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Abstract: Background Plastrum testudinis (PT), a widely used traditional Chinese medicine, exerts
protective effects against bone diseases such as intervertebral disc degeneration (IDD). Despite
its effectiveness, the molecular mechanisms underlying the effects of PT on IDD remain unclear.
Methods In this study, we used a comprehensive strategy combining bioinformatic analysis with
experimental verification to investigate the possible molecular mechanisms of PT against IDD.
We retrieved targets for PT and IDD, and then used their overlapped targets for protein–protein
interaction (PPI) analysis. In addition, we used Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) enrichment analyses to investigate the anti-IDD mechanisms of PT. Moreover,
in vivo and in vitro experiment validations including hematoxylin–eosin (HE) and safranine O-green
staining, senescence-associated β-galactosidase (SA-β-gal) assay, cell immunofluorescence staining,
intracellular ROS measurement and Western blot analysis were performed to verify bioinformatics
findings. Results We identified 342 and 872 PT- and IDD-related targets (32 overlapping targets).
GO enrichment analysis yielded 450 terms related to oxidative stress and inflammatory response
regulation. KEGG analysis identified 48 signaling pathways, 10 of which were significant; the
TNF-α signaling pathway had the highest p-value, and prostaglandin G/H synthase 2 (PTGS2),
endothelin-1 (EDN1), TNF-α, JUN and FOS were enriched in this pathway. Histopathological
results and safranin O/green staining demonstrated that PT attenuated IDD, and SA-β-gal assay
showed that PT ameliorated nucleus pulposus cell (NPC) senescence. An ROS probe was adopted to
confirm the protective effect of PT against oxidative stress. Western blot analyses confirmed that PT
downregulated the protein expression of PTGS2, EDN1, TNF-α, JUN and FOS in the TNF-α signaling
pathway as well as cellular senescence marker p16, proinflammatory cytokine interleukin-6 (IL6),
while PT upregulated the expression of NPC-specific markers including COL2A1 and ACAN in a
concentration-dependent manner. Conclusions To the best of our knowledge, this study is the first
to report that PT alleviates IDD by downregulating the protein expression of PTGS2, EDN1, TNF-α,
JUN and FOS in the TNF-α signaling pathway and upregulating that of COL2A1 and ACAN, thus
suppressing inflammatory responses and oxidative stress in NPCs.

Keywords: intervertebral disc degeneration; Plastrum testudinis; bioinformatic analysis; experimental
validation; oxidative stress; TNF-α signaling pathway
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1. Introduction

As a chronic inflammatory disease, intervertebral disc degeneration (IDD) has an
increasing prevalence with the aging of society [1]. IDD is an important factor in lower back
pain with a prevalence of 80% among adults without effective therapeutic treatment [2,3],
which is a common clinical condition that causes long-term pain and, potentially, the
inability to work; it seriously affects quality of life, and imposes a major financial and
social burden on families and the economy [4,5]. IDD is closely related to age, load-
bearing, trauma, genetics, inflammation, and tissue injury induced by oxidative stress [6].
An existing study has confirmed that IDD is triggered mainly by oxidative stress and
inflammatory infiltration, which is characterized by apoptosis of nucleus pulposus cells
and extracellular matrix degradation [7].

Many inflammatory factors in degenerated discs, such as tumor necrosis factor-α
(TNF-α) [8], interleukin-1β (IL-1β) [9], and matrix metalloproteinases (MMPs) [10], trigger
the production of reactive oxygen species (ROS). TNF-α is a potent inflammatory cytokine
with powerful proinflammatory activities associated with the secretion of multiple proin-
flammatory mediators. TNF-α is upregulated in IDD and closely linked to numerous
associated pathological processes, including oxidative stress, inflammation, cellular senes-
cence, and apoptosis [11]. Therefore, there is the potential for anti-TNF-α therapies to
reduce oxidative stress and inflammatory responses, thus alleviating IDD.

In recent years, the protective effects of traditional Chinese medicine against IDD have
received increasing attention [12]. According to the Chinese Pharmacopoeia (2015), Plas-
trum testudinis (PT; Testudinis Carapax et Plastrum), is organic in nature from the plastron
and carapace of Chinemys reevesii (Gray), which is one of the most widely used traditional
Chinese medicines for treating skeletal disorders [13]. Existing evidence shows that PT acts
as an anti-inflammatory drug with significant antioxidant property, containing bioactive
components such as steroids (cholesterol, 4-cholesten-3-one and cholesterol myristate),
fatty acids (stearic acid and palmitic acid), and esters (methyl palmitate, ethyl palmitate,
methyl stearate, and ethyl stearate), which could promote the proliferation and growth
of bone cells [14]. Steroids are involved in osteoblast proliferation via the NF-κB signal-
ing pathway [15], while fatty acids can promote alkaline phosphatase (ALP) activity [16].
Palmitic acid and stearic acid have been reported to regulate inflammatory cytokines and
reduce inflammation via suppressing ROS-activated p38 MAPK/ERK-Akt and NF-κB
activity [17–19]. Cholesterol and its derived steroids play a significant role in regulating
osteoblast differentiation [20]. Our previous studies have reported that PT can reverse the
imbalance between bone formation and resorption by regulating osteoblastic and osteoclas-
tic markers including OPG, RUNX2, RANKL, RANK and CTSK [21,22]. In terms of bone
formation, PT can also promote osteogenic differentiation by upregulating the expression
of the p38 MAPK, and inhibiting the expression of TRAF6 [23] and the TNFR2/PI3K/AKT
Signaling Pathway [24]. In terms of bone resorption, PT can suppress osteoclastic dif-
ferentiation via the NF-κB signaling pathway [22]. Moreover, a previous study showed
that PT exerted anti-inflammatory and proliferative effects on annulus fibrosus (AF) cells,
and thus is an effective treatment for IDD induced by degeneration and inflammation of
AF tissue [25]. However, due to the lack of relevant research, the molecular mechanisms
underlying the therapeutic effects of PT on IDD remain unclear.

