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Abstract: Breast cancer (BC) is the most diagnosed cancer worldwide, mainly affecting the epithe-
lial cells from the mammary glands. When it expresses the estrogen receptor (ER), the tumor is
called luminal BC, which is eligible for endocrine therapy with hormone signaling blockade. Hor-
mone therapy is essential for the survival of patients, but therapeutic resistance has been shown
to be worrying, significantly compromising the prognosis. In this context, the need to explore new
compounds emerges, especially compounds of plant origin, since they are biologically active and
particularly promising. Natural products are being continuously screened for treating cancer due to
their chemical diversity, reduced toxicity, lower side effects, and low price. This review summarizes
natural compounds for the treatment of luminal BC, emphasizing the activities of these compounds
in ER-positive cells. Moreover, their potential as an alternative to endocrine resistance is explored,
opening new opportunities for the design of optimized therapies.

Keywords: breast cancer; hormone therapy; natural products; resistance

1. Introduction

Epidemiological data on cancer are alarming. According to the World Health Organi-
zation (WHO), in 2020, more than 19 million new cases of the disease and approximately
10 million associated deaths were recorded worldwide. In 2023, 1,958,310 new cancer cases
and 609,820 cancer deaths are expected in the United States. Breast cancer (BC) has the
highest incidence rate of all cancers, accounting for 2.3 million diagnoses in 2020. Most
of the new cases and disease-related mortality from BC occur in low- and middle-income
countries. In high-income countries, the chance of survival exceeds 80%, in contrast to
developing countries where the diagnosis still occurs late [1,2]. In addition, prognostic
factors such as tumor size, grade, lymph node involvement, and estrogen receptor (ER)
expression are essential in choosing the therapeutic strategy. In fact, BC is classified molec-
ularly according to the expression of human epidermal growth factor receptor 2 (HER2),
progesterone receptor, and ER [3].

ER-positive tumors are defined as luminal, account for about two-thirds of cases, and
show an intrinsic heterogeneity from the histological, transcriptional, and mutational points
of view, with different clinical courses and therapeutic strategies [4]. Although patients
with luminal BC have a better prognosis, in 30% of these cases there is late recurrence of the
disease (after 5 to 10 years), mainly at a distance, with a predominance of bone metastases.
This scenario directly impacts the data on the overall survival, and the risk of recurrence for
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patients with luminal BC is real. The time and characteristics of this progression are affected
not only by the prognosis, but also by the adjuvant therapeutic strategies adopted [5].

For ER-positive tumors, surgery, radiotherapy, chemotherapy, targeted therapy, and
hormone therapy are recommended as established methods. However, different questions
are still raised in clinical practice: Which patients really benefit from chemotherapy? How
to reverse endocrine resistance? What are the challenges in the development of new drugs
for the treatment of luminal BC? In this context, natural compounds have shown to be
potentially promising.

Plants produce secondary metabolites in responses to stress, damage, and infections
caused by pathogens. Interestingly, these compounds are responsible for around 25% of
drugs currently marketed, with examples included in cancer treatment [6–9]. Recently, the
ability of some secondary plant metabolites to modulate estrogen signaling and hallmarks of
cancer, such as proliferation and apoptosis, was discovered, which makes them applicable
to the treatment of luminal BC, especially when resistant to endocrine therapy [10,11]. This
review aims to summarize the characteristics of luminal BC, the mechanisms of resistance
to endocrine therapy, and the potential of natural products to overcome this resistance
through modulation of estrogen-receptor-related signaling.

2. The Role of Hormones in Mammary Gland Development

The female breast is characterized as an exocrine glandular structure, located in the
anterosuperior wall of the thorax, and overlapping the pectoralis major muscle. It is com-
posed of two large tissues: the stroma, consisting of adipocytes, fibroblasts, blood vessels,
extracellular matrix, and inflammatory cells; and the epithelium, formed of branching
ducts and lobes. This ductal–lobular system is covered by a layer of luminal cells, which
are responsible for the secretory activity of the gland. Luminal cells are surrounded by
basal myoepithelial cells that have the contractile capacity for lactation. Finally, this en-
tire structure is still covered by a thin layer of epithelial tissue, in which the areola and
mammary papilla are found [12–15].

Breast development occurs through different mechanisms and according to the stages
of a woman’s life [16] (Figure 1). Hormonal stimuli allow the gradual evolution of the breast
during the embryonic phase. In this stage, the embryonic ectoderm layer is responsible
for forming the mammary lineage, which later organizes itself in regions of thickening,
called placodes. These structures originate the rudimentary glandular ductal system. From
birth until the onset of puberty, the mammary gland remains quiescent [13]. In the pubertal
phase, there is an increase in the concentrations of progesterone and, mainly, of circulating
estrogen, responsible for stimulating cell proliferation and breast growth, with greater fat
gain and development of the ductal system. In addition, other hormones contribute to
the formation of mammary ducts, such as growth hormone (GH) and insulin-like growth
factor (IGF-1) [15,17].

However, it is only during pregnancy that the breasts actually reach maturity [13,18].
During pregnancy, estrogen, prolactin, and progesterone coordinate a set of changes in
the mammary gland, stimulating cell proliferation and morphological changes in the
alveoli, preparing them for the lactation process [12,17,19]. The mammary structure is
mainly composed of adipose tissue, which decreases as the ductal system develops in
response to increased levels of estrogen during pregnancy. Elevated concentrations of
progesterone induce the development of the breast structure and lobular branching [12,20].
At the end of the process, estrogen and progesterone are found at high levels in the
female organism, neutralizing the hormone prolactin and, consequently, inhibiting milk
production. After childbirth, the decrease in estrogen and progesterone levels activates
the lactation process [19]. With advancing age, hormone production tends to decrease and,
when it stops, it triggers the onset of menopause [18].
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increase the development of ducts and alveoli, promoting the production and release of milk. After 
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Figure 1. Representative scheme of the development process of the breasts, from the embryonic stage
to pregnancy and lactation. In the embryonic stage, breast development begins, but the formation of
ducts, alveoli, and fat deposition occurs mainly during puberty due to the increase in the expression
and signaling of estrogen, progesterone, growth hormone (GH), and insulin-like growth factor (IGF-1).
In adulthood, the development process continues in view of the stabilization of hormone levels.
In pregnancy and lactation, the high levels of estrogen, progesterone, and prolactin increase the
development of ducts and alveoli, promoting the production and release of milk. After this period,
there is an involution of the breast. ↑ increased levels. Created with BioRender.com. Accessed on 23
September 2023.

The importance of hormones in the development of the mammary glands is evident.
Initially, estrogen, an ovarian hormone, contributes significantly to the growth of the
mammary glands during puberty [21]. Progesterone, in turn, acts in the alveologenesis
of the gland, being responsible for the extensive development of lateral branches and
alveoli—a process related to lactation [17,20,21]. Thus, all of the changes that occur in the
breast are part of the natural cycle of the female organism, and the complete development
of the mammary structure even protects against diseases such as BC. BC develops due to
molecular dysregulation of ductal and lobular cells, and there are several risk factors for
these tumors, including nulliparity and non-breastfeeding [22].

Epidemiological and experimental evidence has indicated estrogen levels to be an
important risk factor for BC [16,23,24], including in postmenopausal women [25]. During
menopause, estrogen production decreases considerably, causing uncomfortable symptoms.
To control them, menopausal hormone therapies, also known as hormone replacement
therapy, are adopted. However, these strategies have been associated with an increased
risk of BC, particularly for ER-positive tumors [23]. Studies using animals also support
the role of estrogen in the disease’s genesis and progression [26]. Therefore, it is evident
that hormonal disorders play a key role in the pathogenesis of BC, so the modulation of
estrogenic signaling has been presented as an important alternative in the treatment of
the disease.

3. The Estrogenic Signaling

Normal breast and mammary stem cells’ development is regulated by different mech-
anisms involving ERs, HER2, and the Wnt/β-catenin signaling pathways, which control
proliferation, cell death, cell differentiation, and motility [27]. Estrogen plays its physiologi-
cal role through association with ERs, essentially as a cytoplasmic and nuclear signal that
modulates the expression of different genes [28–31]

Estrogens are steroid hormones structurally formed by four fused rings, three cy-
clohexenes, and one cyclopentane, with 17 carbon–carbon bonds. There are four main
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types: estrone, estradiol, estriol, and estetrol, all containing 18 carbon atoms (C18H24O2)
and characterized by a benzene ring, a phenolic hydroxyl group, and a ketone group (in
estrone) or one, two, or three hydroxyl groups (in different estrogens) [32,33] (Figure 2).
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estetrol.

In mammalian females, estrogen synthesis occurs in the theca interna cells of the
ovaries with the production of androgens, which are converted to estrogens in granulosa
cells by the aromatase enzyme [34,35]. In this process, luteinizing hormone (LH), as found
in Leydig cells, stimulates theca cells to synthesize androgens (such as androstenedione and
testosterone) from cholesterol. On the other hand, the pituitary follicle-stimulating hormone
(FSH) stimulates the granulosa cells of the ovarian follicles to express the aromatase enzyme,
which is responsible for converting androgens into estrogens [36].

After synthesis, estrogen is released and passively penetrates cells due to its hydropho-
bicity. The most common form found in the circulation is 17β-estradiol (ETD) [37], which
can also be produced in extragonadal cells, tissues, and organs, including the adrenal
glands, mesenchymal cells, osteoblasts, chondrocytes, smooth muscle cells, endothelium,
brain cells, adipose tissue, skin, and the pancreas [38]. In these other tissues, estrogen
synthesis in postmenopausal women and men remains high, but it signals locally [33].

ERα, Erβ, and G-protein-coupled estrogen receptor 1 (GPER1) are directly involved in
the effects of estrogens. ERα and ERβ belong to the subclass of nuclear hormone receptors
and actively regulate gene expression [36]. ERα was the first to be discovered and has been
extensively studied. ERβ, with significant structural similarities to ERα, was identified
almost four decades later, showing distinct and non-redundant roles. Subsequently, the
association of GPER1 with cytoplasmic estrogen signaling was established [33,36,39].

ERα and ERβ are encoded by different genes (ESR1 and ESR2, respectively), have
differences in their DNA-binding domains and estrogen-binding domains, and can activate
different genes. Although these receptors can form homodimers and heterodimers, they
show distinct patterns of expression in mammary cells, as well as different physiological
and pathological effects [33,36,39]. GPER1, in turn, is a membrane receptor that does not
directly change gene expression, since it does not have recognition sites in chromatin.
Therefore, it activates second messengers, which can alter the cellular metabolic profile
and, in a secondary and late way, the expression of some genes [40].

