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Abstract: The binding of Host Defense Peptides (HDPs) to the endotoxin of Gram-negative bacteria
has important unsolved aspects. For most HDPs, it is unclear if binding is part of the antibacterial
mechanism or whether LPS actually provides a protective layer against HDP killing. In addition,
HDP binding to LPS can block the subsequent TLR4-mediated activation of the immune system. This
dual activity is important, considering that HDPs are thought of as an alternative to conventional
antibiotics, which do not provide this dual activity. In this study, we systematically determine, for
the first time, the influence of the O-antigen and Lipid A composition on both the antibacterial and
anti-endotoxin activity of four HDPs (CATH-2, PR-39, PMAP-23, and PMAP36). The presence of the
O-antigen did not affect the antibacterial activity of any of the tested HDPs. Similarly, modification of
the lipid A phosphate (MCR-1 phenotype) also did not affect the activity of the HDPs. Furthermore,
assessment of inner and outer membrane damage revealed that CATH-2 and PMAP-36 are profoundly
membrane-active and disrupt the inner and outer membrane of Escherichia coli simultaneously,
suggesting that crossing the outer membrane is the rate-limiting step in the bactericidal activity of
these HDPs but is independent of the presence of an O-antigen. In contrast to killing, larger differences
were observed for the anti-endotoxin properties of HDPs. CATH-2 and PMAP-36 were much stronger
at suppressing LPS-induced activation of macrophages compared to PR-39 and PMAP-23. In addition,
the presence of only one phosphate group in the lipid A moiety reduced the immunomodulating
activity of these HDPs. Overall, the data strongly suggest that LPS composition has little effect
on bacterial killing but that Lipid A modification can affect the immunomodulatory role of HDPs.
This dual activity should be considered when HDPs are considered for application purposes in the
treatment of infectious diseases.

Keywords: host defense peptides; LPS; Lipid A; O-antigen; antimicrobial resistance

1. Introduction

Host Defense Peptides (HDPs) are antimicrobial molecules that are part of the innate
immune system. They are short, cationic, and amphipathic peptides [1], and they often exert
their antimicrobial activity by targeting bacterial membranes. Different models have been
proposed to describe this membrane interaction, all eventually resulting in bacterial lysis [2].

Pharmaceuticals 2023, 16, 1485. https://doi.org/10.3390/ph16101485 https://www.mdpi.com/journal/pharmaceuticals

https://doi.org/10.3390/ph16101485
https://doi.org/10.3390/ph16101485
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0002-9453-4630
https://orcid.org/0000-0003-3100-7275
https://orcid.org/0000-0002-4931-5201
https://orcid.org/0000-0001-9343-0111
https://orcid.org/0000-0002-9133-7965
https://doi.org/10.3390/ph16101485
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph16101485?type=check_update&version=1


Pharmaceuticals 2023, 16, 1485 2 of 16

The first step in several models is the interaction between the cationic parts of the HDPs and
the anionic lipopolysaccharide (LPS) molecules in the outer membrane of Gram-negative
bacteria [3]. This electrostatic interaction could facilitate the subsequent hydrophobic
interaction with acyl chains and thereby facilitate insertion into or translocation through the
bacterial membrane. In addition to bacterial killing, HDPs are also involved in neutralizing
the toxic effects of LPS. Interaction of LPS with Toll-Like Receptor 4 (TLR4) on immune
cells, such as macrophages, leads to strong pro-inflammatory activation of these cells,
which can lead to severe tissue damage and, in extreme cases, sepsis. HDPs are thought
to play a role in the inhibition of this LPS-induced pro-inflammatory response [4,5]. The
concept that certain HDPs can kill bacteria and subsequently neutralize an unwanted
LPS-mediated proinflammatory immune reaction towards released LPS is known as ‘silent
killing’ and was described in detail for chicken cathelicidin 2 (CATH-2) [6]. It provides
HDPs such as CATH-2 with a major advantage when they are considered alternatives to
conventional antibiotics.

LPS is the main molecule in the outer leaflet of the outer membrane of Gram-negative
bacteria. It consists of three domains: the conserved lipid A, the core domain, and the
O-antigen that protrudes into the extracellular environment [7]. The lipid A portion consists
of acyl chains attached to a phosphorylated N-acetylglucosamine (NAG) dimer. Attached to
lipid A is the core moiety, which is an oligosaccharide (mostly six to twelve sugar moieties)
that includes common sugars and sugars that are unique to bacteria. The outermost part
of the LPS is the O-antigen, a polysaccharide which consists of repeating sugar subunits,
comprised of one to five different sugars. Importantly, bacteria can modify their LPS to
adjust to their environment. This involves Lipid A as well as non-Lipid A modifications,
interestingly also providing extra protection by immune detection evasion or by conferring
resistance to certain antibiotics [7]. Although the main lipid A structure is conserved, some
unusual Lipid A structures with modified phosphate groups or varying number/length
of acyl chains can be found in some species [8]. For instance, as an important resistance
mechanism towards antibacterial compounds such as colistin and polymyxin B, some
bacteria, mainly Escherichia (E.) coli, alter the phosphate groups of Lipid A with the addition
of a phosphoethanolamine (pEtN) residue by phospho-form transferases like EptA or
MCR-1 [9]. The length of the O-antigen is an important modification as well; it can vary up
to forty repeats of sugar subunits, while in other strains this O-antigen is completely absent.
LPS without the O-antigen is often referred to as lipo-oligosaccharide (LOS) [10]. LPS
containing an O-antigen is called smooth, while LPS without an O-antigen is called rough.
Changes in position and numbers of saccharides in the core region of E. coli LPS have been
shown to affect bacterial membrane permeability and survival [11]. All variations present
in the LPS structure could, in theory, affect HDP antibacterial and antiendotoxin effectivity,
but especially the latter has not been intensively studied [12].