In this study, we carried out a comprehensive bioinformatic analysis and experimental
verification of various targets and pathways associated with the anti-IDD properties of PT.

2. Results
2.1. PT-Associated Components and Target Proteins

From the BATMAN-TCM database, we obtained six bioactive components (threonine,
aspartic acid, calcium carbonate, methionine, leucine, and phenylalanine) and 342 targets
for PT.
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2.2. IDD-Related Target Proteins and PPI Network Construction

We identified 872 IDD-related target proteins. There were 32 overlapping target
proteins (OTPs, between PT- and IDD-associated targets) (Table 1 and Figure 1A). The PPI
network of OTPs is plotted in Figure 1B.

Table 1. Potential target genes for PT in the treatment of IDD.

Number Gene Number Gene

1 PTGS1 17 CAV1
2 PTGS2 18 C1QTNF3
3 EDN1 19 PTK2
4 NOS2 20 TAT
5 IL2 21 PAH
6 TNF 22 DDAH1
7 JUN 23 ATF3
8 FOS 24 SLC6A4
9 PAICS 25 HGD
10 SUCLG1 26 GSTZ1
11 PLOD1 27 HPD
12 SDHA 28 DBH
13 SUCLA2 29 BDNF
14 CACNA1A 30 FAH
15 GRIN2A 31 TRPV1
16 COMT 32 PRODH
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2.3. GO Enrichment Analysis

A total of 450 biological process (BP) GO terms were identified (p < 0.05). Twenty
terms were mainly associated with oxidative stress, the regulation of inflammation, positive
regulation of ROS metabolism, the cellular response to extracellular stimuli, regulation of



Pharmaceuticals 2023, 16, 1482 4 of 18

blood vessel size, tissue migration, and remodeling. Therefore, all of these processes are
closely associated with IDD, as shown in Figure 1C.

2.4. KEGG Pathway Analysis

Of the 48 KEGG signaling pathways identified, 10 were significant (p < 0.05), as shown
in Table 2. We performed network visualization (Figure 1D) and the results showed that
the TNF-α signaling pathway had the highest p-value; PTGS2, EDN1, TNF-α, JUN and
FOS, which may perform essential functions in the metabolic process through which PT
acts against IDD, were enriched in this pathway.

Table 2. KEGG pathway enrichment results.

ID Signaling Pathway Enriched Genes p Value

hsa04668 TNF signaling pathway PTGS2/EDN1/TNF/JUN/FOS 0.000042
hsa04657 IL-17 signaling pathway PTGS2/TNF/JUN/FOS 0.000324
hsa04625 C-type lectin receptor signaling pathway PTGS2/IL2/TNF/JUN 0.000476
hsa04660 T cell receptor signaling pathway IL2/TNF/JUN/FOS 0.000476
hsa04024 cAMP signaling pathway GRIN2A/EDN1/JUN/FOS/BDNF 0.000966
hsa04926 Relaxin signaling pathway EDN1/NOS2/JUN/FOS 0.001072
hsa04010 MAPK signaling pathway CACNA1A/TNF/JUN/FOS/BDNF 0.003534
hsa04933 AGE-RAGE signaling pathway EDN1/TNF/JUN 0.005289
hsa04620 Toll-like receptor signaling pathway TNF/JUN/FOS 0.005900
hsa05022 Pathways of neurodegeneration SDHA/GRIN2A/PTGS2/NOS2/TNF/BDNF 0.005959

2.5. CCK-8 Analysis and SA-β-Gal Activity Assessment

The assay concentrations of TBHP were 0 (for CTL), 50, 100, 150, 200 and 250 µmol/L
(µM). The THBP concentration at 100 µM after 4 h suppressed the proliferation of NPCs; in
turn, this induced inflammation and oxidative stress, thereby contributing to the pathogen-
esis of IDD. Thus, a THBP concentration of 100 µM (after 4 h) was selected for subsequent
experiments (Figure 2A,B). The assay concentrations of PT were 0 (for CTL), 0.5, 1, 2.5, and
5 µg/L. The CCK-8 results showed that PT exerted no cytotoxic effect on NPCs at concentra-
tions ≤ 2.5 µg/mL after 24 h, and neither inhibited nor promoted the proliferation of NPCs;
therefore, this concentration was used in subsequent experiments (Figure 2C,D). The results
showed that the SA-β-Gal-positive NPCs in the TBHP group increased remarkably relative
to the CTL group. However, the addition of PT significantly reduced SA-β-Gal staining-
positive NPCs in a concentration-dependent manner from 0.5 to 2.5 µg/mL (Figure 2E,F).

