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Abstract: During tumorigenesis, urokinase (uPA) and uPA receptor (uPAR) play essential roles
in mediating pathological progression in many cancers. To understand the crosstalk between the
uPA/uPAR signaling and cancer, as well as to decipher their cellular pathways, we proposed to
use cancer driver genes to map out the uPAR signaling. In the study, an integrated pharmaceutical
bioinformatics approach that combined modulator identification, driver gene ontology networking,
protein targets prediction and networking, pathway analysis and uPAR modulator screening platform
construction was employed to uncover druggable targets in uPAR signaling for developing a novel
anti-cancer modality. Through these works, we found that uPAR signaling interacted with 10 of 21
KEGG cancer pathways, indicating the important role of uPAR in mediating intracellular cancerous
signaling. Furthermore, we verified that receptor tyrosine kinases (RTKs) and ribosomal S6 kinases
(RSKs) could serve as signal hubs to relay uPAR-mediated cellular functions on cancer hallmarks such
as angiogenesis, proliferation, migration and metastasis. Moreover, we established an in silico virtual
screening platform and a uPAR–driver gene pair rule for identifying potential uPAR modulators to
combat cancer. Altogether, our results not only elucidated the complex networking between uPAR
modulation and cancer but also provided a paved way for developing new chemical entities and/or
re-positioning clinically used drugs against cancer.

Keywords: uPAR-mediated signaling system; cancer driver gene; network analysis; uPAR modulator;
a pharmaceutical bioinformatics study

1. Introduction

The urokinase-type plasminogen activator (uPA) system embodies ligand uPA, re-
ceptor uPAR and inhibitors PAI-1 and PAI-2. It goes through its sole mediator, uPAR, a
glycosyl phosphatidylinositol (GPI)-anchored membrane protein hinging three homolo-
gous cysteine-rich domains (DI, DII, DIII), to modulate many physiological/pathological
processes [1]. The signaling of this system uses two different methods to transduce. In
a proteolytical fashion, the untie of uPAR’s extracellular ligand-binding portion of DI
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and DII-DIII fragments into circulation by proteases (such as uPA) seems to serve as an
autocrine signal in extracellular proteolysis and is delineated to tumor progression and
inflammation [2,3]. In a non-proteolytical fashion, the uPA-bound uPAR complexing inte-
grins to interact with receptor systems, such as receptor tyrosine kinases (RTKs) (e.g., EGFR,
FGFR, PDGFR, IGFR), G protein-coupled receptors and formyl peptide receptor type 1
(FPR1) [4], is thought to behave as an intracellular signal involved in angiogenesis, cell
movement and tumor progression [5,6]. In addition, uPAR is rarely expressed in normal
tissues but overexpressed in some tumor tissues; these traits grant its role in diagnosis and
prognosis of various malignancies [2,7]. Together, the tangling between the uPAR signaling
and cancer is tight and intricate.

The foregoing relationships serve to elucidate the detail that the uPAR signaling may
have a great impact on cancer biology and therapy. Some previous works targeting uPAR by
monoclonal antibody, peptide-derived antagonists and small molecule inhibitors (reviewed
in [8,9]), which antagonize the binding with uPA or vitronectin (Vn), showed promise at
preclinical stages but failed to receive clinical approvals. On the other hand, targeting
modulation of the uPAR non-proteolytic signaling to combat cancer has not been truly
established due to the complexity of this intracellular signaling because the uPAR signaling
remains unresolved in the post-genomic era. It is well known that several types of cancer
hallmarks, such as proliferation, angiogenesis, invasion and metastasis, are affected by the
uPAR signaling. Thus, how this system governs cancer cells to acquire aberrant phenotypic
capabilities during malignant processes must be elucidated in order to break the deadlock
in the development of uPAR-related anti-cancer agents.