It is important to specify the exact strains used in this study since LPS structures
between E. coli strains can already differ substantially. E. coli O111:B4 LPS consists of six
acyl chains, two Kdo moieties with two phosphates in Lipid A, and an O-antigen of four
to forty repeats of a five-sugar moiety, identical to that of Salmonella enterica O35 [13–16].
E. coli K-12 LPS has an identical lipid A moiety as E. coli O111:B4 but lacks the O-antigen
and differs slightly in the core sugar [17]. E. coli K-12 can possess a third Kdo moiety or
a rhamnose attached to the two Kdo moieties. Furthermore, where the outer core sugar
of E. coli K-12 contains three glucose moieties, one galactose and a heptose, the outer
core sugar of E. coli O111:B4 contains a glucosamine instead of a heptose and a slightly
different linkage [18,19]. MCR-1+ E. coli was included to test its cross-resistance to the tested
HDPs. Monophosphoryl Lipid A (MPLA), which lacks one of the two typically present
phosphate groups, and diphosphoryl Lipid A (DPLA) from E. coli F583 were included as
corresponding Lipid A-modified LPS structural candidates.

Since LPS is the initial contact site for HDPs, its structure and charge could be crit-
ical for the susceptibility of Gram-negative bacteria to these antimicrobial peptides [20].
However, the mode of action of these peptides would define if the stronger affinity for
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LPS is aiding or hindering the membrane disruption. Though the initial interaction of
HDPs with LPS is assumed to be advantageous for HDP function, it is also suggested that
LPS can actually inhibit peptides from exhibiting their antimicrobial function. It could
perform so by strongly binding to HDPs and thereby preventing access to the bacterial
inner membrane. Furthermore, LPS could be excreted in outer membrane vesicles (OMVs)
from the membrane and thereby even function as a decoy target for HDPs. It was shown
for E. coli that the addition of isolated OMVs protects the bacteria from killing by CATH-2,
PMAP-36, and LL-37 [21], which are HDPs from chicken, porcine, and human origin, re-
spectively. Likewise, OMVs of Helicobacter pylori protected the bacterium against LL-37 [22].
It is interesting to study the effect of Lipid A and non-Lipid A modifications of E. coli LPS
on the bactericidal as well as anti-inflammatory properties of HDPs. This could contribute
to the research for the discovery and development of compounds with enhanced activities
against E. coli infections.

In this study, the binding of four HDPs to E. coli LPS was evaluted in detail. The
presence of characteristic LPS modifications was correlated to both aspects of the silent
killing concept: the antibacterial and LPS neutralization activities of HDPs. The four HDPs
studied here were CATH-2 and PMAP-36, both membrane-active peptides [23,24], PR-39, a
non-membrane disrupting HDP [25–27], and PMAP-23, a membrane-active peptide, but one
that was shown not to interact with Salmonella Minnesota LPS [28–30]. The results obtained
indicate that the O-antigen has minimal effect on any aspect of HDP activity, but that
modification of the lipid A phosphate group can specifically affect the immunomodulatory
effect of certain HDPs.

2. Results
2.1. Influence of O-Antigen in Resistance to Host Defense Peptides

To determine the effect of the presence of an O-antigen on HDP antibacterial activity,
two E. coli strains were used, E. coli O111:B4 and E. coli K-12, with LPS structures that
only slightly differ in the core structure but differ mainly in the presence or absence of
the O-antigen. The susceptibility of the two strains to a concentration range of HDPs was
investigated by MBC analysis using track dilution assays. Only minor differences were
observed; E. coli O111:B4 was slightly more susceptible to HDP killing than E. coli K-12 for
CATH-2 and PMAP-36 (Figure 1A,B). This suggests that the presence of O-antigen on E. coli
O111:B4 has no major impact on HDP antibacterial activity. For a better comparison of
antibacterial HDPs, their activities are also shown on a weight-based scale in Supplementary
Figure S1.