The action of estrogens involving ERs in target cells can occur through three different
pathways, isolated or together: (i) the genomic pathway, (ii) the non-genomic pathway,
and (iii) the estrogen-independent pathway [41,42] (Figure 3). In general, in the genomic
pathway, estrogen activates ERs in the cell’s cytoplasm, which leads to dimerization (ho-
modimerization or heterodimerization), translocation to the nucleus, and regulation of
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gene expression. In the non-genomic pathway, ERs drive signaling across the plasma mem-
brane, activating cytoplasmic signal transduction mechanisms. In the estrogen-independent
pathway, ERs can be activated by molecules other than estrogen [32,33].
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Figure 3. Representative scheme of estrogen receptor (ER) signaling pathways: (1) Genomic pathway:
after binding to estrogen (E), the ER dimerizes (homodimerizes or heterodimerizes), translocates
to the nucleus, and exerts its regulatory functions. (2) Non-genomic pathway: the ER drives sig-
naling through the plasma membrane, activating cytoplasmic signal transduction mechanisms.
(3) Estrogen-independent pathway: the ER can be modulated by extracellular signals without estro-
gen. P (phosphate), cAMP (cyclic adenosine monophosphate), PI3K (phosphatidylinositol 3-kinase),
Akt (protein kinase B), MAPK (mitogen-activated protein kinase), IGF-1 (insulin-like growth factor),
EGF (epidermal growth factor), ERE (estrogen-response element). Created with BioRender.com.
Accessed on 23 September 2023.

3.1. The Genomic Pathway

In the genomic pathway, the free steroid enters the target cell through passive diffusion
across the plasma membrane and then binds to the ER with high affinity. Once estrogen–ER
binding is established in the cytoplasm, the receptor is phosphorylated, changes its con-
formation, and dimerizes. This complex then interacts with co-regulatory proteins and
is translocated to the nucleus, where it binds to chromatin in specific sequences called
estrogen-response elements (EREs) [43,44]. These interactions promote the transcription of
genes that act in the regulation of different cellular processes, including the cell cycle, DNA
replication, cell differentiation, and apoptosis [32,45–47].

The activated ER is capable of binding to over 10,000 sites throughout the genome.
Furthermore, this pathway can indirectly activate the expression of genes that lack EREs,
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through the recruitment of different co-regulators. Co-regulators can promote post- trans-
lational histone modifications, interact with transcription factors (e.g., Fos/jun; SP-1), or
even directly regulate the binding or activity of RNA polymerase II. Thus, the ER alters
the transcriptome of hormone-responsive cells [30,48,49]. Studies have shown that the
distinct combination of co-regulatory elements with the ER may be one of the main factors
responsible for the clinical course of tumors [50–53]. In fact, in addition to activating
genes related to the cell cycle of normal cells, estrogens, through the genomic pathway,
can activate genes with oncogenic potential, such as MYC proto-oncogene, CCND1 (cyclin
D1), FOXM1 (forkhead box M1), GREB1 (growth-regulating estrogen-receptor-binding 1),
BCL2 (B-cell leukemia/lymphoma 2 apoptosis regulator), amphiregulin, IGF1, and CXCL12
(C-X-C motif chemokine ligand 12) [54].

3.2. The Non-Genomic Pathway

In the non-genomic estrogen mechanism, however, cellular responses are fast, sug-
gesting the occurrence of short-term cytoplasmic events, in addition to late action in the
nucleus. Indeed, while genomic effects occur on the timescale of hours, some steroid-
induced nuclear events can occur within minutes [43]. The non-genomic pathway relies on
steroid receptors in the plasma membrane and activates signal transduction mechanisms,
with the subsequent production of intracellular second messengers, indirectly changing
gene expression [32,55]. A small group of ERα located in the extracellular compartment
or close to the membrane is involved in membrane-initiated non-genomic steroid sig-
naling. This receptor location is, in part, due to its direct interaction with caveolin-1 in
response to post-translational modifications such as palmitoylation [56]. Moreover, GPER1,
independent of ER, binds to estrogen and activates the mitogen-activated protein kinase
(MAPK) and epidermal growth factor receptor (EGFR) pathways. Evidence confirms
that ETD binds directly to GPER1 [57]. In addition, insulin-like growth factor 1 receptor
(IGF-1R), fibroblast growth factor receptor (FGFR), and EGFR can recognize estrogens
and activate the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and MAPK
pathways [43,58,59].

3.3. The Estrogen-Independent Pathway

Finally, ERs can be activated independent of ETD or other specific ligands. Different
molecules can act as ligands, including insulin, IGF-1, TGFβ, and epidermal growth
factor (EGF). Regulators of cellular phosphorylation, such as protein kinase A (PKA) or
protein kinase C (PKC), as well as extracellular signals such as growth peptides, cytokines,
neurotransmitters, and cell-cycle regulators, are also involved. These findings expand our
understanding of the complexity of ER signaling pathways beyond traditional estrogen-
induced genomic and non-genomic responses [33,56,60–62].

A crosstalk of different mechanisms is related to the occurrence and progression
of malignant cells, and estrogen and its receptors (ERα, Erβ, and GPER1) are directly
associated with BC. In these tumors, estrogen regulates the cell cycle and metabolism,
responding to the high energy demand of tumor cells [50]. Furthermore, the correlation
between estrogen metabolism and increased production of reactive oxygen species (ROS)
has already been described [63].

ERα has a widely described role in BC, promoting disease progression. ERβ, in turn,
has shown a controversial effect, and studies are still needed to elucidate its role in BC. ERβ
expression is reduced by about 80% in tumors, and its activation inhibits cell replication,
stimulates apoptosis, and increases the sensitivity of these cells to chemotherapy treatments.
However, there are reports of a pro-tumorigenic action of ERβ [64–67]. GPER1 also presents
a contradictory action in BC. Its low expression has already been correlated with lower
overall survival [67]. However, in patients with ER-positive BC, GPER1 was correlated with
hormone therapy resistance and aggressive disease recurrence [68]. Therefore, a molecular
understanding of BC is essential, especially for the development of effective strategies that
promote a better quality of life for patients.
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4. Molecular Subtypes of Breast Cancer

Histologically, invasive ductal BC is the most commonly diagnosed subtype (50–75% of
patients), followed by invasive lobular carcinoma (5–15% of patients) [69]. The histopatho-
logical classification has diagnostic and prognostic value. However, alone, it does not cover
the heterogeneity of BC, limiting greater accuracy in the evaluation of the clinical course of
the disease, and calling for an assertive decision about the treatments to be adopted [70].
In this context, the analysis of the BC’s molecular profile based on the expression of ERα,
PR, and HER2, as first established in 2000 by Perou et al. [71], is essential for patient man-
agement, and breast tumors are currently grouped into four main subtypes: (i) luminal A,
(ii) luminal B, (iii) HER2-enriched (HER2E), and (iv) triple-negative (TN) [72].

The luminal subtypes are tumors that usually begin in the epithelial cells that surround
the lumen of the duct [73]. Luminal A is the most common, representing about 50–60% of
diagnosed BCs [70,74]. It is positive for ERα, with PR levels greater than 20%, negative for
HER2, and with a percentage of Ki67 (a proliferation index marker) lower than 14%, being
associated with a lower risk of recurrence and a better prognosis [75].

Luminal B tumors represent about 10 to 20% of diagnosed BCs [76]. They have a higher
proliferative profile than luminal A tumors and overexpress growth receptor signaling
genes, with approximately 20% of luminal B tumors being HER2-positive [77]. In this
scenario, there is a differentiation between HER2-negative and HER2-positive luminal B
tumors. HER2-negatives are generally ERα-positive and express low levels of PR. However,
Ki67 expression is higher than 14%. HER2-positive luminal B tumors, in turn, express Erα
and have a variable status for Ki67 and PR [78], but they overexpress HER2, a member of the
family of four membrane tyrosine kinases, whose heterodimerization activates a signaling
cascade that promotes proliferation, survival, and metastasis [79,80]. They respond to
anti-HER2 monoclonal antibodies, including trastuzumab, pertuzumab, and trastuzumab
emtansine conjugation (T-DM1), as well as inhibitors of receptor tyrosine kinase activity
(e.g., lapatinib and neratinib) [81,82]. Luminal B BC tends to be diagnosed in younger
women compared to luminal A BC [80,83]. Bone recurrence is frequent and can reach
other organs, with lower survival rates compared to patients diagnosed with the luminal
A subtype [83,84]. It is worth noting that luminal A and B tumors both have expression
patterns associated with the luminal mammary epithelium, such as ERα and luminal
cytokeratins (CKs) (CK8 and CK18) [85,86]. In fact, ERα is expressed in 70–75% of patients
with invasive carcinomas, and PR is expressed by approximately 50% of ERα-positive
patients but rarely expressed in patients with ERα-negative BC [87]. These findings suggest
the regulation of PR expression by ERs, and a lower expression of PR is associated with a
more aggressive disease [88,89].

In HER2E tumors, in about 15 to 20% of cases, there is an overexpression of HER2,
being negative for hormone receptors. Thus, they present highly proliferative cells, and
75% of these tumors have a high histological grade, while 40% present mutations in the
TP53 gene [90,91]. Despite being eligible for anti-HER2 therapies, bone metastases are
recurrent, the rate of visceral recurrence is high, and a shorter disease-free survival has
been reported [92,93].

TNBC does not express ERα, PR, or HER2. It accounts for about 15–20% of invasive
BCs, being more common in women under the age of 40 years, African-American women,
and patients with BRCA1/BRCA2 mutations [94,95]. Histologically, TNBC is poorly differ-
entiated, highly proliferative, and presents heterogeneous tumors with subtypes of variable
prognosis, namely, basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal (M), mesenchymal
stem-like (MSL), immunomodulatory (IM), and luminal androgen receptor (LAR) [96]. In
immunohistochemical analyses, they are subdivided into basal and non-basal tumors, with
the basal ones expressing CK5/CK6 and EGFR1 [97,98]. TNBC is associated with a worse
prognosis, early recurrence, high frequency of metastases in the lungs, liver, and brain, and
lower survival [95,99].

Another important factor for the molecular understanding of BC subtypes is the
expression of ERβ, which has been shown to be more common in luminal BC than in the
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TN or HER2E subtypes [64]. Recently, RNA-Seq assays using BC samples indicated that
ESR2 is less expressed than ESR1, with ESR2 being associated with greater overall survival
and modulation of the immune response [100]. Thus, new molecular subtypes have been
identified. In fact, molecular classification has reshaped the diagnosis of BC and enabled
the identification of new targets, substantially contributing to the development of new
therapeutic approaches.

5. Treatment for Luminal Tumors

In addition to the molecular subtype, tumor staging, age, and comorbidities guide
therapeutic decisions for BC [101,102]. Surgery is adopted according to the size of the
tumor, along with its stage, histological classification, and presence of metastases [103].
Currently, strategies include complete surgical removal of the breast (mastectomy) and
conservation surgery (quadrantectomy), followed or not by radiotherapy [104]. In recent
years, most studies on the recurrence and post-surgical metastasis of BC have focused on
non-luminal cases, due to their worse prognosis. However, luminal tumors, despite often
being diagnosed early (mainly through mammographic screening and surgery), have a
high recurrence rate [105].

