate. Subsequently, a 4 µL droplet of de-ionized water was carefully placed on the thin
polymer layer, and the contact angle was measured. The data obtained were collected
and analyzed using the SCA20_U software (Version 2, DataPhysics Instruments GmbH,
Filderstadt, Germany).

4. Conclusions

The amphiphilic linear polymethacrylates containing trimethylammonium groups
with various counterions (pharmaceutically active PAS anions vs. chloride anions) were
investigated to create micellar drug conjugate systems with physically encapsulated PAS
drug (PASA in acidic form vs. PASNa sodium salt form). The amphiphilic copolymers
in aqueous solutions demonstrated low CMCs, which increased with the ionic content
and confirmed the self-assembling behavior with the ability to encapsulate the drug. The
studies on polymer film surfaces indicated low WCAs, which showed the increase in hy-
drophilicity with the ionic fraction content, but after drug encapsulation, the hydrophilicity
of the film surfaces was reduced, yielding slightly higher WCAs, 47–60◦ PASNa loaded vs.
42–51◦ PASA loaded. The PAS encapsulation enriched the drug content in the PAS-based
copolymers (from 24–47% to 47–86% (PASNa) vs. 86–37% (PASA)), whereas the systems of
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chloride-based copolymers were activated pharmaceutically containing 43–96% of PASNa
vs. 73–100% of PASA. These results suggest that the relatively high drug content in all sys-
tems makes them beneficial for PAS delivery, but the PASA encapsulation in the PAS-based
polymers with lower ionic content and in the chloride-based polymers at higher content
of ionic fraction are the most efficient systems. For most systems, the complete release
of PAS was detected within 0.5–1 h, but it was more efficient for PAS-based copolymers
than the chloride ones. Generally, presented polymer conjugate-based micellar systems
demonstrated a great ability to encapsulate and release the selected drugs at a satisfactory
level, which is promising for the improvement of their therapeutic efficacy.
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ChMAPAS [2-(methacryloyloxy)ethyl]trimethylammonium p-aminosalicylate
PASA p-aminosalicylate acid
PASNa p-aminosalicylate sodium salt
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THF Tetrahydrofuran
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