2.2. Influence of Lipid A Modification in Resistance to Host Defense Peptides

Next, the effect of the Lipid A modification on HDP activity was determined. Colistin-
resistant, commercially available E. coli NCTC 13864 was compared with clinical isolate
E. coli 078. The colistin-resistant E. coli strain has a modified Lipid A moiety containing a
phosphoethanolamine attached to its 4′ phosphate (Figure 2A). MBC values confirmed that
the MCR-1-carrying E. coli strain was less susceptible to Colistin (Figure 2B). The results
showed that there was no observable MCR-1-mediated resistance to CATH-2 and PMAP-23
(Figure 2C,F), with only very small (2-fold) differences in MBCs for PMAP-36 and PR-39
(Figure 2D,E). This suggests that there is no major impact of Lipid A phosphate group
modification on the antibacterial activity of the different HDPs. For a better comparison of
antibacterial HDPs, their activities are also shown on a weight-based scale in Supplementary
Figure S2.
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are the mean ± SEM of three independent experiments; the dashed line shows the detection limit of 
the assay. 
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Figure 1. Determination of MBC values of HDPs against E. coli strains (O111:B4 or K-12). MBC values
of CATH-2 (A), PMAP-36 (B), PR-39 (C), and PMAP-23 (D) were determined by colony count assay.
Surviving bacterial colonies were detected after incubation with HDPs for 3 h in MHB. Shown are
the mean ± SEM of three independent experiments; the dashed line shows the detection limit of
the assay.
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Figure 2. Determination of MBC values of HDPs against MCR-1+ E. coli (A) MCR-1+ bacteria have a
Phosphoethanolamine (pEtN) group attached to 1′or 4′-Phosphate of Lipid A in the LPS. MBC values
of Colistin (B), CATH-2 (C), PMAP-36 (D), PR-39 (E), and PMAP-23 (F) for E. coli strains (NCTC
13864 or 078) were determined by colony count assay. Surviving bacterial colonies were detected after
incubation with HDPs for 3 h in MHB. Shown are the mean± SEM of three independent experiments;
the dashed line shows the detection limit of the assay.
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2.3. Neutralization of LPS or Lipid A Induced Macrophage Activation by Host Defense Peptides

LPS, or Lipid A, can activate macrophages by TLR4 activation and trigger downstream
signaling, resulting in the production of nitric oxide (NO). The ability of HDPs to inhibit
NO production in LPS- or Lipid-A-activated RAW 264.7 macrophages was determined
using different LPS structures. Both O111:B4 (smooth) and K12 (rough) LPS stimulated NO
production at slightly differing concentrations. Less E. coli K12 LPS (5 ng/mL) was required
to reach maximum NO production compared to LPS from E. coli O111:B4 (20 ng/mL). Large
differences were observed between the neutralization activities of the tested HDPs. CATH-2
fully neutralized both rough and smooth LPS at a concentration of 5 µM (Figure 3A), while
PMAP-36 and PMAP-23 required higher concentrations (10–20 µM) with small differences
between K12 and O111:B4 LPS (Figure 3B,D). Interestingly, PR-39 did not have any effect
on LPS-induced macrophage activation (Figure 3C).
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Figure 3. Neutralization of LPS-induced macrophage activation by HDPs. RAW264.7 cells were
stimulated with E. coli LPS (O111:B4 or K-12) in the presence of different concentrations of CATH-2
(A), PMAP-36 (B), PR-39 (C), or PMAP-23 (D). NO production was measured by the Griess assay in
duplicates. Shown are mean + SEM of three independent experiments.

Likewise, RAW 264.7 macrophages were stimulated with 50 ng/mL E. coli MPLA or
DPLA. CATH-2 was most efficient in completely neutralizing DPLA (at 2.5 µM), followed
by PMAP-36 (at 5 µM) and PMAP-23 (at 20 µM). In the case of MPLA, again, CATH-2
was most active, followed by PMAP-36 and PMAP-23 (Figure 4). Interestingly, for each
HDP (except PR-39), large differences were observed between MPLA and DPLA in terms
of neutralizing concentrations. CATH-2 and PMAP-36 neutralized DPLA with a 10-fold
lower concentration than required for MPLA neutralization (Figure 4A,B), indicating
involvement of the additional phosphate group of DPLA in interaction with the HDP.
PR-39, as expected based on its lack of inhibition of LPS, did not have any effect on Lipid
A-induced macrophage activation (Figure 4C).