Radiotherapy and chemotherapy are commonly used in the treatment of BC, being
performed either alone or as adjuvant therapy [106]. Radiotherapy is based on ionizing
radiation directed to the affected tissue, which is efficient in decreasing the tumor size.
However, depending on the tumor extension, different amounts of sessions and radiation
are indicated and, consequently, different side effects are observed. Because it is a local
treatment, radiotherapy is often not able to eliminate circulating tumor cells [106,107].
Luminal A BC receives the greatest benefit in this treatment modality, while HER2E and
TN tumors are less responsive. It is believed that the degree of invasiveness, malignancy,
and radiosensitivity of these tumor subtypes affect the effectiveness of the treatment [108].

Chemotherapy, in turn, consists of using chemical compounds systemically, targeting
normal and malignant cells. Thus, it is responsible for debilitating side effects. The devel-
opment of intrinsic or acquired resistance by tumor cells is also common [106,109–111]. In
luminal BC, the effects of adjuvant chemotherapy have been questioned [112]. Evidence
indicates that luminal A tumors are not sensitive to chemotherapy with paclitaxel and dox-
orubicin, compared to more aggressive tumors [113,114]. However, current international
guidelines recommend the use of anthracyclines/taxanes as the standard cytotoxic regimen
for early-stage BC that does not express HER2 [115,116].

ERα-positive tumors are eligible for hormone therapy (endocrine therapy), with an
average duration of 5 to 10 years [117]. Endocrine therapy aims to slow down or stop the
growth of estrogen-dependent tumors, either by blocking hormonal effects on transformed
cells or preventing their synthesis in the body [118]. Currently, endocrine therapy for
BC consists of (i) selective ER modulators (SERMs), such as tamoxifen; (ii) selective ER
downregulators (SERDs), such as fulvestrant; (iii) aromatase inhibitors (AIs), such as
letrozole, anastrozole, and exemestane; and (iv) ovarian function suppressors, combined or
not with chemotherapy [78,119].

SERMs compete with estrogen for binding to ERs, with agonist or antagonist charac-
teristics, depending on the target tissue. On the other hand, SERDs allow for the formation
of an unstable protein complex that induces ERα degradation [120]. For young women,
SERMs are indicated [117,121], and because they regulate the receptor, they are also pre-
scribed for postmenopausal women [106,122]. Interestingly, for women at greater risk of
developing BC, long-term hormone therapy can be used to prevent the disease, reducing
the probability of occurrence by up to 50% [123,124].

Tamoxifen is the most widely used SERM and selectively blocks signaling at the ERα
level, inhibiting cell proliferation [125,126]. Tamoxifen is a prodrug that is metabolized
in the human liver, predominantly by the cytochrome P450 (CYP) system, into primary
and secondary metabolites [127]. Endoxifene and 4HT are the main active metabolites,
binding to the receptor with similar affinity and potent cytotoxic action [128,129]. The
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benefit of using tamoxifen to treat women with ERα-positive BC is widely described. It is
known that the administration of tamoxifen for 10 years significantly reduces the risk of
recurrence, in addition to promoting a significant increase in the overall survival of patients,
compared to treatment for only 5 years [130]. It should also be noted that other SERMs
analogous to tamoxifen have been proposed, such as toremifene and raloxifene, both of
which have been approved by the US Food and Drug Administration (FDA), with the aim
of increasing the efficiency of hormone therapy and limiting side effects [131]. ERβ has also
been investigated as a therapeutic target in BC, but its clinical application is limited by the
lack of selective agonists [132].

SERDs block receptor activity by promoting its degradation via the proteasome and,
therefore, have anti-estrogenic effects [133]. Fulvestrant, the only FDA-approved SERD for
the treatment of BC, has about 100-fold greater affinity for ERα compared to tamoxifen,
with no side effects on uterine tissue [134,135]. It is used in patients with advanced breast
tumors and as a second-line therapy for those resistant to tamoxifen [136]. Furthermore,
fulvestrant may sensitize ERα-negative breast tumor cells to chemotherapy, showing a
synergistic action with cytotoxic agents such as docetaxel [137]. However, this drug has
shown low bioavailability and a controversial neoadjuvant effect [135,138].

AIs decrease estrogen production from androgens [139,140]. Pre-menopause, estrogen
production occurs mainly in the ovaries, being significantly reduced in advanced age.
Post-menopause, estrogen available to the body is produced in smaller amounts in adipose
tissue and depends on aromatase activity [122], which justifies the effectiveness of drugs
specifically targeted at these enzymes. As aromatase has high specificity and is involved
only in the last step of estrogen biosynthesis from testosterones, its inhibition does not
affect the levels of other biologically important steroids [141].

Exemestane is a steroidal AI that irreversibly inhibits aromatase by acting as a false
substrate for the enzyme, thus suppressing estrogen biosynthesis, mainly in peripheral
adipose tissues [142]. Exemestane therapy has been shown to be effective in reducing BC
recurrence and mortality rates compared to tamoxifen [143]. Anastrozole and letrozole,
in turn, are non-steroidal AIs that reversibly inhibit the enzyme, being administered for
up to five years after the end of adjuvant chemotherapy [131,144,145]. Their benefits over
tamoxifen are evident, such as increased disease-free survival, especially in patients with
advanced stages of BC [143,146]. For the use of AIs in premenopausal women, ovarian
suppression should be performed, with the administration of gonadotropin-releasing
hormone (GnRH) agonists [78]. In addition, the use of GnRH with SERMs has increased
disease-free and overall survival [147].

The use of SERMs, SERDs, and AIs in the treatment of BC is associated with side
effects related to estrogen deprivation [148]. Patients report hot flashes, weight gain,
sexual dysfunction, osteoporosis, and musculoskeletal symptoms, which can compromise
treatment [149,150]. Tamoxifen has been associated with more serious side effects compared
to other agents, while exemestane causes musculoskeletal symptoms and hot flashes [151].
Patients treated with AIs report gastrointestinal symptoms such as nausea, vomiting, and
diarrhea, while the incidence of thromboembolic events and vaginal bleeding is lower
compared to the administration of SERMs and SERDs [148,152]. Finally, it is believed that
approximately 30 to 40% of ERα-positive BC are resistant to endocrine therapy, which
leads to a higher rate of recurrence and a worse disease prognosis [153,154]. New SERMs
and SERDs are under development, capable of reducing ERα expression or activity and
blocking estrogen-dependent and estrogen-independent ERα signaling. These inhibitors
are therefore considered to be a significant and promising therapeutic approach to treat
luminal tumors, both in early stages and in more advanced cases, especially when resistant
to traditional strategies [155,156].

6. Resistance to Hormone Therapy

Although endocrine therapy is essential for the treatment of luminal tumors, with
clinically significant benefits in disease-free survival and overall survival, the efficacy of
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hormone therapy is still limited in the face of de novo (primary) or acquired (secondary)
tumor resistance. De novo resistance develops early on or over the course of treatment,
usually within the first two years. Acquired resistance occurs due to unresponsiveness and
tumor growth after the end of endocrine therapy [126,157]. Of all ERα-positive tumors,
only 50% are responsive to the first administration of antiestrogens, e.g., tamoxifen. Fur-
thermore, metastatic tumors, although initially responsive, end up becoming resistant to
endocrine therapy, which substantially worsens the patient’s clinical condition, leading to
death [158–160]. Endocrine resistance mechanisms mainly include the dysregulation of
ERα expression, mutations and epigenetic changes recruiting different co-activators/co-
repressors, expression of ERβ and ERα isoforms, and increased activity of receptor tyrosine
kinases (RTKs) (Figure 4) [161].
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As ERα activation is essential for tumor cells’ proliferation and differentiation, loss
of receptor expression in BC is one of the main causes of resistance to endocrine treat-
ment [162,163]. In fact, ERα expression may change during disease progression, and
conversion of ERα-positive to ERα-negative tumors may occur in approximately 10–20%
of patients [164]. Additionally, mutations in ESR1 are described in 20–40% of metastatic
cases previously treated with hormone therapy [165,166]. Most of these mutations affect
the estrogen-binding domain on the receptor and promote constitutive ERα activity [167].
Moreover, epigenetic modifications are also critical regulators of physiological function.
In this scenario, phosphorylation, acetylation, methylation, and ubiquitination can alter
receptor stability, subcellular localization, transcriptional activity, and DNA-binding ca-

BioRender.com
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pacity [168]. ERα phosphorylation at Ser104/106 and Ser305, for example, contributes
to tamoxifen resistance [169,170]. Furthermore, mutations in ESR1 on Ser305 may also
confer resistance to AIs [171]. DNA methylation and histone acetylation are also described
as epigenetic changes that are capable of promoting resistance to endocrine therapy. For
example, ESR1 hypermethylation reduces ERα expression by 20% in patients treated with
tamoxifen [172]. These alterations (mutational and epigenetic) promote the recruitment
of different co-activators and/or co-repressors that subsequently activate other oncogenic
signaling pathways such as those related to HER2, FGFR, and IGF-1R, directly affecting the
response to hormone therapy [161,165,173,174].

Evidence suggests that ERβ expression levels may also be an important predictor of
the response to tamoxifen [175]. Higher ERβ expression is more frequent in tamoxifen-
responsive patients compared to those who are resistant to endocrine therapy [176,177].
In addition, phosphorylation and nuclear localization of ERβ are associated with a better
disease prognosis, even in cases that are resistant to tamoxifen treatment [178]. ERβ can
be inactivated by its antagonist ERα-36, an isoform of ERα. Overexpression of ERα-36 is
observed in TNBC and luminal tumors that are resistant to endocrine therapy, with reduced
ERα expression. Thus, lower expression of ERα in luminal BCs may be associated with
increased expression of ERα-36 [179,180].

RTKs are a family of receptors attached to the cell membrane, whose intracellular
domain contains a tyrosine kinase capable of autophosphorylation or phosphorylation of
tyrosine residues in target proteins [181,182]. Examples of RTKs include EGFR, IGF-1R, and
vascular endothelial growth factor receptors (VEGFRs). These are activated after interaction
with the ligand, including growth factors, cytokines, or hormones [183–185]. Upon interac-
tion with the ligand, intracellular signal transduction pathways are initiated, such as MAPK
and PI3K/Akt, which are associated with endocrine resistance. In BC, these pathways
activate ERα transcriptional activity in the absence of estrogen signaling. Furthermore,
RTKs may decrease ERα expression, since the signaling is ER-independent [186,187].

Somatic mutations in genes encoding PI3K/Akt regulators occur in up to 70% of
BCs, with the most frequent being those observed in the PI3K catalytic subunits, as well
as in PI3K modulators such as PTEN, Akt, and mTOR [188]. These mutations promote
hyperactivation of PI3K kinase activity, worsening the prognosis of late-stage luminal
breast tumors [189]. Another important downstream effector of the PI3K/Akt pathway
is the mTOR complex. This is composed of two interdependent factors: mTORC1 and
mTORC2, whose increased kinase activity promotes BC growth and proliferation [190].
The tumor suppressor PTEN is a negative regulator of mTOR, and it is known that BC
patients with germline mutations in PTEN are at increased risk of developing a second
breast tumor, as well as endometrial, thyroid, renal, and colorectal cancers [191].