2.6. Expression of PTGS2, FOS, JUN, EDN1 and TNF-α in NPCs

We conducted Western blotting to detect the protein expression of PTGS2, FOS, JUN,
EDN1 and TNF-α, all of which are enriched in the TNF-α signaling pathway, in NPCs.
As Figure 3 demonstrates, the protein expression of PTGS2, FOS, JUN, EDN1 and TNF
was upregulated after TBHP treatment, unlike in the CTL, while PT (0.5–2.5 µg/mL)
significantly downregulated protein expression.

2.7. Expression of COL2A1 and ACAN in NPCs

Importantly, NPC-specific anabolic genes, including COL2A1 and ACAN, have impor-
tant functions in the pathological process of IDD. Therefore, we also detected the protein
expression of COL2A1 and ACAN using Western blot and immunofluorescence assays. As
Figure 4 shows, protein expression and fluorescence intensity of COL2A1 and ACAN was
reduced after TBHP treatment, unlike in the CTL, while PT (0.5–2.5 µg/mL) significantly
upregulated their protein expression and fluorescence intensity.
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Figure 2. CCK-8 and SA-β-gal activity assay results. Cell viability was analyzed for NPCs treated
with TBHP (concentration gradient = 0, 50, 100, 150, 200, and 250 µM) for 2, 4, and 6 h (A,B), or with
PT (concentration gradient = 0, 0.5, 1, 2.5, and 5 µg/mL) for 24 and 48 h (C,D). * p < 0.05, *** p < 0.001,
and **** p < 0.0001 vs. 0 µM or 0 h. (E) Representative SA-β-gal staining images of NPCs treated with
TBHP, with or without PT. (F) Histograms of SA-β-gal activity in the three groups. Scale = 100 µm.
Data are the mean ± standard deviation. #### p < 0.0001 vs. CTL group; **** p < 0.0001 vs. 100 µM
TBHP group.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 2. CCK-8 and SA-β-gal activity assay results. Cell viability was analyzed for NPCs treated 
with TBHP (concentration gradient = 0, 50, 100, 150, 200, and 250 µM) for 2, 4, and 6 h (A,B), or with 
PT (concentration gradient = 0, 0.5, 1, 2.5, and 5 µg/mL) for 24 and 48 h (C,D). * p < 0.05, *** p < 0.001, 
and **** p < 0.0001 vs. 0 µM or 0 h. (E) Representative SA-β-gal staining images of NPCs treated with 
TBHP, with or without PT. (F) Histograms of SA-β-gal activity in the three groups. Scale = 100 µm. 
Data are the mean ± standard deviation. #### p < 0.0001 vs. CTL group; **** p < 0.0001 vs. 100 µM 
TBHP group. 

2.6. Expression of PTGS2, FOS, JUN, EDN1 and TNF-α in NPCs 
We conducted Western blotting to detect the protein expression of PTGS2, FOS, JUN, 

EDN1 and TNF-α, all of which are enriched in the TNF-α signaling pathway, in NPCs. As 
Figure 3 demonstrates, the protein expression of PTGS2, FOS, JUN, EDN1 and TNF was 
upregulated after TBHP treatment, unlike in the CTL, while PT (0.5–2.5 µg/mL) signifi-
cantly downregulated protein expression. 

 
Figure 3. Expression of PTGS2, FOS, JUN, EDN1 and TNF-α in NPCs. (A) Expression of PTGS2, 
FOS, JUN, EDN1 and TNF proteins in NPCs treated with TBHP, with or without PT. (B–F) 
Figure 3. Expression of PTGS2, FOS, JUN, EDN1 and TNF-α in NPCs. (A) Expression of PTGS2,
FOS, JUN, EDN1 and TNF proteins in NPCs treated with TBHP, with or without PT. (B–F) Expression
of PTGS2, FOS, JUN, EDN1 and TNF proteins relative to β-actin in NPCs treated with TBHP, with or
without PT. Data are the mean ± standard deviation. # p < 0.05, ### p < 0.001, #### p < 0.0001 vs. the
CTL group; * p < 0.05, ** p < 0.01 vs. the TBHP group treated with 100 µM TBHP.
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Figure 4. Expression of ACAN and COL2A1 in NPCs. (A) Expression of ACAN and COL2A1 pro-
teins in NPCs treated with TBHP, with or without PT. (B,C) Expression of ACAN and COL2A1
proteins relative to β-actin in NPCs treated with TBHP, with or without PT. (D) Representa-
tive immunofluorescence images of ACAN in NPCs photographed by fluorescence microscopy
(scale bar = 100 µm). (E) Representative immunofluorescence images of COL2A1 in NPCs pho-
tographed by fluorescence microscopy (scale bar = 100 µm). Data are the mean ± standard deviation.
#### p < 0.0001 vs. CTL group; ** p < 0.01, *** p < 0.001, and **** p < 0.0001 vs. 100 µM TBHP group.