Cancer driver genes are genes whose mutations can fuel cancer progression and
lead to pathological changes in tumor microenvironment, angiogenesis and inflammation.
Although alternative definitions and search methods are used to identify and catalogue
cancer driver genes and mutations, all these genes are mutated in at least one cancer
type. Therefore, cancer driver genes may represent the spot genes in any physiological
signaling system that drive the oncogenicity. On the other hand, while continuous efforts
based on sophisticated techniques have broadened our knowledge on this topic, many
studies indicate that driver genes are often “hub” genes, playing a key role in managing
complicate signal transduction. Since cancer driver genes may play the pivotal role in uPAR
signaling, we propose to map out this signaling pathway with cancer driver genes for not
only clarifying the crosstalk between uPAR signaling and cancer but also providing the
intersection drivers in uPAR signaling as druggable hubs for developing small molecule
modulators to treat cancer.

In this study, a pharmaceutical bioinformatics framework aimed to elucidate cancer
driver-associated uPAR signaling via network construction, pathway analysis, machine
learning and model validation was proposed. With the use of self-defined uPAR modulators
to construct the uPAR signaling network via linking uPAR co-expressed cancer driver
genes, the rationale for uPAR modulators as a possible strategy to reverse cancer hallmarks
was verified. Understanding the cancerous uPAR signaling networks could lead to the
development of a new class of anti-cancer agents.

2. Results
2.1. uPAR Modulators and Their Cancerous Signaling Networks

To identify small molecule drug candidates and uPAR-associated targets in human
cancer signaling, we proposed that cancer driver genes (CDG) could be hubs to project
the crosstalk between uPAR signaling and cancer. Therefore, the first step was to identify
uPAR modulators from a comprehensive database, as described in Section 4, to serve as
the connectors between uPAR and cancer signaling systems. Based on the data of CMap,
which collects the expression profiles of 3848 genes perturbated by 2429 compounds in
two ways (i.e., gene knockdown and gene overexpression), 254 uPAR modulators, including
111 stimulators and 143 suppressors, were identified by self-written data extraction scripts.
Hypothetically, the interactions between these uPAR modulators and their transcriptional



Pharmaceuticals 2023, 16, 1435 3 of 18

(mRNA) or translational (protein) targets would be comprised by the uPAR signaling
networks. Because the natures of transcriptional and translational interactions are different,
the construction of the uPAR networks with the protrusion of cancer driver genes were
performed as follows:

In transcriptional networking, there were 3848 molecular targets identified, which
were co-expressed with the 254 uPAR modulators using the same method of modulator
identification (i.e., gene expression score > 0.9), and these targets and modulators were
the components of the uPAR transcriptional crosstalk. Then, 299 widely accepted cancer
driver genes [10] were introduced, their existence was mapped in the uPAR transcriptional
signaling, and 158 of them were found in the network. By relating these associated cancer
driver genes and uPAR modulators to one another, a cancerous uPAR compound–target
network was built (Figure 1A). The constructed signaling system comprised 411 nodes
and 5184 edges, with an average degree (the number of connections or edges the node
has to other nodes) of 32.81 nodes per targets and 20.49 edges per compound, respectively.
Network analysis results showed that 13 cancer driver targets (i.e., KRAS, ERBB3, EGFR,
HRAS, MYC, SMAD4, AKT1, PIK3R1, JAK1, ATR, MECOM, RHOB and FGFR2) interacted
with more than 90 compounds, forming the core of this cancerous uPAR signaling system,
whose average node degree was 5.38. In this core signaling, oncogenes MECOM and RHOB
and tumor suppressor gene ATR were linked laterally (Figure 1B). This finding suggested
that the 10 cancer driver genes present in the core network might be the essential starters in
the modulation of uPAR-mediated functions in cancers (Figure 1C).
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interaction degree (red for high degree, orange for intermediate degree, and yellow for low degree). 
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were used to retrieve protein targets from PubChem and similarity ensemble approach 
(SEA) databases to relay 2186 experimental or putative human protein targets within the 
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gets identified in this networking had the most abundant interactions with uPAR modu-
lators (as ligands). Through analyzing node degree, it was shown that the top 10 cancer 
driver targets that interacted with uPAR modulators were EGFR, EPHA2, ERBB2, FLT3, 
RET, PDGFRA, KIT, ERBB4, MET and RPS6KA3 (Figure 2B). Indeed, the EGFR and ERBB 
families (ERBB2, ERBB3 and ERBB4) were also ranked in the top 10 cancer driver targets 
in the transcriptional networking, suggesting their roles in uPAR-mediated tumorigenesis 
processes were highly anticipated. 