Cyclin D1 and cyclin-dependent kinase (CDK) signaling have also been associated
to resistance. In vitro assays demonstrated that luminal BC cells in which cyclin D1 ex-
pression was induced continued to proliferate even with the administration of tamox-
ifen [192,193]. Furthermore, higher levels of CCND1 transcripts were identified in patients
with luminal BC and correlated with a shorter disease-free survival time and shorter
overall survival [192,194–196]. Therefore, as a complement to hormone therapy, different
chemotherapy agents have been evaluated, including CDK 4/6 inhibitors (e.g., palbociclib,
ribociclib), epigenetic modulators that inhibit histone deacetylase (HDAC), and mTOR
inhibitors [197,198]. Experimentally, the combination of fulvestrant with CDK4/6 inhibitors
was evaluated in patients who were resistant to conventional endocrine therapies. In ad-
dition, some benefits have also been observed with the use of HDAC inhibitors in these
treatments [199,200]. The mTOR inhibitor everolimus, combined with exemestane, has
also improved progression-free survival in patients with AI-resistant advanced luminal
BC [201].

Thus, the identification and characterization of new active compounds for luminal
BC is essential for the development of innovative and assertive therapeutic strategies,
especially those capable of overcoming endocrine resistance. In this context, with the focus
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on new effective treatments for BC with fewer side effects, phytochemicals have emerged,
offering structural and functional versatility. In fact, the susceptibility of ERs to herbal
medicines has been recognized [202,203].

7. Natural Compounds and Their Effects on Luminal Tumors

Plants are considered to be important sources of substances for the treatment of
cancer, being effective, safe, and with structures subject to modification. Natural products
have antioxidant, growth-inhibiting, apoptosis-inducing, and invasion- and metastasis-
control activities [204–206]. Despite advances in scientific studies focused on this area, it
is estimated that only 15% of existing plant species have already been investigated for
their pharmacological potential [207]. Therefore, the need to develop effective natural
therapeutic agents is recognized, especially in the face of therapeutic resistance.

Natural products have been used in adjuvant therapy and proven to be versatile and
capable of modulating hormonal signaling, interfering with the cell cycle, proliferation,
invasion, metastasis, and angiogenesis [208]. Phytoestrogens, for example, are natural
compounds derived from plants and are analogous to estrogens in structure and func-
tion [11,209]. In addition, other natural compounds have been shown to be active in luminal
tumors, capable of reversing cases of resistance to hormone therapy [210–212]. The richness
of the therapeutic potential of plants is due to the presence of active phytochemicals, and
herein we present information about natural compounds that have been explored for the
control of luminal BC. Table 1 summarizes the main natural products, their classes, and
their effects on luminal BC cell lineages.

Table 1. Natural compounds with effects on luminal breast cancer cell lineages.

Class Compound Main Sources Cell Lineage Mechanism of Action References

Flavonoid Hesperidin Orange (Citrus ×
sinensis) MCF 7

Induction of cell-cycle arrest in
the G1 phase

Inhibition of cell proliferation
Induction of apoptosis

[213]

Hesperetin Orange (Citrus ×
sinensis) MCF 7

Induction of cell-cycle arrest in
the G1 phase

Inhibition of cell proliferation
Induction of apoptosis

[214]

Luteolin Algaroba (Prosopis
juliflora) MCF 7

Inhibition of IGF-1 stimulation
by the PI3K-Akt signal
transduction pathway

[215,216]

Apigenin Chamomile (Matricaria
recutita L.) MCF 7 Phosphotransferase inhibition [217,218]

Isoflavonoid Daidzein Soy (Glycine max (L.)
Merril) MCF 7

Inhibition of CYP1
Induction of apoptosis

Inhibition of topoisomerase
Inhibition of cell-cycle arrest in

G1 and G2
Phosphotransferase inhibition

Activation via PI3K/Akt
Inhibition of hTERT expression

Increased CDKI protein
expression

Decreased protein expression
in cyclins A, B, E, CDK1,

CDK2, CDK4, CDK6, p21, p57,
and p27

[219–221]
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Table 1. Cont.

Class Compound Main Sources Cell Lineage Mechanism of Action References

Genistein Soy (Glycine max (L.)
Merril) MCF 7

Inhibition of CYP1
Inhibition of DNMT1

Induction of apoptosis
Inhibition of NF-κB activation
Inhibition of telomerase and

topoisomerase
Phosphotransferase inhibition

Activation via PI3K/Akt
Inhibition of hTERT expression

Increased p53 protein
expression

[222–224]

Glycitein Soy (Glycine max (L.)
Merril) MCF 7

Inhibition of cell-cycle arrest in
G1 and G2, and decrease in

glucose uptake
[221,225]

Biochanin A Soy (Glycine max) MCF 7

Cell-cycle arrest induced by
upregulation of Bcl-2

expression
Inhibition of cell-cycle arrest in

G1 and G2

[221,226]

Formononetin Red propolis MCF 7

Induction of cell-cycle arrest by
the IGF-1/IGF-1R, MAPK, and
PI3K/Akt signaling pathways
Inhibition of hTERT expression
Decreased mRNA and protein

expression of D1 cyclins

[227]

Glabridin Licorice (Glycyrrhiza
inflata) MCF 7 CK activation in

estrogen-responsive tissues [221]

Glabrene Licorice (Glycyrrhiza
glabra) MCF 7 CK activation in

estrogen-responsive tissues [221]

Puerarin Kudzu (Pueraria
montana) MCF 7 Activation via PI3K/Akt [228]

Calycosin Red propolis MCF 7 Induction of apoptosis [229]
Equol Soy (Glycine max) MCF 7 Induction of apoptosis

Alkaloid Piperine Black pepper (Piper
nigrum L.) MCF 7

Antiproliferative effect
Induction of apoptosis

Activation of caspase-3 and
PARP cleavage

Inhibited expression of the
HER2 gene at the

transcriptional level
Blocked ERK1/2 signaling to
reduce SREBP-1 expression

Inhibition of AP-1 activation

[230]

Catechin Epigallocatechin Green tea (Camellia
sinensis) MCF 7 Induction of apoptosis [231]

Lignan Pinoresinol Indian tea (Camellia
sinensis) MCF 7

HER2 protein proteasomal
degradation

Induction of apoptosis
[232]

Arctigenin Burdock (Arctium lappa
L.) MCF 7 Downregulation of cyclin D1

protein expression [233,234]

Enterolactone Linseed (Linum
usitatissimum L.) MCF 7

Downregulation of
FAK/paxillin pathway

phosphorylation
[235]

Matairesinol Linum (Linum sp) MCF 7
Downregulation of the ER-β

receptor, cutting off the G0 and
G1 mitotic phase

[236]
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Table 1. Cont.

Class Compound Main Sources Cell Lineage Mechanism of Action References

Enterodiol Linseed (Linum
usitatissimum L.) MCF 7 Inhibition of VEGF secretion [237]

Sesamin Sesame (Sesamum
indicum L.) MCF 7 Negative activation of EGFR

and MAPK expression [238]

Secoisolarici-
resinol

Burdock (Arctium lappa
L.) MCF 7

Inhibition of NF-kB
Phosphotransferase inhibition

Inhibition of CYP1
Activation via PI3K/Akt

Decreased expression of CDK6

[239,240]

Coumestan Coumestrol Alfalfa (Medicago sativa
L.) MCF 7

Inhibition of CK-2
phosphotransferase activity

Inhibition of hTERT expression
Decreased protein expression

in cyclin E and CK-2

[220,241]

4-Methoxy-
coumestrol Soy (Glycine max) MCF 7

Downregulation of
CK-2-specific Akt
phosphorylation

[242]

Stilbenoid Resveratrol
Blueberry (Vaccinium
spp.) and Blackberry

(Morus spp.)
MCF 7

Inhibition of
CYP-1A1/1A2/1B1 and 2E1

Decreased protein expression
of cyclin D1

[243,244]

Pterostilbene Blueberry (Vaccinium
spp.) MCF 7

Induction of apoptosis
Decreased mRNA and protein

expression of D1 cyclins
[243,245]

Monoterpene Thymoquinone Black cumin (Nigella
sativa L.)

MCF 7 e
T-47D

Activation of caspases 8, 9,
and 7

Increased PPAR-γ activity and
Bcl-2/Bcl-xL expression

Inhibition of the PI3K/Akt
pathway and induction of p53

and p21 protein expression

[246,247]

Isotiocianate Sulforaphane Broccoli (Brassica
oleracea)

MCF 7 e
T-47D

Interruption of proliferation
and mitosis

Inhibition of ER-α protein
expression

B1 cyclin elevation
Decreased EGFR, HER2, and

hTERT mRNA expression

[248]

Saponin Ginsenoside Rh1 Ginseng (Panax
ginseng) MCF 7 Induction of apoptosis [249]

Tab Ginsenoside Rh2 Ginseng (Panax
ginseng) MCF 7 e ADM Reverses P-gp-mediated drug

resistance of MCF 7/ADM cells [250]

7.1. Flavonoids

Flavonoids are polyphenolic secondary metabolites that have been evaluated for
the treatment of BC due to their antitumor potential through epigenetic changes, ex-
pression of tumor-suppressor genes, and activation of pro-apoptotic pathways. Inter-
estingly, flavonoids can modulate ERs, especially hesperidin, hesperetin, luteolin, and
apigenin [251–253] (Figure 5).
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Hesperidin (1) is a glycosylated flavanone compound composed of hesperetin (2)
(main part) and a disaccharide called rutinose (a type of glucose-linked rhamnose) [213].
Hesperidin and its derivatives are found in citrus fruits from the Rutaceae family, such as or-
anges, tangerines, limes, lemons, and grapefruit [254]. They have antimitotic, pro-apoptotic,
antimetabolic, and antimetastatic potential, due to their anti-inflammatory and antioxidant
properties [213,253]. These compounds, separately or in combination, have been used in the
treatment of luminal BC cells (MCF 7 and T-47D) and have been responsible for downregu-
lation of ER1 expression. Therefore, hesperidin and its derivatives can modulate estrogenic
signaling [213,255,256]. In vivo assays using an MCF 7 xenograft model demonstrated
that hesperidin inhibits tumor growth and metastasis, mainly through overexpressing
estrogen synthase-aromatase [257]. To date, there are no reports of clinical trials with these
compounds. Despite their relevant biological functions, both hesperidin and hesperetin
have poor water solubility and limited bioavailability. For this reason, several studies have
been focused on creating nanoformulations to increase their bioavailability [257].