2.4. Influence of LPS Structure on Binding Affinity of Host Defense Peptides

To investigate whether the observations made in LPS neutralization and the MBCs for
the tested E. coli strains reflect the affinity between HDPs and LPS, binding was assessed
using isothermal calorimetry (ITC). In case of O111:B4 and K-12, since the lipid A portion
of the LPS is similar, any differences observed would be due to differences in the core
and O-antigen. Different binding characteristics were observed for the different HDPs.
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CATH-2 binding to both LPS species was exothermic with relatively similar binding
constants (Figure 5, Supplementary Table S1). PMAP-23 also showed roughly similar
binding characteristics, although the dissociation constant was lower for K12 LPS. This
would imply that the O-antigen of LPS plays a relatively small role in LPS binding to these
HDPs. On the other hand, PMAP-36 exhibited a biphasic binding pattern to E. coli O111:B4
LPS with an initial exothermic but subsequent mainly endothermic binding. PR-39 also
had mixed endothermic and exothermic binding for the same LPS. For both PMAP-36
and PR-39, no binding was observed for E. coli K12 LPS, indicating that the O-antigen is
involved in the binding of these two HDPs and that this binding is more hydrophobic in
nature compared to CATH-2 binding. Binding studies of the four HDPs with E. coli DPLA
and MPLA were also performed, but these thermograms did not result in clear binding
profiles for any of the peptide/lipid A combinations tested (Supplementary Figure S3).
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Figure 4. Neutralization of Lipid A-induced macrophage activation by HDPs. RAW264.7 cells were
stimulated with E. coli F583 Lipid A (MPLA or DPLA) in the presence of different concentrations of
CATH-2 (A), PMAP-36 (B), PR-39 (C), or PMAP-23 (D). NO production was measured by the Griess
assay in duplicates. Shown are mean + SEM of three independent experiments. * p < 0.05; ** p < 0.01;
**** p < 0.0001.
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Figure 5. ITC spectra of the interaction between LPS species and HDPs. Approximately 200 µM of
CATH-2, PMAP-36, PR-39, or PMAP-23 was titrated into an E. coli LPS (O111:B4 or K-12) solution
(0.5 mg/mL, 0.25 mg/mL for E. coli O111:B4 and CATH-2) and heat rates were recorded. Shown is a
representative of two measurements.
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2.5. Polymyxin B Competition Assay

To obtain more insight into the LPS binding mechanism of tested HDPs, a competi-
tion LPS binding assay with dansyl-labelled polymyxin B (d-PMB) was performed as an
additional method to determine the relative affinities of HDPs for LPS. This revealed that
CATH-2 and PMAP-36 bind E. coli O111:B4 LPS tightly and that d-PMB could not displace
these peptides. In contrast, d-PMB could compete with PR-39 and PMAP-23 in binding to
the smooth LPS (Figure 6A). Similar trends were observed for LPS from E. coli K-12, but
with smaller differences between peptides (Figure 6B).
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2.6. Bacterial Membrane Permeabilization by Host Defense Peptides

To further characterize the antibacterial mechanism of these peptides, the kinetics of
bacterial membrane permeabilization were investigated by flow cytometry. To distinguish
between permeabilization of the inner and outer membranes, an E. coli strain expressing
GFP in the cytoplasm and mCherry in the periplasm was studied [31].

Bacteria were incubated for 30 min with increasing concentrations of CATH-2, PMAP-
36, PR-39, or PMAP-23 in the presence of Sytox in the medium. In this set-up, the release of
mCherry indicates outer membrane permeabilization, the influx of Sytox indicates small
perturbations of the inner membrane, and the release of GFP shows large inner membrane
disruption. These experiments revealed that for both CATH-2 and PMAP-36, the Sytox
influx was observed slightly before mCherry leakage. GFP leakage was simultaneous with
mCherry leakage, indicating that the inner and outer membranes are disrupted almost
simultaneously (Figure 7). Remarkably, at 10 µM and higher, the side scatter was observed
to increase, which indicates morphological changes in the bacteria by CATH-2 and PMAP-
36. For PR-39, no Sytox influx, mCherry, or GFP outflow was observed, confirming that this
peptide does not affect the integrity of the bacterial membrane. PMAP-23 showed Sytox
influx at higher concentrations, indicating small pores were formed when concentrations
were sufficiently high.

In addition, membrane damage was assessed over time by exposing bacteria to 5 µM of
CATH-2 or PMAP-36, or 20 µM of PR-39 or PMAP-23. This showed that within ten minutes,
80% of bacterial membranes were lysed by CATH-2 and PMAP-36. No membrane damage
was observed over time by PR-39, confirming the results from the titration experiments.
PMAP-23 showed a steady increase in Sytox influx, with 80% of bacterial membranes
showing small pore formation after 45 min. Some leakage of mCherry and GFP was also
observed after 45 min, indicating PMAP-23 is also capable of forming larger pores in both
the inner and outer membrane. This affected bacterial morphology since the side scatter
was also observed to increase over time by 20 µM of PMAP-23.
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Figure 7. Flow cytometry and membrane permeabilization assays were used to determine the an-
tibacterial mechanisms of CATH-2, PMAP-36, PR-39, and PMAP-23. (A) An E. coli strain expressing
mCherry in the periplasm (PP) and Green Fluorescent Protein (GFP) in the cytoplasm was used to
assess outer membrane (OM) and inner membrane (IM) damage. LPS, lipopolysaccharide; PL, phos-
pholipid. (B) Increasing concentrations of HDPs (left) were studied, and one concentration of each
HDP (underlined in the concentration graph) was also assessed over time (right). Sytox influx was
also measured to observe membrane destabilization and side scatter to study bacterial morphology
upon treatment with HDPs. Shown are the means ± SEM of three independent experiments.