2.8. Detection of p16, IL6, TNF-α, and ROS Levels in NPCs

To further explore the roles of cellular senescence, inflammation, and oxidative stress
during IDD, we also selected cellular senescence marker p16, inflammatory factor IL-6, and
an ROS probe DCFH-DA for subsequent testing. As Figure 5A–C demonstrates, the protein
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expression levels of p16 and IL-6 were upregulated after the TBHP treatment relative to
the CTL, while PT (0.5–2.5 µg/mL) significantly downregulated protein expression; this
verified the protective effect of PT against cellular senescence and inflammation. Notably,
intracellular ROS levels in TBHP-induced NPCs were detected by ROS probe DCFH-DA,
using fluorescence intensity to monitor the ROS levels. Fluorescence microscopy showed
that the green fluorescence was brighter in cells treated with 100 µM of TBHP after 4 h
than that in CTL cells, and this effect was reversed by PT in a concentration-dependent
manner from 0.5–2.5 µg/mL (Figure 5D). In addition, to verify the protective effect of
PT via blocking the TNF-α signaling pathway, we used lipopolysaccharide (LPS; L2880)
purchased from Sigma-Aldrich (St. Louis, MO, USA), which acts as an agonist on the
TNF-α signaling pathway. The results confirmed that LPS upregulated TNF-α expression,
whereas PT downregulated TNF-α expression by blocking the TNF-α signaling pathway
(Figure 5E,F).
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Figure 5. Detection of p16, IL6, TNF-α, and ROS levels in NPCs. (A) Expression of p16 and IL-6
proteins in NPCs treated with TBHP, with or without PT. (B,C) Expression of p16 and IL-6 proteins
relative to β-actin in NPCs treated with TBHP, with or without PT. (D) ROS production in NPCs
treated with TBHP, with or without PT. (E) Expression of TNF-α protein in NPCs treated with LPS,
with or without PT. (F) Expression of TNF-α protein relative to β-actin in NPCs treated with LPS,
with or without PT. Data are the mean ± standard deviation. # p < 0.05, ## p < 0.01 vs. CTL group;
* p < 0.05, ** p < 0.01 vs. 100 µM TBHP or 1 µg/mL LPS group.

2.9. Histological Staining Analysis

Figure 6 shows the results of HE and safranin O/green staining. It is clear that the
intervertebral discs in the IDD group exhibited greater degeneration compared to the CTL
group, such as disappearance of the nucleus pulposus, which was replaced by disorganized
AF; further, the orderly arrangement of the AF was destroyed and the endplate partly
disappeared. This indicates successful establishment of an IDD model of naturally aging
mice. Notably, treatment with PT protected the structure of intervertebral discs. The in vivo
results confirmed that PT can suppress IDD progression.
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divided into three groups: CTL (n = 9), IDD (n = 6), and IDD+PT (n = 6). Representative HE (A) and
safranin O/green-stained (B) images of intervertebral discs, and histograms generated via histological
assessment (C–F) of the three groups. Scale bar = 200 µm. G1–G5 correspond to gradually increasing
degeneration grades. ### p < 0.001, #### p < 0.0001 vs. CTL group; * p < 0.05, ** p < 0.01, *** p < 0.001,
and **** p < 0.0001 vs. IDD group.

3. Discussion

PT, which is a widely used traditional Chinese medicine, has protective effects against
bone disorders such as osteoporosis and fracture [13,22,23]. In addition, PT may be ben-
eficial for IDD via its anti-inflammatory and cell proliferation-promoting effects on AF
cells [25]. However, the molecular mechanisms underlying the therapeutic effects of PT
on IDD remain unclear. We conducted in vivo experiments and successfully constructed
an IDD model of 24-month-old naturally aging mice based on a previous study [26]. Our
in vivo HE and safranin O/green staining results showed that PT treatment suppressed
the progression of IDD. To the best of our knowledge, few studies have reported effects of
PT against IDD via the regulation of oxidative stress and inflammation in NPCs. Based on
prior work, Plastrum testudinis extract could possess antioxidant properties and provide
protection against 2,2-diphenyl-1-picrylhydrazyl (DPPH)-induced oxidation by scavenging
free radicals [27]. Moreover, our previous study has confirmed that Plastrum testudinis could
also protect rat spine against glucocorticoid-induced oxidation and osteoporosis [28]. To the
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best of our knowledge, this study is the first to verify that PT can suppress TBHP-induced
oxidative stress and inflammation in NPCs in vitro, thus alleviating IDD.