Luteolin (3) is a natural flavonoid that regulates cancer-related signaling pathways.
It is commonly found in carrots, broccoli, sweet peppers, celery, parsley, onion leaves,
and chrysanthemum flowers [216]. Recent evidence has shown that luteolin promotes
cell death by apoptosis, acting as an antioxidant and anticancer agent in different tumors,
including BC [215,216]. In luminal BC cells, luteolin upregulates caspases 3, 8, and 9,
as well as BAX (Bcl-2-associated X-protein—pro-apoptotic regulator) and miR-16. Also,
this compound downregulates the expression of BCL-2 (an anti-apoptotic protein) and
inhibits IGF-1 activation by modulating the P13K-Akt signal transduction pathway [258].
Furthermore, the combination of luteolin with Taxol is synergistic and can increase the
sensitivity of BC cells to the treatments adopted [259]. An interesting study conducted by
Markaverich and collaborators demonstrated that the treatment of MCF 7 cells with luteolin
modulated different genes of the estrogen pathway, such as GTF2H2 (general transcrip-
tion factor IIH, polypeptide 2) (-), NCOR1 (nuclear receptor co-repressor 1) (-), TAF9 (+),
NRAS (neuroblastoma viral RAS (v-ras) oncogene homolog) (-), NRIP1 (nuclear receptor
interacting protein 1) (-), POLR2A (polymerase (RNA) II (DNA-directed) polypeptide A)
(-), DDX5 (DEAD (Asp-Glu-Ala-Asp) box polypeptide 5) (-), and NCOA3 (nuclear recep-
tor co-activator 3) (-) [260]. The joint action of luteolin and indole-3-carbinol effectively
inhibited ER-positive BC. This treatment targeted two key therapeutic elements—ERα
and the CDK 4/6/retinoblastoma (Rb) pathway—in cell lines and xenograft tumors [261].
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Currently, there are no ongoing or completed clinical trials using luteolin in the treatment
of BC patients.

Finally, apigenin (4) is a flavonoid that is found in species belonging to the Asteraceae
family [262]. This compound inhibits cell growth and induces apoptosis of luminal BC cells
through the regulation of caspases, cytochrome c release, the NF-κB, PI3K, and Akt/mTOR
pathways [263,264], and poly-ADP ribose polymerase (PARP) cleavage [217,218]. In vivo,
Yao and colleagues demonstrated that apigenin partially antagonizes ERs [265]. However,
this compound is poorly soluble in water, and nanotechnology has contributed to advances
related to its therapeutic applications [266]. Although promising for the treatment of
luminal BC, there are no reports of completed or ongoing clinical trials.

7.2. Isoflavonoids

Isoflavonoids, or isoflavones, are phytoestrogens that have demonstrated greater
affinity for ERβ [267,268]. The ingestion of isoflavones either in childhood or in puberty
seems to contribute to the prevention of BC [268]. Regarding treatment of luminal BC, the
isoflavones daidzein, genistein, glycitein, biochanin A, formononetin, glabridin, glabrene,
puerarin, calycosin, and equol have already shown promising effects (Figure 6).
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Daidzein (5) is an isoflavone present in soybeans that shares similarities with human
estrogens, acting in a dual way: replacing or blocking the action of the hormones in
ERs [269–271]. In luminal BC cells, such as MCF 7 cells, daidzein inhibits the NF-kB
pathway, CYP1, and topoisomerase, leading to cell-cycle arrest and apoptosis [272]. A
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phase I multiple-dose clinical investigation indicated that this compound was safe in
healthy postmenopausal women (ClinicalTrials.gov Identifier: NCT00491595) [273].

The isoflavone genistein (6) is a phytoestrogen found in soy and its derivatives [274]
that inhibits ER-positive BC tumors, suppressing MAPK and DNA polymerase II, reducing
cell proliferation, and triggering apoptosis [270,275]. This compound also increases ERβ
and decreases ERα expression at the transcriptional and protein levels [276,277]. Genistein
has been recognized as one of the most biologically active and potent isoflavones for cancer
prevention [270,275]. However, it is noteworthy that studies in animal models found that
genistein (6) and daidzein (5), even at lower concentrations, promote the development of
BC, highlighting the need for further experiments focused on the characterization of its
metabolites and their effects on breast tumors. Moreover, in in vitro tests, these substances
counteracted the antitumor effects of tamoxifen [278,279].

The compounds glycitein (7), biochanin A (8), formononetin (9), glabridin (10), and
glabrene (11) are phytoestrogens that are capable of positively regulating BCL-2 and modu-
lating important oncogenic pathways such as IGF-1/IGF-1R, MAPK, and P13K/Akt [227].
Glycitein (7), an O-methylated isoflavone that is present in soybean foods, can decrease
the glucose uptake of MCF 7 cells and modulate the metabolic status of ERα-positive
cells [225]. The results available in the literature about glycitein are limited to in vitro
assays. Biochanin A (BCA) (8) is an isoflavonoid that is present in large quantities in
chickpeas, soybeans, red clover, and other herbs [280]. BCA can reduce migration/invasion
and activate pro-inflammatory pathways of MCF 7 cells through ROS production and
inhibition of the ERK-1/2 pathway [281,282]. In addition, BCA has a preventive effect
against BC, whether administered alone or combined with other flavonoids [283]. In vivo
assays demonstrated that BCA has a synergistic effect with 5-fluorouracil, reducing tumor
size, mainly associated with the ER-α/Akt axis [284].

Formononetin (9), in turn, is an active component extracted from the traditional Chi-
nese medicinal herb Astragalus membranaceus that can reverse resistance to chemotherapy.
This compound regulates the expression of CXCL12, ESR1, and IGF1, modulates the Akt
and mTOR pathways, and increases the sensitivity of Taxol-resistant BC cells [285,286]. In
nude xenograft mice, the treatment with formononetin controlled the growth of BC [287].
Preclinical assays have also demonstrated the ability of this compound to inhibit angiogen-
esis through modulating the Akt pathway and downregulating the effect of basic fibroblast
growth factor 2 (FGF2). There are no ongoing clinical trials [288,289].

Glabridin (10), a flavonoid from the root of Glycyrrhiza glabra, traditionally called
licorice, has antiproliferative activity in MCF 7 cells [290], associated with oxidative stress,
mitochondrial dysfunction [291], and modulation of EGFR expression [292]. Similar to
glycitein (7), this flavonoid modulates ERs, with a proliferative effect at lower concentra-
tions and an antiproliferative effect at higher concentrations [293]. In an animal model of
TNBC, glabridin combined with a low concentration of paclitaxel significantly reduced
the tumor burden and the formation of lung metastases [294]. Glabrene (11), also present
in licorice, has a higher affinity for ERs and a dual effect on BC cells; at lower concentra-
tions (10 nM–10 µM), it promotes ER-dependent growth, while at higher concentrations
(>15 µM) it shows ER-independent antiproliferative activity [293]. In vivo studies have
demonstrated that glabridin is similar to ETD, but both glabridin and glabrene have lim-
itations for the treatment of luminal BC, especially given the lack of validation of their
therapeutic effects [295].

Puerarin (12), a natural isoflavone from Pueraria lobata (a plant from China and Japan
known as the “kudzu vine”), has therapeutic potential for luminal BC cells, inhibiting
cell migration, adhesion, and invasion, and triggering apoptosis through modulation
of non-coding RNAs (ncRNAs) [296]. Furthermore, treatment with puerarin reduces
multidrug resistance in Adriamycin-resistant MCF 7 cells [297]. In particular, the action of
puerarin in the estrogenic pathway in luminal BC has not yet been described, but in vivo
studies indicate that this compound increases the expression of ER-α in cardiac tissues in
ovariectomized animals [298]. A previous study investigating the anti-osteoporotic action
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of puerarin showed that this compound weakly binds to ERs [299]. However, as the results
with puerarin in BC are limited to a few in vitro experiments, its clinical application is still
incipient.

Calycosin (13), derived from Astragali root, exhibits antiproliferative and antimetastatic
activities in the luminal BC cell lines T-47D and MCF 7. The mechanisms of action include
suppression of basic leucine zipper transcription factor ATF-like (BATF) and modulation
of the expression of E-cadherin, N-cadherin, vimentin, CD147, matrix metallopeptidase
(MMP)-2, MMP-9, and the long non-coding RNA (lncRNA) WDR7-7 [300,301]. Further-
more, in MCF 7 cells, puerarin (12) and calycosin (13) activate caspase-3 [228,229]. Regard-
ing the estrogenic pathway, a significant increase in the expression of ERβ was observed in
MCF 7 cells after treatment with calycosin. This effect was associated with a reduction in
IGF-1R, the activation of PARP-1, and the downregulation of miR-375. In that same study,
the researchers noted that calycosin is more promising than formononetin [302]. Again,
there are no ongoing or completed clinical trials with calycosin.

Finally, equol (14), also found in soybeans, has been associated with increased effec-
tiveness of tamoxifen, which suggests a possible combined treatment for luminal BC. The
ability of equol to bind with high affinity to ERβ has also been reported, resulting in the
inhibition of cell proliferation and induction of apoptosis [248]. However, this activity is
under investigation due to the possible controversial activity of equol [303–305]. In vitro
studies have shown that the translation factor eIF4G is upregulated in cells that are treated
with equol, resulting in increased translation of pro-oncogenic mRNAs, for example, the
transcription factor c-Myc, which can consequently increase the viability of metastatic
cells [306].

7.3. Alkaloids and Catechins

Alkaloids are a class of natural substances that have received considerable interest
due to their therapeutic potential, including anti-inflammatory, antiviral, and antimicrobial
activities. In cancer cells, they can trigger apoptosis and autophagy, reduce tumor size,
inhibit cell proliferation, and can be used in combined therapeutic approaches [307,308].
Among the alkaloids, piperine is commonly cited for its antitumor activities in luminal BC.

Piperine (15) (Figure 7), an alkaloid obtained from black pepper (Piper longum), is an
active compound in luminal BC cells [309]. It inhibits the Wnt/β-catenin, Hedgehog, and
Notch pathways, which are involved in cancer stem cells’ self-renewal. In addition, piperine
induces apoptosis and regulates the expression of proteins such as EGFR, VEGF, CDK,
and NF-kβ [310]. Nanoparticles and liposomes have been used for piperine formulations
with enhanced effectiveness, including reversion of multidrug resistance and sensitivity to
paclitaxel and tamoxifen [310,311]. The mechanism of action by which piperine regulates
the estrogen pathway remains unclear, given the lack of in vitro and in vivo assays focused
on hormonal signaling.
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In turn, catechins are polyphenolic phytonutrients that are found in green tea (Camellia
sinensis). Among the catechins, epigallocatechin (16) [312,313] (Figure 8) is cytotoxic and
selective for MCF 7 cells, regulating the EGFR, STAT3, ERK, ERK1/2, NF-κB, and Akt
pathways [314–317]. Moreover, this compound is currently in phase I clinical trials for
the prevention and treatment of radiodermatitis in patients with BC (ClinicalTrials.gov
identifier: NCT01481818) [318].
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7.4. Lignans

Lignans are phytoestrogens that are absorbed from plant sources and are associated
with lower risks of postmenopausal BC, with promised effects against luminal BC [319].
Their main mechanism of action includes inhibition of NF-κB [320,321], with special atten-
tion devoted to pinoresinol, arctigenin, enterolactone, enterodiol, matairesinol, sesamin,
and secoisolariciresinol (Figure 9).
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Pinoresinol (17), a lignan commonly found in olives, binds to ERs, being selective and
cytotoxic to luminal BC cells, with a pro-oxidant action [232]. Furthermore, pinoresinol
selectively inhibits cell proliferation, induces apoptosis, blocks HER2 receptors, and in-
creases ROS production [232,322]. Regarding the estrogenic pathway, it was previously
demonstrated that pinoresinol apparently increases the viability of MCF 7 cells, with an
ERα agonist action [323]. Another study, also conducted in vitro, demonstrated that the
antiproliferative and cytotoxic action of pinoresinol is independent of the estrogen pathway
when low concentrations of the compound are used. Therefore, pinoresinol’s activity in
luminal BC is poorly understood and limited to in vitro assays [232].
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Arctigenin (18), a bioactive compound from Arctium lappa L., also binds to ERs and
reduces pro-tumor signals, such as granulocyte-macrophage colony-stimulating factor
(GM-CSF), MMP-3, MMP-9, and thymic stromal lymphopoietin (TSLP). In addition, it
inhibits the proliferation and invasion of luminal BC cells [233,324–326].