Figure 1. Constructed uPAR modulators–targets networks and module analysis of their interactions.
(Transcriptional signaling) (a) Compounds–targets network and its amplified view. Dark green nodes
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represent compounds; other color nodes represent interacted targets being cancer driver genes. Each
edge represents the interaction between them. Node size was proportional to its interaction degree.
(b) The core interactions of this network, which comprised 13 cancer driver genes, was constructed
using STRING with PPI score > 0.7. (c) The interaction network of top ten uPAR-related cancer driver
genes was prepared by Cytohubba (ver. 0.1) in Cytoscape. Node color denotes interaction degree
(red for high degree, orange for intermediate degree, and yellow for low degree).

On the other hand, because the translation from nucleic acid coding to protein coding is
known for the existence of expression heterogeneity, the uPAR signaling based on compound–
protein and protein–protein interactions could be an alternative route to modulate uPAR-
mediated functions. In translational networking, the same 254 uPAR modulators were used
to retrieve protein targets from PubChem and similarity ensemble approach (SEA) databases
to relay 2186 experimental or putative human protein targets within the uPAR interaction
network (Figure 2A). As seen in the core, 12 out of 86 cancer driver targets identified in this
networking had the most abundant interactions with uPAR modulators (as ligands). Through
analyzing node degree, it was shown that the top 10 cancer driver targets that interacted with
uPAR modulators were EGFR, EPHA2, ERBB2, FLT3, RET, PDGFRA, KIT, ERBB4, MET and
RPS6KA3 (Figure 2B). Indeed, the EGFR and ERBB families (ERBB2, ERBB3 and ERBB4) were
also ranked in the top 10 cancer driver targets in the transcriptional networking, suggesting
their roles in uPAR-mediated tumorigenesis processes were highly anticipated.
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hsa04010 MAPK signaling pathway 0.97 (246/254) 7 
hsa04630 JAK-STAT signaling pathway 0.86 (219/254) 9 
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Figure 2. Constructed uPAR modulators–targets network and module analysis of their interactions.
(Translational signaling) Node color denotes gene type (pink for oncogene, light blue for tumor
suppressor gene, and purple for bifunctional gene) (a) Compounds–targets network. Dark green
nodes represent compounds; other color nodes represent interacted cancer driver genes. Each edge
represents the interaction between them. Node size was proportional to its interaction degree. (b) The
interaction network of top 10 uPAR-related cancer driver genes were prepared by Cytohubba (ver. 0.1)
in Cytoscape.

2.2. Essences of uPAR-Mediated Signaling (Table 1) in Cancer Pathways

Cancer is a complicated and heterogeneous diseases. The more the content of the uPAR
signaling involved in tumorigeneses is clarified, the higher the chance to develop a novel
and successful anti-cancer modality based on modulating this signaling. Therefore, a por-
tion of the uPAR signal network in mediating cancer hallmarks was further extrapolated by
counting the involvement of uPAR-related cancer driver genes in common cancer pathways.
The network analysis was performed via inputting the cancer driver genes of each uPAR
modulator, to map out their existence in the Kyoto Encyclopedia of Genes and Genomes
(KEGG) [11] cancer pathways using the service provided by STRING, and the results
showed that 10 out of 21 KEGG cancer pathways were comprised of uPAR-related cancer
driver genes (203/254, 80%). Among common cancer pathways, these uPAR-mediated
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pathways, such as MAPK, JAK-STAT, PI3K-Akt, mTOR, focal adhesion, cell cycle, estrogen,
VEGF, HIF-1 and apoptosis signaling pathways (Table 1), were known to govern cancer
hallmarks, including angiogenesis, cell survival, cell proliferation, invasion and metastasis,
suggesting that these cancer pathways not only interacted with uPAR signaling but also
embedded druggable targets that could be modulated or affected by uPAR modulators.
Moreover, JAK–STAT, PI3K-Akt and MAPK pathways were the main affectable pathways
of uPAR modulators, while these three pathways all contained more than 6 of the top 10
uPAR modulator-associated cancer driver genes in their signal transduction routes.