Numerous studies confirm that the active components of PT are involved in elicit-
ing the anti-oxidant effect. For example, phenylalanine is a significant and efficacious
amino acid in alleviating the adverse impacts of oxidative damage [29]. An existing
study confirmed that plasma phenylalanine participated in regulating the expression of
Col1a1 [30]. Threonine has been reported to take part in alleviating cadmium-induced
oxidative stress [31]. The mitochondrial-targeted serine/threonine kinase PINK1 played
as a protective role in clearance of damaged mitochondrial and alleviating cell senescence
under oxidative stress in IDD [32]. Aspartic acid is reported to reduce oxidative stress
and mitochondrial dysfunctions [33]. Reduced leucine concentration regulates mTORC1
pathway, thus reducing oxidative stress [34].

The 32 overlapping target proteins identified in this study were implicated in oxidative
stress, inflammation, and tissue remodeling. GO enrichment analysis revealed terms related
to oxidative stress and inflammation. This suggests that the identified proteins have essen-
tial roles in the mechanism underlying the effect of PT treatment on IDD. TBHP was used to
induce oxidative stress and inflammation in NPCs in our in vitro experiments, where these
processes contribute to the pathogenesis of IDD [35,36]. We detected intracellular ROS in
TBHP-induced NPCs using an ROS probe DCFH-DA, confirming the protective effect of
PT against oxidative stress (which induces senescence of NPCs) [37]. Existing evidence
revealed that TNF-α-activated senescence in human NPCs could be attenuated through the
PI3K/Akt pathway [38]. SA-β-Gal activity assessment showed that the administration of
PT significantly attenuated NPC senescence. PT (0.5–2.5 µg/mL) significantly downregu-
lated protein expression of the cellular senescence marker p16. Our study demonstrated
the protective effects of PT against oxidative stress-induced damage in NPCs, suggesting
that PT is a promising antioxidant for relieving oxidative stress in NPCs, and thus may
improve IDD. Additionally, the TNF-α signaling pathway had the highest p-value in the
KEGG enrichment analysis; PTGS2, EDN1, TNF-α, JUN and FOS were enriched in this
pathway, and may be essential for the therapeutic effects of PT against IDD.

TNF-α is an important cytokine with strong proinflammatory activity; its expres-
sion is upregulated in IDD, and is closely associated with various pathological processes
therein, including oxidative stress, the inflammatory response, cellular senescence, and
apoptosis [11]. TNF-α can induce oxidative damage in NPCs, eventually resulting in
IDD [39]. Additionally, TNF-α stimulation reduced the expression of COL2A1 and ACAN
in NPCs [10]. Our study revealed that PT can reduce TNF-α expression in NPCs treated
with TBHP, suggesting that PT may reduce the oxidative damage in NPCs seen in IDD
patients by downregulating TNF-α expression. In addition, using LPS as an agonist, we
verified that the protective effect of PT involves blockade of the TNF-α signaling pathway.

FOS is a transcriptional product encoded by the C-FOS gene, and has an important
regulatory role in the cell cycle [40]. FOS is a vital signaling intermediate in NPCs that
could be modulated by MAPK and PKC pathway activity in NPCs [41]. The inhibition of
FOS expression in NPCs suppresses the expression of MMPs and inflammatory cytokines
that promote the progression of IDD, and consequently has therapeutic effects with respect
to IDD and associated pain [42]. JUN is a proinflammatory factor that forms AP-1 subunits,
along with FOS [43,44]. The inflammatory response of NPCs is mediated by the AP-1-
dependent activation of FOS and JUN [45]. In addition, attenuation of the phosphorylation
of the AP-1 subunits of FOS/JUN in NPCs suppresses the inflammatory response associated
with IDD [46]. Upregulation of FOS and JUN in Wnt3A-stimulated chondrocytes reduces
the expression of COL2A1 and ACAN [47]. Our results verified that PT decreases the
expression of AP-1 subunits of FOS/JUN in NPCs treated with TBHP, indicating that PT
could reduce the inflammatory response in NPCs and thus ameliorate IDD.

PTGS2, also called COX-2, plays a vital role in the pathogenesis of the inflammatory
response [48]. PTGS2 is an inflammatory factor in NPCs involved in the pathogenesis of
IDD [49]. PTGS2 expression is increased by the activation of FOS and JUN in NPCs [45].



Pharmaceuticals 2023, 16, 1482 10 of 18

Suppression of PTGS2 in NPCs increased COL2A1 and ACAN levels [50]. In our study,
TBHP-treated NPCs showed increased expression of PTGS2, as reported previously [36].
Additionally, PT significantly reduced the TBHP-stimulated increase in PTGS2 gene expres-
sion, indicating that PT could decrease the inflammatory response of NPCs by suppressing
the expression of PTGS2 in IDD patients, thus exerting a therapeutic effect on IDD.