Some lignans are converted in the intestine into estrogenic enterolignans such as
enterolactone (19) and enterodiol (20). Although both act through ERs, the mechanisms are
different. Enterodiol binds ERα via the N-terminal activation domains 1 (AF-1) and 2 (AF-2)
of the receptor, like ETD. Enterolactone, in turn, acts mainly via AF-2. Both compounds,
however, affect the proliferation of MCF 7 cells [327]. Furthermore, enterolactone, in the
presence of ETD, reduces the proliferation of MCF 7 cells, possibly modulating the hormonal
effects [328]. Mali et al. (2012) showed that enterolactone downregulates the expression of
MMP2, MMP9, and MMP14 and inhibits the adhesion, invasion, and migration of MCF 7
cells [329]. Along with enterolactone, enterodiol has also been evaluated for its antitumor
activity against the proliferation of MCF 7 cells [330]. In addition, in vitro (MCF 7 lineage)
and in vivo treatments with enterodiol and enterolactone inhibited hormone-induced tumor
growth, even controlling the production of VEGF and angiogenesis [331]. This information
highlights the potential of these compounds in the prevention and treatment of luminal BC,
including some clinical trials that have already been carried out [332].

Matairesinol (21), found in seeds, vegetables, and fruits, has antiangiogenic, antitu-
mor, and antifungal activities [333]. Abarzua and collaborators (2012) demonstrated the
antitumor potential of matairesinol in MCF 7 cells, with a significant reduction in cell
viability. However, the effects of matairesinol did not surpass those of enterolactone (19)
and enterodiol (20) [236].

Sesamin (22), a phytochemical identified in Sesamum indicum, is metabolized by the
liver and induces G1 cell-cycle arrest in MCF 7 cells [334], regulates ER and programmed
death-ligand 1 (PD-L1) expression, and inhibits growth factors and tyrosine kinase path-
ways [238,335,336]. In murine models, sesamin reduced the expression of HER2 and VEGF,
and it inhibited the MAPK signaling pathway [238,336]. The above results were limited to
in vitro and in vivo tests in animal models.

Also, secoisolariciresinol (23), a compound extracted from seeds of Linum usitatissimum,
modulates inflammation through the NF-kB pathway in MCF 7 cells [239], and it also alters
the expression of ER1, ER2, EGF, BCL2, and IGF1R [240]. Moreover, secoisolariciresinol
and its derivatives can also induce apoptosis in MCF 7 cells and potentiate the action of
chemotherapeutic agents such as doxorubicin, being considered safe and tolerable in phase
IIB studies [337]. These data demonstrate the potential of this compound for the treatment
of luminal BC.

7.5. Coumestans and Stilbenes

Coumestans are polycyclic aromatic compounds that have a heterocyclic structure
with four oxygenated rings, including coumarin and benzofuran moieties, connected by a
carbon–carbon double bond. They exhibit biological effects similar to those of phytoestro-
gens and polyphenols, showing in vitro anticancer potential. However, in vivo studies
using these compounds are still limited [338–341]. Among the coumestans with antitumor
activity, we highlight coumestrol and 4′-methoxycumestrol, which have previously shown
activity against luminal BC (Figure 10). Coumestans are mainly produced during the
germination of beans, clovers, Brussels sprouts, and soybeans. The amounts of coumestans
in plants may vary depending on the variety, growth stage, presence of diseases, location,
and use of fungicides and insecticides [342].

Coumestrol (24) has already been identified in soybeans, clover, and spinach. It
inhibits 17β-HSD enzymes and aromatase and binds to ERα and ERβ. In this sense,
coumestrol regulates the hormone receptor pathways and expression, with anti-estrogenic
activity 30–100 times greater than that of isoflavones. Therefore, this compound can be
used as a complementary strategy in hormone therapy and chemotherapy for luminal
BC [343–346]. In ER-positive cells, in addition to reducing cell viability, coumestrol signif-



Pharmaceuticals 2023, 16, 1466 21 of 40

icantly reduces the expression of genes that drive epithelial-to-mesenchymal transition
(Snail), bone fixation (CXCR4 and integrin αV), and osteolysis (PTHrP and TNF-α) [344]
Likewise, 4′-metoxicumestrol (25) is also cited as a phytoestrogen with an antiproliferative
effect on luminal BC cells, downregulating Akt phosphorylation [242].
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Stilbenes are natural substances isolated from vines, sorghum, pine, fir, and mulberry.
These compounds have a core structure of 1,2-diphenylethylene and are used by plants as
a defense against external threats, including pests, microorganisms, and the harmful effects
of ultraviolet radiation [347]. Among the stilbenes, resveratrol (26) and pterostilbene (27)
have been reported as active agents for luminal BC cells (Figure 11).
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Resveratrol (26), also known as 3,5,4′-trihydroxy-trans-stilbene, is one of the most fa-
mous polyphenols and phytoestrogens, found mainly in grape skins, especially those of red
grapes. Additionally, it can be found in blueberries, raspberries, cranberries, blackberries,
peanuts, and cocoa powder [348]. This compound inhibits cell proliferation and reduces
the migration and viability of BC cells [243,244]. Moreover, it exhibits synergistic effects
when combined with chemotherapy agents such as doxorubicin, cisplatin, docetaxel, and
paclitaxel [349]. Resveratrol triggers apoptosis in MCF 7 cells [350], arrests the cell cycle
in the S phase [351], and causes DNA damage [352] and epigenetic alterations, such as
in genomic methylation and miRNA expression [353]. Regarding the estrogen pathway,
the compound is characterized as a weak agonist/antagonist of both ERs, being struc-
turally similar to ETD [348,354]. Clinical trials indicated that resveratrol was safe and well
tolerated, in addition to its action as a chemopreventive agent for BC patients [355].

Pterostilbene (27) is an analogue of resveratrol, found mainly in blueberries, and it also
demonstrates antitumor activity against MCF 7 cells. Previous studies demonstrated that
pterostilbene functions as an ERα inhibitor, while also inducing apoptosis [243,245,356].
Pterostilbene can induce apoptosis in mammary tumor cells by antagonizing ETD and
specifically inhibiting ERα36 [357]. In addition, this stilbene can lead to an accumula-
tion of neutral lipids in the intracellular environment, activating autophagy, reducing
mitosis and metastasis [358], blocking the cell cycle, inducing morphological alterations
and DNA degradation, increasing caspase-9 expression, and modulating the Akt/mTOR
pathway [359,360].
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7.6. Other Compounds

Other compounds such as thymoquinone, sulforaphane, and ginsenosides have been
studied as potentially active in luminal BC (Figure 12). Thymoquinone (28), a monoterpene
found in Nigella sativa, can induce apoptosis via p53 in MCF 7 cells [361]. In addition, this
compound can modulate NF-κB levels, arrest the cell cycle in the S phase [361], and alter
the expression of genes related to the estrogen pathway [362]. Isothiocyanate sulforaphane
(29) is found in broccoli, especially broccoli sprouts, and in cruciferous vegetables such as
cabbage, cauliflower, and kale [363]; it decreases ER1 expression [364]. This compound is
found in cruciferous vegetables and regulates gene expression through epigenetics, inhibit-
ing histone deacetylase (HDAC) [365]. Furthermore, sulforaphane inhibits cell proliferation,
induces apoptosis, and arrests the cell cycle at the G2/M phase in MCF 7 cells [366]. Re-
cently, a phase II clinical study found that the effect of a broccoli sprout preparation, in
which sulforaphane is a key component, could increase the levels of protective enzymes in
BC tissues (ClinicalTrials.gov Identifier: NCT00982319) [367].
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Finally, ginsenosides (30, 31), present in ginseng root (Panax), have been considered
as possible antitumor agents for triggering apoptosis [368]. Huynh et al. (2021) showed
high cytotoxicity of these compounds in MCF 7 cells, as well as increases in apoptosis,
autophagy, and cell-cycle arrest. Furthermore, the ROS production after the treatments
inhibited the PI3K/Akt pathway [249,250,369]. Despite showing antitumor action during
in vitro tests, the use of these compounds in clinical trials is limited by the scarcity of data
related to their metabolic regulation and modulated pathways [370].

8. The Challenges of Clinical Practice

Historically, natural products have contributed decisively to the treatment of tumors
by inhibiting proliferation, metastasis, and angiogenesis, in addition to sensitizing trans-
formed cells to radiotherapy and chemotherapy [371]. Synergism between compounds
has also been explored, as it allows for increasing efficacy, reducing the administered
dose, avoiding toxicity, and minimizing drug resistance [372]. However, natural prod-
ucts have low stability, poor absorption and biodistribution, and fast metabolism and
excretion profiles [373].They are poorly soluble in water, with low lipophilicity and inap-
propriate molecular size. Furthermore, cellular transport and uptake are also low and,
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in this context, even when high doses are administered, concentrations in plasma and
tissue are reduced [374]. Therefore, structural modifications are necessary to improve their
bioavailability. For example, trans-2,4,3′,4′,5′-pentamethoxystilbene, a resveratrol deriva-
tive, showed higher potency and antiproliferative activity in MCF 7 cells [375]. Finally,
nanotechnology has presented the resources to overcome these barriers by allowing for
the delivery of encapsulated agents in an optimized therapeutic system. In this context, in
a study conducted by Gadag et al. [376], nanostructured lipid carriers (NLCs) containing
resveratrol enhanced its cytotoxicity against BC cells compared to pure resveratrol, along
with increased permeation into the skin and bioavailability by oral administration. Despite
being revolutionary, nanotechnology still faces regulatory aspects related to safety/toxicity,
which reaffirm the challenges faced in the clinical use of natural products. The most promis-
ing compounds for the treatment of ER-positive BC, along with their clinical limitations,
are described in Table 2.

Table 2. Promising natural compounds for the treatment of ER-positive breast cancer, and challenges
for their clinical application.