Table 1. Network analysis results of the constructed translational uPAR signaling.

Pathway ID KEGG Pathway Description

Modulators
(254) Counts of Top 10 Driver

GenesRepetition Rate
(Number/254)

hsa04010 MAPK signaling pathway 0.97 (246/254) 7
hsa04630 JAK-STAT signaling pathway 0.86 (219/254) 9
hsa04151 PI3K-Akt signaling pathway 0.96 (243/254) 6
hsa04150 mTOR signaling pathway 0.89 (227/254) 4
hsa04510 Focal adhesion 0.82 (208/254) 4
hsa04066 HIF-1 signaling pathway 0.85 (216/254) 3
hsa04210 Apoptosis 0.89 (226/254) 4
hsa04370 VEGF signaling pathway 0.86 (219/254) 4
hsa04110 Cell cycle 0.86 (219/254) 2
hsa04915 Estrogen signaling pathway 0.85 (215/254) 5

On the other hand, nine real uPAR modulators with proven modulating ability in cell
assays [12] were employed to confirm the above analysis results. By using the data of these
real modulators to reconstruct the uPAR signaling network for comparison, it was found
that the reconstructed network based on nine modulators (Table 2) could interact with 8
out of 10 above-mentioned cancer pathways, including MAPK, PI3K-Akt, mTOR, focal
adhesion, cell cycle, VEGF, HIF-1 and apoptosis signaling pathways (Figure 3), suggesting
that our approach unbiasedly revealed the tangling essences between uPAR and cancer
signaling systems. While some cancer pathways had been previously delineated to interact
with the uPAR signaling system, it should be noted that this study was the first study that
could address cancerous uPAR targets and pathways so comprehensively.

Table 2. Real uPAR modulators and their affectable cancer driver genes.

Active Modulators Cancer Driver Genes

Suppression

Homatropine
AKT1, ARHGAP35, ATR, AXIN2, BTG2, CCND1, CDKN1B, CHEK2, DICER1, DNMT3A, EGFR, EPAS1,
ERBB2, ERBB3, FAT1, FBXW7, FGFR2, HRAS, JAK1, KRAS, MECOM, MSH6, MYD88, PDS5B, PMS1,
RAC1, RASA1, RET, RHOA, RHOB, RXRA, SF3B1, SMAD4, TCF7L2, ZBTB20, ZFP36L1

Hydralazine ARHGAP35, B2M, BTG2, CCND1, CDK4, CDKN2C, CHEK2, EGFR, ERBB3, FLT3, KRAS, MET, NIPBL,
PIK3CA, PIK3R1, PLCB4, PLCG1, RAC1, RASA1, RET, RPS6KA3, SMAD4, SMARCB1, WT1, ZBTB20

Salbutamol ARHGAP35, ATR, BRAF, CCND1, CTNNB1, EGFR, ERBB3, ERBB4, FGFR2, HRAS, IDH2, KRAS,
MAP2K4, MECOM, MEN1, MTOR, MYC, PRKAR1A, RAC1, RHOA, SF3B1, SMAD4, SMARCB1, TRAF3