3. Discussion

In this study, E. coli was chosen as a model organism because it is one of the most
common Gram-negative pathogens. Although many E. coli strains are present as commen-
sals in, for example, the human gut, pathogenic strains are usually also present and can
cause severe infections, leading to more than 2 million deaths each year [32]. Treatment of
E. coli is based on antibiotic use, which has resulted in antibiotic resistance development
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against all common antibiotics. Most of these resistance mechanisms will not affect the sen-
sitivity of HDPs because of their specific mechanisms. For example, ESBL-E. coli produces
beta-lactamases that can hydrolyze penicillin [33], but these enzymes will not inactivate
peptides. Due to the rise in multi-drug-resistant bacteria, colistin and polymyxin are used
more frequently as last-resort antibiotics. This has resulted in the emergence of the first
plasmid-mediated colistin resistance due to the MCR-1 gene [34]. Since MCR-1 affects LPS
structure, this could have implications for the activity of HDPs as a potential alternative to
antibiotics in the treatment of E. coli infections as well. Understanding how LPS mutations,
not only MCR-1-mediated lipid A modifications but all structural aspects of E. coli LPS can
affect the antibacterial and immunomodulatory activity of HDPs is essential for the further
development of HDPs as novel anti-infective drugs.

The interactions of LPS with HDPs are well known and are important for two aspects
of HDP activity. Firstly, many HDPs exert their antibacterial activity through membrane-
active mechanisms and will first encounter LPS in their interaction with Gram-negative
bacteria [35]. This interaction could either be an initial step in the antibacterial action of
HDPs or it could retain HDPs in the outer membrane, limiting their ability to reach their
potential targets: the inner membrane or intracellular molecules. Secondly, HDPs can
function as LPS scavengers, preventing LPS from binding to Toll-like receptors on immune
cells and preventing the potential toxic effects of LPS. To what extent the O-antigen or the
phosphate groups of Lipid A of the LPS molecule are involved in binding HDPs and how
that affects HDP dual activity was the novel aspect assessed in this study.

Interestingly, no obvious differences were observed in the antimicrobial potency of the
four tested HDPs against E. coli O111:B4 containing smooth LPS and E. coli K12 containing
rough LPS. In a similar type of study, despite the distinct membrane permeabilizing
patterns, no differences in the bactericidal activity between rough and smooth E. coli LPS
phenotypes were observed by two LL37-derived peptides, SAAP-148 and OP-145 [36]. This
suggests the involvement of an LPS-independent antibacterial mechanism. In another
study, the inner and outer core components of LPS were shown to have a major impact on
E. coli susceptibility to some cationic antimicrobial peptides, indicating the importance of
core sugars rather than the O-antigen in their case [19]. In the current study, no reduced
susceptibility of MCR-1-positive E. coli was observed towards any of the HDPs, unlike
colistin, which showed much lower activity against MCR-1-positive E. coli. This shows
that HDP binding to these different LPSs is not fundamentally different or that binding
LPS is not a part of the actual killing mechanism of HDPs. For PR-39, a cell-penetrating
peptide that requires active uptake into the bacterial cytoplasm, this was already known,
but the activity of CATH-2, PMAP-36, or PMAP-23 was not affected by the tested structural
changes in the LPS molecule. In contrast, Colistin, whose antibacterial activity is based on
its strong interaction with the phosphate moieties of Lipid A [37], was strongly affected
by mutations in lipid A. This is in agreement with previous observations, in which no
mcr-1-mediated cross-resistance towards some HDPs was observed [38,39], suggesting that
the antibacterial mechanism of these peptides is different from colistin [40].

Our flow cytometry approach for detecting permeabilization of the inner and outer
membranes shows that the HDPs quickly cross the outer membrane to penetrate and
disrupt the inner membrane of E. coli. This is a very clear indication that, except for PR-39,
the tested HDPs use LPS as an initial site for binding, and once the LPS barrier is traversed,
the inner membrane can be disrupted immediately, and the rate of bacterial killing depends
on the speed at which peptides can cross the LPS-containing outer membrane. A recent
study using small cyclic hexapeptides shows exactly this concept using SPR and NMR. The
authors describe that there is actually an optimum binding, or better said, an optimum
dissociation, between the hexapeptides and LPS for the peptides to be able to reach and
penetrate the inner membrane. Binding too strongly to LPS actually reduced the bacterial
killing potency [41]. A similar theory can be applied to natural HDPs, and if the exact
binding structure of HDPs and LPS is known, mutations toward stronger binding would
lead to a lower MIC. What can be deduced from the current results is that especially the
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O-antigen, despite its anionic features, does not contribute significantly to the binding of
the tested HDPs and thereby does not affect the protective value of the LPS layer.