Natural Compound
Potential Targets and

Mechanisms of Action
in the Context of

Estrogen Signaling

Preclinical and Clinical
Evaluation in the Context

of BC
Challenges for Its Use

in Clinical Practice Reference

Hesperetin (2)

- Regulates estrogen
metabolism, and induces
both extrinsic and
intrinsic apoptotic
pathways
- Suppresses aromatase
enzyme activity and
cyclin D1, CDK4, Bcl-xL,
and pS2 expression

- Reduced the tumor growth
in female athymic mice with
BC

- Possibly toxic to the
liver
- Recommended
long-term animal and
clinical studies to
understand its
therapeutic advantages
in cancer

[257]

Daidzein (5)

- Regulates estrogen and
estrogen receptor
complex-binding affinity
- At high concentrations,
exhibits anticancer
capacity

- Phase I multiple-dose
clinical investigation to test
the safety and effects in
healthy postmenopausal
women (ClinicalTrials.gov
Identifier: NCT00491595)

- The mechanisms of
action are still not
completely known, and
its poor bioavailability
restricts its clinical
application
- Possibly causes
unwanted side effects

[273,377]

Formononetin (9)

- Induces cell-cycle arrest
in BC cells via
IGF1/PI3K/Akt
pathways

- Showed growth-inhibitory
activity associated with
inhibition of tumor
angiogenesis in xenograft
models of BC

- There is still insufficient
evidence to delineate the
exact anticancer
mechanisms

[287,288,378]

Calycosin (13)

- Inhibits growth and
induces apoptosis in
ER-positive BC cells via
ERβ-dependent
regulation of the IGF-1R,
p38 MAPK, and
PI3K/Akt pathways

- Inhibited tumor growth in
mice bearing MCF 7 or
SKBR3 xenografts

- Recommended
long-term animal and
clinical studies to better
understand its toxicity
and therapeutic
advantages in cancer

[301,379]

Epigallocatechin (16)

- Can exert cytotoxic
effects in MCF 7 cells,
possible through the
EGFR, STAT3, ERK,
ERK1/2, NF-κB, and Akt
pathways

- Oral treatments in mice
resulted in a reduction in
tumor growth and
antiangiogenic effects in
xenograft and allograft
models of BC
- Evaluated in phase I
clinical trials for the
prevention and treatment of
radiodermatitis in patients
with BC (ClinicalTrials.gov
Identifier: NCT01481818)

- Low oral bioavailability
is a problem for its
therapeutic application
- There is still insufficient
evidence about the
molecular mechanisms
involved in its protective
effects against mammary
carcinogenesis
- More in vivo studies are
necessary to determine
its potential toxicity

[316–318]
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Table 2. Cont.

Natural Compound
Potential Targets and

Mechanisms of Action
in the Context of

Estrogen Signaling

Preclinical and Clinical
Evaluation in the Context

of BC
Challenges for Its Use

in Clinical Practice Reference

Enterolactone (19)

- Indicated
anti-estrogenic effects
and affected VEGF
production in
ER-positive breast cancer

- Showed some benefit to
BC patients’ prognosis
when it was found at higher
concentrations in the serum
- Its lower concentration in
the serum was associated
with an increased risk of
developing BC

- Long-term studies are
needed to understand its
potential benefits or
harms to BC patients

[380,381]

Secoisolariciresinol (23)
- Alters the expression of
ER1, ER2, EGF, BCL2 747,
and IGF1R

- Phase II clinical studies
were conducted in
premenopausal women at
risk of developing breast
cancer, but they did not
indicate significant results
in Ki-67 expression
compared to the
placebo-treated group
- The trials demonstrated
that its use is tolerable
and safe

- More clinical trials are
necessary to determine
its real potential for
treating BC patients

[240,337]

Resveratrol (26)

- Reduces the expression
of certain
breast-cancer-related
genes (e.g., RASSF-1α)
via epigenetic
mechanisms

- Inhibited the growth of
Erβ-positive tumor
explants, increased
apoptosis, and decreased
angiogenesis in nude mice
- Clinical trials showed that
resveratrol was safe and
well tolerated, in addition to
its action as a
chemopreventive agent for
BC patients

- The major obstacle
presented in the clinical
trials was its poor
bioavailability

[382,383]

Sulforaphane (29)

- Can inhibit the
expression of ERα
protein in MCF 7 cells,
affecting its mRNA levels
or mediating the
degradation of the
receptor by the
proteasome complex
- Suppresses MCF 7 cell
growth via the
miR-19/PTEN axis

- A phase II clinical study
examined whether this
compound in a broccoli
sprout preparation could
increase the levels of
protective enzymes in BC
tissues (ClinicalTrials.gov
Identifier: NCT00982319)

- Available on the market
as a food supplement
- More efforts are
necessary to determine
its therapeutic properties
in BC patients

[364,366,367,384]

9. Conclusions

BC is molecularly heterogeneous and has challenged clinical practice. Estrogens
play a critical role in the development of normal breast cells, but they contribute to the
genesis and progression of tumors. Thus, luminal BC (ER-positive) is eligible for endocrine
therapy, which has been widely used and is responsible for a significant increase in patient
survival. However, with drugs in clinical routine, cases of resistance associated with
relapse are of concern to oncologists and researchers. Secondary metabolites of plant origin
have been a promising alternative in the search for new drugs, since they can modulate
estrogenic signaling. Moreover, they can be structurally modified, can be incorporated in
nanoformulations, and can be used as a treatment system alone or combined with currently
used drugs. The natural compounds described in this review highlight the importance of
some potentially pharmacologically exploitable plant species in the treatment of luminal
BC. We highlight some of these compounds in Figure 13. Therefore, given the scarcity
of clinical trials, the need for more detailed studies dedicated to unveiling the potential
of these compounds in reversing resistance to hormone therapy is still evident. In fact,
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natural products can overcome barriers to optimized and innovative healthcare, meeting
Sustainable Development Goals (SDGs) 03 and 08 of the WHO.
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a dietary flavonoid, induces apoptosis, DNA damage, and oxidative stress in human breast cancer MCF-7 and MDA MB-231 cells.
Naunyn-Schmiedebergs Arch. Pharmacol. 2018, 391, 537–550. [CrossRef] [PubMed]

219. Hwang, K.A.; Choi, K.C. Anticarcinogenic Effects of Dietary Phytoestrogens and Their Chemopreventive Mechanisms. Nutr.
Cancer 2015, 67, 796–803. [CrossRef] [PubMed]

220. Zafar, A.; Singh, S.; Naseem, I. Cytotoxic activity of soy phytoestrogen coumestrol against human breast cancer MCF-7 cells:
Insights into the molecular mechanism. Food Chem. Toxicol. 2017, 99, 149–161. [CrossRef]

221. Zava, D.T.; Dollbaum, C.M.; Blen, M. Estrogen and progestin bioactivity of foods, herbs, and spices. Proc. Soc. Exp. Biol. Med. Soc.
Exp. Biol. Med. 1998, 217, 369–378. [CrossRef]

222. Chen, H.H.; Chen, S.P.; Zheng, Q.L.; Nie, S.P.; Li, W.J.; Hu, X.J.; Xie, M.Y. Genistein Promotes Proliferation of Human Cervical
Cancer Cells Through Estrogen Receptor-Mediated PI3K/Akt-NF-κB Pathway. J. Cancer 2018, 9, 288–295. [CrossRef]

223. Li, Y.; Upadhyay, S.; Bhuiyan, M.; Sarkar, F.H. Induction of apoptosis in breast cancer cells MDA-MB-231 by genistein. Oncogene
1999, 18, 3166–3172. [CrossRef]

224. Gong, L.; Li, Y.; Nedeljkovic-Kurepa, A.; Sarkar, F.H. Inactivation of NF-kappaB by genistein is mediated via Akt signaling
pathway in breast cancer cells. Oncogene 2003, 22, 4702–4709. [CrossRef] [PubMed]

225. Uifălean, A.; Schneider, S.; Gierok, P.; Ionescu, C.; Iuga, C.A.; Lalk, M. The Impact of Soy Isoflavones on MCF-7 and MDA-MB-231
Breast Cancer Cells Using a Global Metabolomic Approach. Int. J. Mol. Sci. 2016, 17, 1443. [CrossRef] [PubMed]

226. Chen, J.; Ge, B.; Wang, Y.; Ye, Y.; Zeng, S.; Huang, Z. Biochanin A promotes proliferation that involves a feedback loop of
microRNA-375 and estrogen receptor alpha in breast cancer cells. Cell. Physiol. Biochem. 2015, 35, 639–646. [CrossRef] [PubMed]

227. Sirotkin, A.V.; Harrath, A.H. Phytoestrogens and their effects. Eur. J. Pharmacol. 2014, 741, 230–236. [CrossRef] [PubMed]
228. Zhou, Y.X.; Zhang, H.; Peng, C. Puerarin: A review of pharmacological effects. Phytother. Res. 2014, 28, 961–975. [CrossRef]
229. Tian, J.; Duan, Y.X.; Bei, C.Y.; Chen, J. Calycosin induces apoptosis by upregulation of RASD1 in human breast cancer cells MCF-7.

Horm. Metab. Res. 2013, 45, 593–598. [CrossRef]
230. Do, M.T.; Kim, H.G.; Choi, J.H.; Khanal, T.; Park, B.H.; Tran, T.P.; Jeong, T.C.; Jeong, H.G. Antitumor efficacy of piperine in the

treatment of human HER2-overexpressing breast cancer cells. Food Chem. 2013, 141, 2591–2599. [CrossRef]
231. Monteiro, C.B.A.d.G. EGCG do Chá Verde—Um Agente Natural Contra o Cancro de Mama. Master’s Thesis, Universidade de

Coimbra, Coimbra, Portugal, 2018.
232. López-Biedma, A.; Sánchez-Quesada, C.; Beltrán, G.; Delgado-Rodríguez, M.; Gaforio, J.J. Phytoestrogen (+)-pinoresinol exerts

antitumor activity in breast cancer cells with different oestrogen receptor statuses. BMC Complement. Altern. Med. 2016, 16, 350.
[CrossRef]

233. He, Y.; Fan, Q.; Cai, T.; Huang, W.; Xie, X.; Wen, Y.; Shi, Z. Molecular mechanisms of the action of Arctigenin in cancer. Biomed.
Pharmacother. 2018, 108, 403–407. [CrossRef]

234. Hsieh, C.J.; Kuo, P.L.; Hsu, Y.C.; Huang, Y.F.; Tsai, E.M.; Hsu, Y.L. Arctigenin, a dietary phytoestrogen, induces apoptosis of
estrogen receptor-negative breast cancer cells through the ROS/p38 MAPK pathway and epigenetic regulation. Free Radic. Biol.
Med. 2014, 67, 159–170. [CrossRef]

235. Xiong, X.Y.; Hu, X.J.; Li, Y.; Liu, C.M. Inhibitory Effects of Enterolactone on Growth and Metastasis in Human Breast Cancer. Nutr.
Cancer 2015, 67, 1324–1332. [CrossRef] [PubMed]