EDN1 is an inflammation modulator implicated in the degeneration of the cartilage
end plate of the intervertebral disc; it is widely expressed in both non-vascular and vas-
cular tissues [51]. EDN1 plays an active role in extracellular matrix (ECM) formation in
cartilage [52]. Stimulation of EDN1 activates the Wnt/β-catenin signaling pathway and
suppresses COL2A1, ACAN and SOX9 expression in cartilage end plate cells from degen-
erated discs, which leads to IDD [51]. Our results demonstrated that PT can decrease the
expression of EDN1 in NPCs treated with TBHP, and thus may reduce the inflammatory
response of NPCs by suppressing the expression of EDN1 in IDD patients.

COL2A1 (type II collagen) and ACAN (aggrecan) serve as NPC-specific markers,
and play important regulatory roles in the synthesis of ECM and prevention of IDD [53].
The upregulation of TNF-α, FOS, JUN, PTGS2 and EDN1 suppresses the expression of
COL2A1 and ACAN [10,47,50,51]. Therefore, we analyzed the expression of COL2A1 and
ACAN, in NPCs. TBHP upregulated the expression of TNF-α, FOS, JUN, PTGS2 and
EDN1, but downregulated the expression of COL2A1 and ACAN in NPCs. Treatment
with PT had the opposite effects on NPCs treated with TBHP, which were exerted in a
concentration-dependent manner.

In this study, the TNF-α signaling pathway had the highest p-value (Table 2), indicating
that PT may exert protective effects against IDD by regulating this pathway. Inhibition of
the TNF-α signaling pathway attenuates IDD progression by reducing inflammation and
oxidative stress [54]. We showed that inflammation-specific genes, including TNF-α, FOS,
JUN, PTGS2 and EDN1, are enriched in the TNF signaling pathway. We also confirmed
that PT can reduce the expression of these elements of the TNF-α signaling pathway, while
increasing that of COL2A1 and ACAN in NPCs treated with TBHP.

The pathway analysis also identified other signaling pathways that deserve further
study. For example, the IL-17 signaling pathway exerts a proinflammatory effect in IDD [55].
IL-17 increases PGE2 production and COX-2 expression via the FOS and JUN subunits in
NPCs, thus mediating inflammation of the intervertebral disc [45], and promotes IDD by
suppressing autophagy through activation of the PI3K/Akt/Bcl-2 signaling pathway [56].
In addition, MAPK signaling pathway activity is an important mediator of NLRP3 inflam-
masome activity in NPCs [57]. Inhibition of the MAPK signaling pathway could ameliorate
NPC senescence, thus suppressing IDD [58].

Our results suggest that PT can suppress the expression of TNF-α, FOS, JUN, PTGS2,
EDN1, IL-6, and p16, and upregulate that of COL2A1 and ACAN, thus reducing oxidative
stress and inflammation in NPCs (Figure 7). Our results predict some potential therapeutic
targets and pathways, providing reference for future studies on PT treatment against IDD.
Further in vivo and in vitro experiments are needed to confirm our findings. Moreover,
clinical studies on the safety and efficacy of this drug are scarce. Further research is required
to confirm its clinical potential for the diagnosis and treatment of IDD. We plan to carry out
such research in the future.
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Figure 7. Mechanism underlying the therapeutic effect of PT on IDD. PT could downregulate
the expression of inflammation-specific targets including TNF-α, FOS, JUN, PTGS2 and EDN1 on
the TNF-α signaling pathway as well as cellular senescence marker p16, inflammatory factor IL-6,
and upregulate the expressions of COL2A1 and ACAN, thus leading to a suppressive effect on
inflammatory response and oxidative stress in NPCs.

4. Materials and Methods
4.1. Retrieval of PT-Associated Components and Targets

We retrieved information on PT-associated bioactive components and targets by search-
ing the BATMAN-TCM database (http://bionet.ncpsb.org/batman-tcm/, accessed on 31
March 2021), with a score cutoff of 10. The search was restricted to human organisms [59].

4.2. Retrieval of IDD-Related Genes

The human genetic database GeneCards (https://www.genecards.org/, accessed on
31 March 2021), which contains more than 190 data sources on diseases, genes, pathways,
and components [60], was searched using the term “intervertebral disc degeneration”, with
the species set as “Homo sapiens”.

4.3. Overlapping Target Proteins (OTPs)

We used R software (v3.6.1; R Development Core Team, Vienna, Austria) to determine
the intersection of PT- and IDD-associated targets and obtain OTPs.

4.4. Protein–Protein Interaction Analysis of OTPs

To identify the relationships among the intersection targets, we searched the STRING
database (https://string-db.org/, accessed on 31 March 2021) [61] for a protein–protein
interaction (PPI) network related to OTPs, with the species limited to Homo sapiens.