When the ability of HDPs to neutralize LPS-induced macrophage activation was
determined, interesting differences were observed. It is known that lipid A is the most
immunogenic part of LPS, and rationally, the immune system has evolved to specifically
recognize this conserved part of LPS [42]. When LPS is presented to TLR4 through in-
termediate transfer proteins LBP, CD14, and MD2, the downstream signaling cascade
results in the expression of multiple pro-inflammatory cyto- and chemokines [43]. CATH-
2 and PMAP-36 strongly neutralized both O111:B4 and K12 LPS-induced activation of
macrophages, while PMAP-23 showed intermediate neutralization. The comparable ac-
tivity for both LPS structures is in line with the fact that the lipid A moiety is similar for
both O111:B4 and K12 LPS. Differences were observed for the neutralization of DPLA
and MPLA. Having only one phosphate group on the lipid A moiety apparently reduced
the capacity of HDPs to neutralize subsequent macrophage activation, indicating that the
phosphate groups are involved in binding these HDPs [44,45]. The observed effect of the
lipid A phosphate group in our experiments suggests direct LPS-peptide interaction as a
major neutralization mechanism, at least for the tested HDPs. Additionally, HDPs could
theoretically also interfere with LBP, MD-2, or CD14, the adaptor proteins required for
presenting LPS to TLR4. Although no indications for this phenomenon have been described
yet, some molecular simulation experiments provide a basis for this possibility [46]. How-
ever, the possibility of cell surface or intracellular targets for these HDPs cannot be ruled
out completely, as only a co-incubation setup was tested in this study.

LPS binding was assessed using ITC for CATH-2, PMAP-36, PR-39, and PMAP-
23, which actually showed clear differences in binding mode between these different
HDPs. CATH-2 and PMAP-23 showed exothermic binding, while PMAP-36 and PR-39
showed mixed exothermic-endothermic binding (Figure 5) for E. coli O111:B4 (smooth) LPS.
This exothermic binding of CATH-2 with similar LPS species has been shown before, is
via hydrogen bonding, and can be hydrophobic at higher concentrations of peptide [24].
PMAP-36 and PR-39 showed a biphasic binding pattern where exothermic and endothermic
binding simultaneously or sequentially took place. A similar biphasic binding pattern for
PMAP-36 has been shown previously, which could indicate initial binding depending on
hydrogen bonding followed by more hydrophobic interaction when the peptide starts to
accumulate [24]. This binding mode of PMAP-36 with E. coli O111:B4 LPS differs from that
of the other tested HDPs, which are more ionic in nature. Interestingly, no binding was seen
for PMAP-36 and PR-39 with E. coli K12 rough LPS, which is overall more hydrophobic
than smooth LPS, which suggests that the interactions of these two HDPs with LPS are
mainly with the O-antigen part of LPS. Most importantly, though, no correlation could
be found between the LPS binding of HDPs and the LPS neutralizing or antibacterial
activity of the same HDPs. This lack of correlation might be explained by the differences
in assay conditions. For ITC, relatively high concentrations of LPS, Lipid A, and HDP
are required in order to produce enough heat to be detected. These higher concentrations
mean that LPS will be present in micelles instead of the soluble monomeric form in the
macrophage activation assays. The binding of HDP to micellar LPS can be very different
from that of soluble LPS. Also, components of cell culture medium, such as LBP or possibly
soluble CD14, could affect the state of LPS presented to HDPs. Furthermore, binding
LPS does not necessarily lead to neutralization, as shown previously for the synthetic
peptide Murepavadin [47]. This could, for example, explain why PR-39 can bind LPS in
the ITC experiments (and in the replacement-PMB competition assay) but is not able to
neutralize LPS.

For Lipid A, the phase diagram is even more complex. Lipid A can form lamellar
structures in water and has five different three-dimensional aggregation states, including
micellar (as LPS), bilayer-based phases, such as the hexagonal and inverted hexagonal
phases, and additionally a non-lamellar cubic phase [48]. The transition between phases
is dependent on many variables, such as pH and temperature, but also, for example, the
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nature of the counter ion (mono or divalent). It is beyond the scope of the current study
to determine in what phase MPLA and DPLA were actually present, but it is very likely
that the aggregated structure of Lipid A is important for its interaction with HDPs. Finally,
another disadvantage of ITC is that only heat production (or heat input) upon binding is
measured, and other binding characteristics are calculated from the measured heat data.
If a binding reaction is mainly driven by entropy instead of enthalpy (heat production),
this will not be detected in ITC measurements. For example, no clear binding was seen for
PMAP-36 binding to E. coli K12 LPS based on heat production, but that does not completely
rule out that entropy-based binding is still occurring.

For two other LPS-binding peptides, Pardaxin and hLF11, the interaction with LPS was
resolved by NMR [49,50]. Both peptides interacted with the lipid A part of LPS (in micelles),
where three positively charged residues of the peptide aligned with the phosphorylated
glucosamines of lipid A. Additionally, hydrophobic amino acid residues were in close
contact with the acyl chains of lipid A. For CATH-2, a similar binding motif was predicted
based on a similar basic/hydrophobic residue pattern in the peptide [51]. This prediction
corresponds well with the obtained ITC data, which show similar binding to rough and
smooth LPS for CATH-2. Interestingly, PMAP-23 also exhibited similar binding to rough
and smooth E. coli LPS yet did not bind (unlike CATH-2) in earlier studies to rough LPS
from Salmonella minnesota R595 [28]. Lipid A of E. coli and Salmonella Minnesota LPS are
supposedly identical with respect to phosphorylated glucosamines and the presence of six
acyl chains [52], which indicates that this might not be the major binding site for PMAP-23.