236. Abarzua, S.; Serikawa, T.; Szewczyk, M.; Richter, D.U.; Piechulla, B.; Briese, V. Antiproliferative activity of lignans against the
breast carcinoma cell lines MCF 7 and BT 20. Arch. Gynecol. Obstet. 2012, 285, 1145–1151. [CrossRef] [PubMed]

237. Reuben, S.C.; Gopalan, A.; Petit, D.M.; Bishayee, A. Modulation of angiogenesis by dietary phytoconstituents in the prevention
and intervention of breast cancer. Mol. Nutr. Food Res. 2012, 56, 14–29. [CrossRef] [PubMed]

238. Truan, J.S.; Chen, J.M.; Thompson, L.U. Comparative effects of sesame seed lignan and flaxseed lignan in reducing the growth of
human breast tumors (MCF-7) at high levels of circulating estrogen in athymic mice. Nutr. Cancer 2012, 64, 65–71. [CrossRef]

239. Bowers, L.W.; Lineberger, C.G.; Ford, N.A.; Rossi, E.L.; Punjala, A.; Camp, K.K.; Kimler, B.K.; Fabian, C.J.; Hursting, S.D. The
flaxseed lignan secoisolariciresinol diglucoside decreases local inflammation, suppresses NFκB signaling, and inhibits mammary
tumor growth. Breast Cancer Res. Treat. 2019, 173, 545–557. [CrossRef]

240. Saggar, J.K.; Chen, J.; Corey, P.; Thompson, L.U. The effect of secoisolariciresinol diglucoside and flaxseed oil, alone and in
combination, on MCF-7 tumor growth and signaling pathways. Nutr. Cancer 2010, 62, 533–542. [CrossRef]

241. Lee, Y.H.; Yuk, H.J.; Park, K.H.; Bae, Y.S. Coumestrol induces senescence through protein kinase CKII inhibition-mediated reactive
oxygen species production in human breast cancer and colon cancer cells. Food Chem. 2013, 141, 381–388. [CrossRef]

242. Liu, S.; Hsieh, D.; Yang, Y.L.; Xu, Z.; Peto, C.; Jablons, D.M.; You, L. Coumestrol from the national cancer Institute’s natural
product library is a novel inhibitor of protein kinase CK2. BMC Pharmacol. Toxicol. 2013, 14, 36. [CrossRef]

243. Mikstacka, R.; Przybylska, D.; Rimando, A.M.; Baer-Dubowska, W. Inhibition of human recombinant cytochromes P450 CYP1A1
and CYP1B1 by trans-resveratrol methyl ethers. Mol. Nutr. Food Res. 2007, 51, 517–524. [CrossRef]

244. Ma, Z.; Molavi, O.; Haddadi, A.; Lai, R.; Gossage, R.A.; Lavasanifar, A. Resveratrol analog trans 3,4,5,4′-tetramethoxystilbene
(DMU-212) mediates anti-tumor effects via mechanism different from that of resveratrol. Cancer Chemother. Pharmacol. 2008, 63,
27–35. [CrossRef]

https://doi.org/10.3978/j.issn.1000-9604.2013.04.01
https://www.ncbi.nlm.nih.gov/pubmed/23592903
https://doi.org/10.1007/s00210-018-1486-4
https://www.ncbi.nlm.nih.gov/pubmed/29541820
https://doi.org/10.1080/01635581.2015.1040516
https://www.ncbi.nlm.nih.gov/pubmed/25996655
https://doi.org/10.1016/j.fct.2016.11.034
https://doi.org/10.3181/00379727-217-44247
https://doi.org/10.7150/jca.20499
https://doi.org/10.1038/sj.onc.1202650
https://doi.org/10.1038/sj.onc.1206583
https://www.ncbi.nlm.nih.gov/pubmed/12879015
https://doi.org/10.3390/ijms17091443
https://www.ncbi.nlm.nih.gov/pubmed/27589739
https://doi.org/10.1159/000369725
https://www.ncbi.nlm.nih.gov/pubmed/25613180
https://doi.org/10.1016/j.ejphar.2014.07.057
https://www.ncbi.nlm.nih.gov/pubmed/25160742
https://doi.org/10.1002/ptr.5083
https://doi.org/10.1055/s-0033-1341510
https://doi.org/10.1016/j.foodchem.2013.04.125
https://doi.org/10.1186/s12906-016-1233-7
https://doi.org/10.1016/j.biopha.2018.08.158
https://doi.org/10.1016/j.freeradbiomed.2013.10.004
https://doi.org/10.1080/01635581.2015.1082113
https://www.ncbi.nlm.nih.gov/pubmed/26473769
https://doi.org/10.1007/s00404-011-2120-6
https://www.ncbi.nlm.nih.gov/pubmed/22037685
https://doi.org/10.1002/mnfr.201100619
https://www.ncbi.nlm.nih.gov/pubmed/22125182
https://doi.org/10.1080/01635581.2012.630165
https://doi.org/10.1007/s10549-018-5021-6
https://doi.org/10.1080/01635580903532440
https://doi.org/10.1016/j.foodchem.2013.03.053
https://doi.org/10.1186/2050-6511-14-36
https://doi.org/10.1002/mnfr.200600135
https://doi.org/10.1007/s00280-008-0704-z


Pharmaceuticals 2023, 16, 1466 35 of 40

245. Wang, Y.; Ding, L.; Wang, X.; Zhang, J.; Han, W.; Feng, L.; Sun, J.; Jin, H.; Wang, X.J. Pterostilbene simultaneously induces
apoptosis, cell cycle arrest and cyto-protective autophagy in breast cancer cells. Am. J. Transl. Res. 2012, 4, 44–51. [PubMed]

246. Woo, C.C.; Loo, S.Y.; Gee, V.; Yap, C.W.; Sethi, G.; Kumar, A.P.; Tan, K.H. Anticancer activity of thymoquinone in breast cancer
cells: Possible involvement of PPAR-γ pathway. Biochem. Pharmacol. 2011, 82, 464–475. [CrossRef] [PubMed]

247. Arafa el, S.A.; Zhu, Q.; Shah, Z.I.; Wani, G.; Barakat, B.M.; Racoma, I.; El-Mahdy, M.A.; Wani, A.A. Thymoquinone up-regulates
PTEN expression and induces apoptosis in doxorubicin-resistant human breast cancer cells. Mutat. Res. 2011, 706, 28–35.
[CrossRef] [PubMed]

248. Charalambous, C.; Pitta, C.A.; Constantinou, A.I. Equol enhances tamoxifen’s anti-tumor activity by induction of caspase-
mediated apoptosis in MCF-7 breast cancer cells. BMC Cancer 2013, 13, 238. [CrossRef] [PubMed]

249. Zhang, H. Ginsenoside Rh2 reverses P-glycoprotein-mediated multidrug resistance of MCF-7/ADM cells. Tumor 2007, 12,
365–369.

250. Huynh, D.T.N.; Jin, Y.; Myung, C.S.; Heo, K.-S. Ginsenoside Rh1 Induces MCF-7 Cell Apoptosis and Autophagic Cell Death
through ROS-Mediated Akt Signaling. Cancers 2021, 13, 1892. [CrossRef]

251. Selvakumar, P.; Badgeley, A.; Murphy, P.; Anwar, H.; Sharma, U.; Lawrence, K.; Lakshmikuttyamma, A. Flavonoids and Other
Polyphenols Act as Epigenetic Modifiers in Breast Cancer. Nutrients 2020, 12, 761. [CrossRef]

252. Park, M.Y.; Kim, Y.; Ha, S.E.; Kim, H.H.; Bhosale, P.B.; Abusaliya, A.; Jeong, S.H.; Kim, G.S. Function and Application of
Flavonoids in the Breast Cancer. Int. J. Mol. Sci. 2022, 23, 7732. [CrossRef]

253. Kabała-Dzik, A.; Rzepecka-Stojko, A.; Kubina, R.; Iriti, M.; Wojtyczka, R.D.; Buszman, E.; Stojko, J. Flavonoids, bioactive
components of propolis, exhibit cytotoxic activity and induce cell cycle arrest and apoptosis in human breast cancer cells
MDA-MB-231 and MCF-7—A comparative study. Cell. Mol. Biol. 2018, 64, 1–10. [CrossRef]

254. Pyrzynska, K. Hesperidin: A Review on Extraction Methods, Stability and Biological Activities. Nutrients 2022, 14, 2387.
[CrossRef]

255. Khamis, A.A.A.; Ali, E.M.M.; El-Moneim, M.A.A.; Abd-Alhaseeb, M.M.; El-Magd, M.A.; Salim, E.I. Hesperidin, piperine and bee
venom synergistically potentiate the anticancer effect of tamoxifen against breast cancer cells. Biomed. Pharmacother. 2018, 105,
1335–1343. [CrossRef] [PubMed]

256. Hsu, P.H.; Chen, W.H.; Juan-Lu, C.; Hsieh, S.C.; Lin, S.C.; Mai, R.-T.; Chen, S.-Y. Hesperidin and Chlorogenic Acid Synergistically
Inhibit the Growth of Breast Cancer Cells via Estrogen Receptor/Mitochondrial Pathway. Life 2021, 11, 950. [CrossRef]

257. Yap, K.M.; Sekar, M.; Wu, Y.S.; Gan, S.H.; Rani, N.; Seow, L.J.; Subramaniyan, V.; Fuloria, N.K.; Fuloria, S.; Lum, P.T. Hesperidin
and its aglycone hesperetin in breast cancer therapy: A review of recent developments and future prospects. Saudi J. Biol. Sci.
2021, 28, 6730–6747. [CrossRef] [PubMed]

258. Lin, Y.; Shi, R.; Wang, X.; Shen, H.M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug
Targets 2008, 8, 634–646. [CrossRef] [PubMed]

259. Tsai, K.J.; Tsai, H.Y.; Tsai, C.C.; Chen, T.Y.; Hsieh, T.H.; Chen, C.-L.; Mbuyisa, L.; Huang, Y.-B.; Lin, M.-W. Luteolin Inhibits Breast
Cancer Stemness and Enhances Chemosensitivity through the Nrf2-Mediated Pathway. Molecules 2021, 26, 6452. [CrossRef]
[PubMed]

260. Markaverich, B.M.; Shoulars, K.; Rodriguez, M.A. Luteolin Regulation of Estrogen Signaling and Cell Cycle Pathway Genes in
MCF-7 Human Breast Cancer Cells. Int. J. Biomed. Sci. 2011, 7, 101–111. [CrossRef] [PubMed]

261. Wang, X.; Zhang, L.; Dai, Q.; Si, H.; Zhang, L.; Eltom, S.E.; Si, H. Combined Luteolin and Indole-3-Carbinol Synergistically
Constrains ERα-Positive Breast Cancer by Dual Inhibiting Estrogen Receptor Alpha and Cyclin-Dependent Kinase 4/6 Pathway
in Cultured Cells and Xenograft Mice. Cancers 2021, 13, 2116. [CrossRef] [PubMed]
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