4.5. GO and KEGG Analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses
of OTPs were conducted using the Cluster Profiler R package. We calculated the p-values
of the corresponding enrichment results. Enrichment results significant at p < 0.05 were
selected, and we plotted the pathway–target network using Cytoscape (http://www.
cytoscape.org/, accessed on 31 March 2021).

http://bionet.ncpsb.org/batman-tcm/
https://www.genecards.org/
https://string-db.org/
http://www.cytoscape.org/
http://www.cytoscape.org/
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4.6. Experimental Verification In Vivo and In Vitro
4.6.1. IDD Model Establishment and Drug Intervention

This research was approved by the Ethics Committee of our hospital (No. TCMF1-
2019030), following the experimental designs (Figure 8). We bought randomly divided
3-month-old wild type C57BL/6 mice into three groups: control (CTL), IDD, and IDD
with PT (IDD+PT). The animals were kept in a sterile environment with consistent light
(12 h/day), temperature (21~26 ◦C), and humidity (41~70%) conditions, and were provided
with adequate water and food. After 22 months, we obtained an IDD model of naturally
aging mice according to a previous report [26].
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Figure 8. The schematic diagram to summarize the experimental design.

The PT was purchased from our hospital (batch number KG37243537), and prepared
based on a previously described method [23]. Briefly, we took 100 g of crushed PT, added
1 L of pure water, and boiled it gently for 1 h to obtain its extract. We added 800 mL of pure
water to the remaining residue, boiled it gently for 1 h, took the extract, and repeated this
process once more. To prepare drug treatment, the extract from PT was concentrated to
500 mL by a rotary evaporator heated to 60 ◦C. The CTL and IDD groups were treated with
equal amount of solvent PBS, while the IDD+PT group was treated with PT. The dose was
equivalent to that of humans and in accordance with the body surface area ratio [62]. The
drug was administered by gavage at a dose of 4 g/kg/d for 2 months.

4.6.2. Histological Evaluation

Samples were fixed in 10% neutral-buffered formalin, decalcified in ethylenediaminete-
traacetic acid (EDTA) solution (pH 7.4), dehydrated, and embedded in paraffin. Serial
sections of 5 µm thickness were taken from the midsagittal region for histological analysis.
We performed hematoxylin–eosin (HE) and safranin O/green staining of the slices for mor-
phometric analysis to observe histological changes in the intervertebral disc tissues from
the different groups. All slides were observed under the microscope (BX53, Olympus Corp.,
Tokyo, Japan). Photographs were analyzed with the aid of CellSens Dimension software
(version 510-UMA-CellSens19.0-krishna-ch-00-01; Hamburg, Germany). The histological
assessment of IDD was based on a modified Thompson grading scale for nucleus pulposus
cells (NPCs) and AF cells, as reported previously [63,64].

4.6.3. NPC Culture and Treatment

We obtained nucleus pulposus tissues from the IDD model via digestion of 0.25%
trypsin (Gibco, Waltham, MA, USA) for half an hour and 0.25% type II collagenase (Sigma,
St. Louis, MO, USA) for 8 h at 37 ◦C. After centrifugation, NPCs were harvested and
incubated in complete DMEM/F12 medium with 1% penicillin-streptomycin and 15% fetal
bovine serum, under hypoxic conditions (5% CO2 in a humidified incubator at 37 ◦C).
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Second-generation NPCs were collected for subsequent experiments to prevent their differ-
entiation [65].

4.6.4. Cell Counting Kit-8 Assay

The NPCs were treated with tert-butyl hydrogen peroxide (TBHP; concentration
gradient = 0, 50, 100, 150, 200, and 250 µmol/L) for 2, 4, and 6 h, and 5 µg/mL of PT
(concentration gradient = 0, 0.5, 1, 2.5, and 5 µg/mL) for 24 and 48 h. The Cell Counting
Kit-8 (CCK-8) (GK10001) was bought from GlpBio. Then, CCK-8 assay was used to detect
cell viability in different groups.

4.6.5. Western Blot Analysis

The Reagents including β-actin (AF7018), TNF-α (AF7014), and p16 (AF0228) anti-
bodies were obtained from Affinity Biosciences (Cincinnati, OH, USA). ACAN (sc-166951)
and COL2A1 (sc-52658) were from Santa Cruz (Shanghai, China), and prostaglandin G/H
synthase 2 (PTGS2) (WL01750), endothelin-1 (EDN1) (WL02780), JUN (WL02863), FOS
(WL03699), and IL-6 (WL02841) were from Wanleibio Co. Ltd. (Shenyang, China). We
diluted the primary antibody with QuickBlockTM Primary Antibody Dilution Buffer for
Western Blotting (Beyotime, Shanghai, China) at a ratio of 1:1000, and the secondary
antibody with QuickBlockTM Secondary Antibody Dilution Buffer for Western Blotting
(Beyotime) at a ratio of 1:10,000.