Altogether, these results suggest that LPS binding is not integral to the antibacterial
mechanism of the HDPs tested in this study and that LPS modifications hardly affect the
antibacterial activity. However, subsequent neutralization of LPS-induced inflammation
can be affected by LPS modifications.

4. Materials and Methods
4.1. Peptide Synthesis

Peptides CATH-2, PMAP-36, PR-39, and PMAP-23 were synthesized by Fmoc solid-
phase synthesis at China Peptides (CPC Scientific, Sunnyvale, CA, USA) and at ACTA
(Amsterdam, The Netherlands). All peptides were purified to a purity of >95% by reverse-
phase high-performance liquid chromatography. The sequences and characteristics of the
peptides are shown in Table 1.

Table 1. Sequence, number of amino acids (No. aa), and charge and mass of studied peptides
[24,27,28,53,54].

Peptide Sequence No. aa Charge Mass (Da)

CATH-2 RFGRFLRKIRRFRPKVTITIQGSARF-NH2 26 9+ 3208
PMAP-36 Ac-GRFRRLRKKTRKRLKKIGKVLKWIPPIVGSIPLGCG 36 13+ 4198

PR-39 RRRPRPPYLPRPRPPPFFPPRLPPRIPPGFPPRFPPRFP 39 10+ 4721
PMAP-23 RIIDLLWRVRRPQKPKFVTVWVR 23 6+ 2963

4.2. Bacterial Strains

E. coli K-12 (ATCC 10798), E. coli O111:B4 (clinical isolate, University Medical Center
Groningen, Groningen, The Netherlands), E. coli NCTC 13846 (MCR-1 positive), and E. coli
078 (clinical isolate, University Medical Center Utrecht, Utrecht, The Netherlands) were
used throughout this study. All E. coli strains were grown on tryptic soy agar (TSA)
plates (Oxoid Ltd., Basingstoke, Hampshire, UK). Liquid cultures were grown in lysogeny
broth (LB) containing 1% yeast extract (Becton, Dickinson and Company, Sparks, NV,
USA), 1% NaCl (Merck, Darmstadt, Germany), and 0.5% tryptone (Becton, Dickinson and
Company, Franklin Lakes, NJ, USA) or Mueller-Hinton Broth (MHB, Becton, Dickinson
and Company).
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4.3. Cell Culturing

RAW 264.7 cells (ATCC TIB-71) were cultured in Dulbecco’s Modified Eagle Medium
(DMEM) (Gibco, Thermo Fisher Scientific, Waltham, MA, USA) supplemented with 10% fe-
tal calf serum (FCS) (Bodinco B.V., Alkmaar, The Netherlands) and 100 units/mL Penicillin
and 100 µg/mL Streptomycin at 37 ◦C, 5.0% CO2. For LPS/Lipid A stimulation studies,
5 × 104 cells/well were first seeded in a 96-well plate and kept for 24 h to adhere.

4.4. Track Dilution Assay

Bacterial killing by HDPs was assessed using track dilution assays, as described
before [55]. In short, 106 colony-forming units (CFU)/mL of bacteria were incubated
with different concentrations of peptides for 3 h at 37 ◦C in a U-bottom microtiter plate
(Corning, New York, NY, USA). After incubation, 10-fold dilutions were prepared using the
corresponding medium, and 10 µL of each dilution was plated on appropriate agar plates.
Plates were incubated at 37 ◦C, and colonies were counted after 24 h. Minimal bactericidal
concentration (MBC) was defined as ≤500 CFU/mL.

4.5. LPS/Lipid A Neutralization Assays

RAW 246.7 cells were seeded (5 × 104 cells/well) in a 96-well plate and left at 37 ◦C
for overnight adherence. Then, cells were stimulated with 20 ng/mL LPS originating from
E. coli O111:B4 (InvivoGen, San Diego, CA, USA), or 5 ng/mL LPS originating from E. coli K-
12 (InvivoGen), and also with 50 ng/mL Lipid A, MPLA, or DPLA from E. coli F583 (Sigma,
St. Louis, MO, USA) with or without 0–20 µM HDPs in DMEM for 24 h. After incubation,
the nitrite production in the supernatant was measured using the Griess assay [56]. Briefly,
50 µL cell culture supernatant was mixed with 50 µL 1% Sulfanilamide (Sigma-Aldrich,
Zwijndrecht, The Netherlands) and incubated at room temperature in the dark for 5 min.
Then, 50 µL of 0.1% N-(1-Naphthyl)ethylenediamine dihydrochloride (VWR International
B.V., Amsterdam, The Netherlands) was added and incubated at room temperature in the
dark for 5 min. Sodium nitrite (Sigma) was used as a standard to accurately determine the
nitrite concentration in the cell supernatant. Samples were measured at 590 nm using a
FLUOstar Omega microplate reader (BMG Labtech GmbH, Ortenberg, Germany).

4.6. Isothermal Titration Calorimetry (ITC)

ITC was performed with a Low Volume NanoITC (TA Instruments-Waters LLC, New
Castle, DE, USA). The 50 µL syringe was filled with 200 µM peptide in 1:3 H2O:phosphate
buffered saline (PBS) for titration into 164 µL of 62.5 µM LPS or 25 µM Lipid A in 1:3
H2O:PBS, unless stated otherwise. Titrations were incremental, with 2 µL injections at
300 s intervals. Experiments were performed at 37 ◦C. The data were analyzed with the
NanoAnalyze software (TA Instruments-Waters LLC).

4.7. Dansyl-Polymyxin B Competition Assay

Different concentrations of peptide (25 µL) were incubated with 15 µg/mL of LPS
(25 µL) in a flat-bottom 96-well plate at 37 ◦C for 30 min. Afterwards, 50 µL of 8 µM dansyl-
labelled polymyxin B was added (end concentration of 4 µM), mixed, and fluorescence was
determined immediately using the Fluostar Omega. Samples were excited at 340 nm, and
the signal was measured at 490 ± 10 nm. Signals were corrected for dansyl-polymxyin B
background. Bound d-PMB gives a high fluorescent signal at 485 nm, which decreased
with increasing peptide concentrations, indicating less d-PMB was able to bind. This was
converted to percentages of bound d-PMB.

4.8. Flow Cytometry

Recombinant E. coli expressing mCherry in the periplasm and Green Fluorescent
Protein (GFP) in the cytoplasm (PerimCherry/cytoGFP) was prepared as previously de-
scribed [31]. Bacteria were grown overnight in LB medium containing 100 µg/mL ampi-
cillin. The next day, subcultures were grown to mid-log phase (optical density, OD600 of
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approx. 0.5), washed, and resuspended to an OD600 of approx. 1 in RPMI supplemented
with 0.05% human serum albumin (RPMI-HSA). All further incubations were carried out
in RPMI-HSA. Bacterial cultures with an OD600 of approx. 0.05 were mixed with 1 µM
Sytox Blue Dead Cell Stain (Thermo Fisher Scientific, Waltham, MA, USA) and exposed to
a concentration range of HDPs for 30 min at 37 ◦C. For the kinetic experiments, bacteria
were mixed with the HDPs (concentrations indicated in figure legends) for variable times,
up to 45 min, and incubated at 37 ◦C. After the incubations, bacteria were diluted ten times,
after which the Sytox blue, mCherry, and GFP intensities were analyzed by flow cytometry
(MACSQuant). Data were analyzed in FlowJo, where the percentage of mCherry and
GFP-negative or Sytox positive bacteria was determined by gating on the buffer control.

4.9. Statistical Analysis

Statistical analysis was performed using GraphPad Prism version 9.3.1 (471). All
quantitative measurements were conducted as three independent measurements, which
were made in duplicate. One-way ANOVA was used as an appropriate method to test for
significant differences, followed by Sidak’s multiple comparison test. A p value of <0.05
was considered significant.

5. Conclusions

Gram-negative outer membrane remodeling in terms of LPS structural modification is
critical for the interaction with cationic HDPs. However, owing to different LPS binding
and membrane permeabilizing mechanisms of HDPs, the effect of these modifications on
bacterial killing and membrane-free LPS interaction could vary. The structural features of
E. coli LPS examined in this study only seem to have a very limited effect on the antibacterial
activity of the tested HDPs. The O-antigen of E. coli LPS, although in many ways a very
important virulence factor, was not majorly affecting HDPs antibacterial activity. Also,
the number of free phosphate groups of lipid A, the main binding site for HDPs, did not
have a considerable impact on the susceptibility of E. coli to the HDPs, although actual
binding to some HDPs seemed to be affected. The anti-endotoxin activity of HDPs, on
the other hand, depended on the number of phosphate groups in LPS. Therefore, these
LPS modifications that do not affect HDP antibacterial activity could still impact the
effectiveness of HDPs in fighting infection in vivo because the dampening of the potential
damaging pro-inflammatory response towards LPS is reduced. It can be concluded from
these results that LPS binding could play a role in the HDP anchorage in the Gram-negative
outer membrane and could be affected by LPS structural modification, but it does not solely
contribute to the killing mechanism. Furthermore, the LPS-neutralizing interaction of these
HDPs does not necessarily reflect the lethal action on the bacterial outer membrane.

6. Future Trends

To further understand the role of LPS in either hindering or enabling the activity
of HDPs, focus should also include other types of LPS modifications, such as acylation
patterns. The in-depth biophysical characterization of these HDPs in the presence of
bacterial and model membranes containing LPS structural mutants could provide better
insight about the mode of binding and the effects on both activities of HDPs. In exploring
the potential of HDPs as alternatives to conventional antibiotics, the anti-endotoxin activity
and how it is affected by LPS structure should be a substantial part of future research.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/ph16101485/s1: Figure S1: Determination of MBC values (µg/mL)
of HDPs against E. coli strains (O111:B4 or K-12); Figure S2: Determination of MBC values (µg/mL) of
HDPs against MCR-1+ E. coli; Figure S3: ITC spectra of the interaction between Lipid A species and
peptides; Table S1: Dissociation constants and stoichiometry calculated using ITC data for interactions
between E. coli LPS or Lipid A and HDPs.
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