After TBHP treatment, with or without PT in a concentration gradient, mouse NPCs
were seeded in 100 mm culture dishes (2 × 106 cells). Then, protein extracts from cells
were lysed in 200 µL RIPA lysis buffer (prepared with phosphatase inhibitor and protease
inhibitor; Beyotime). The protein bands were transferred to polyvinylidene fluoride mem-
branes (microtiter wells; Beyotime) via electrophoresis and wet transfer, and closed with
QuickBlockTM (Beyotime) at room temperature over 30 min. Primary antibodies were
added and the solution was incubated overnight at 4 ◦C in a shaker; then, the correspond-
ing secondary antibody was added and the solution was incubated in a shaker at 24 ◦C
for 1.5 h. The antibody reactivity level was subsequently detected by a gel imaging system
(Bio-Rad Laboratories, Hercules, CA, USA). Finally, the grayscale values were calculated
using ImageJ software (Software Version: v2.1.4.7; NIH, Bethesda, MD, USA).

4.6.6. Senescence-Associated β-Galactosidase (SA-β-Gal) Assay

After treatment with TBHP, with or without PT in a concentration gradient, mouse
NPCs were washed once with phosphate-buffered saline (PBS); 1 mL of fixative solution
(2% glutaraldehyde and 2% formaldehyde) was added, and the solution was fixed at
room temperature for 15 min, stained with 1 mL β-galactosidase staining solution, and
incubated overnight at 37 ◦C. Then, we acquired and analyzed images under a microscope,
as reported previously [66].

4.6.7. Cell Immunofluorescence Staining

NPCs were cultured in 24-well plates (4 × 104 cells/well) and fixed for 15–20 min
with 4% paraformaldehyde. After washing with PBS containing 0.1% Tween-20 (PBST),
the samples were incubated with 0.2% Triton X-100 for 15 min and then blocked with
QuickBlockTM Blocking Buffer for Immunol Staining (P0260) for 30–60 min. The cells were
treated with primary antibodies against ACAN (1:100) and COL2A1 (1:100) overnight
at 4 ◦C. Secondary antibodies Goat Anti-Mouse IgG H&L (Alexa Fluor®488) (ab150113)
coupled with fluorescein isothiocyanate were then incubated at 37 ◦C for 1 h. Fluorescence
images were obtained by fluorescence microscopy (Leica Microsystems, Inc., Buffalo Grove,
IL, USA).

4.6.8. Measurement of Intracellular ROS

A ROS probe called 2,7-dichloro-dihydro-fluorescein diacetate (DCFH-DA) was em-
ployed for detection of intracellular ROS in NPCs. Therefore, we purchased an ROS probe
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(S0033S) from Beyotime. First, NPCs were seeded onto 24-well plates and incubated for 24 h.
After the interventions of TBHP with or without PT in a concentration gradient, they were
treated with bupivacaine and the levels of intracellular ROS were evaluated by DCFH-DA.
NPCs were washed twice in PBS followed by staining using 20 µM of DCFH-DA, for 30 min
in darkness. Next, fluorescence was determined at an excitation wavelength of 485 nm
and emission wavelength of 530 nm employing a fluorescence spectrometer (HTS 7000;
PerkinElmer, Waltham, MA, USA). To analyze the pixel intensity of ROS quantification,
ImageJ software was used to obtain fluorescence intensity in every group. We calculated
the mean gray values of three measurements, which were used to plot a histogram to show
the ROS levels in different group.

4.6.9. Statistical Analyses

GraphPad Prism 8 (GraphPad Software Inc., La Jolla, CA, USA) was used for the
statistical analyses. All data are expressed as the mean ± standard deviation. Student’s
t-test was used to compare two samples, and a modified Thompson grading scale was used
for analyses of the NPCs and AF cells along with the χ2 test.

5. Conclusions

The research into the antioxidant effects of PT has yielded important findings. In
this study, utilizing IDD model mice, PT demonstrated a therapeutic effect on IDD by
regulating oxidative stress and inflammation. Notably, the observed effects of PT were
associated with downregulation of the TNF-α signaling pathway.

This suggests a potential therapeutic value of PT in mitigating IDD in model animals.
While these findings hold promise, further research is needed to elucidate the precise
molecular mechanisms of PT’s antioxidant action, and explore potential interactions with
existing antioxidant treatments.
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Abbreviations

PT plastrum testudinis
IDD intervertebral disc degeneration
PTGS2 prostaglandin G/H synthase 2
EDN1 endothelin-1
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SA-β-gal senescence-associated β-galactosidase
NPC nucleus pulposus cell
TNF tumor necrosis factor
MMPs matrix metalloproteinases
ROS reactive oxygen species
AF annulus fibrosus
LPS lipopolysaccharide
PPI protein–protein interaction
GO Gene Ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
HE hematoxylin–eosin
BATMAN-TCM Bioinformatics Analysis Tool for Molecular Mechanism of Traditional

Chinese Medicine
STRING Search Tool for the Retrieval of Interacting Genes/Proteins
CTL control
TBHP tert-butyl hydrogen peroxide
DCFH-DA 2,7-dichloro-dihydro-fluorescein diacetate
PBS phosphate-buffered saline
RIPA radioimmunoprecipitation assay
BP biological process
AP-1 activator protein 1
PTGS2 prostaglandin G/H synthase 2
COX-2 cyclooxygenase-2
EDN1 endothelin-1
COL2A1 type II collagen
ACAN aggrecan
ECM extracellular matrix
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