Spironolactone ARHGAP35, AXIN2, CDKN2C, EGFR, ERBB2, ERBB3, FOXQ1, GNA13, HRAS, NRAS, RHOB, SMAD4,
TSC2, ZFP36L2

Stimulation

Aspirin
APOB, ARHGAP35, ATXN3, AXIN2, B2M, CHEK2, EGFR, ERBB4, FLT3, FOXQ1, GNA13, GNAS, HRAS,
IDH1, JAK1, MAP2K4, MECOM, MET, MYC, PIK3CA, PIK3R1, POLRMT, PPP2R1A, PSIP1, RASA1, RB1,
RET, RHOB, RPL22, SMARCB1, TCF7L2, TSC1, TSC2, WT1

Atorvastatin
ARID5B, ATM, ATR, BRCA1, CDKN1A, CDKN2C, CTNND1, ERBB3, FLT3, IL6ST, IRF2, KRAS, MECOM,
MEN1, MTOR, MYC, NRAS, PIK3R1, PIK3R1, PIM1, RHOB, RPS6KA3, RXRA, SF1, SMAD2, TSC2, WT1,
ZBTB20, ZFP36L1, ZMYM2, ZNF133
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Table 2. Cont.

Active Modulators Cancer Driver Genes

Methotrexate AKT1, ARHGAP35, ATR, AXIN2, BRCA1, CHEK2, EGFR, ERBB3, KRAS, MAX, MECOM, MEN1, MTOR,
MYC, PIK3CA, PIK3CG, RHOA, RXRA, TCF12, TCF7L2

Quinine
ATM, BRCA1, CDKN2C, CHEK2, ERBB3, ERBB4, FGFR2, GNAS, HRAS, IRF6, MAP2K4, MAX, MECOM,
MET, MTOR, NRAS, PIK3CG, PIK3R1, PRKAR1A, RAC1, RB1, SMARCB1, TNFAIP3, TSC2, TXNIP,
USP9X, VHL, ZFP36L2

Simvastatin CDK4, CDKN1A, CDKN2C, ERBB3, IL6ST, KRAS, MAP2K4, MYC, MYD88, RAC1, RHOB, RXRA, TXNIP,
ZFP36L1, ZMYM2

Top 10 cancer driver genes identified in this study are highlighted in bold.
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Figure 3. Interactome between real uPAR modulators and their prospective targets. (a) Compounds–
targets–pathways network. Dark green nodes represent compounds, red nodes mean pathways, and
others represent interacted targets being cancer driver genes. (b) Main KEGG cancer pathways were
affected by real uPAR modulators (from lab testing).
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2.3. Virtual Screening of uPAR Modulators by Machine Learning

Based on network analysis results, it was reasoned that uPAR modulators may rep-
resent a new class of anti-cancer modalities since they possess the ability to affect can-
cerous signaling transduction. Therefore, a virtual screening platform aimed to identify
more potential compounds with the ability to modulate the cancerous uPAR signaling
for anti-cancer therapy was constructed. By using uPAR expression scores as dependent
variables and cancer driver genes as features, a dataset containing 254 uPAR modulators and
185 uPAR-sham compounds with no uPAR activity was prepared from CMap and subjected
to a predictive platform model. In construction, seven machine learning algorithms set
at tenfold cross-validation were applied to evaluate the prediction performance of the
models via indexes, including area under the ROC curve (AUC), accuracy, sensitivity and
precision. The results showed that the performance indexes for each algorithm from high
to low number of features—i.e., “total features” and “strictly associated features”—were all
similar, suggesting the minimum features number for accurate modeling was around 30
and the prediction accuracy could achieve 0.8. (Table 3). Among these models, the neural
network model possessed the highest prediction power. To further validate the feasibility
of this virtual screening platform, the above-mentioned nine real uPAR modulators were
again subjected to classification by these models. It was found that either the SVM model
or the neural network model could accurately classify these real modulators with a right
pharmacological property (Table 4). Taken together, the above results supported our
hypothesis that cancer driver genes were important keystones in uPAR signaling to relay
tumorigenesis processes. In summary, our study not only explained the mechanism of
action of this cancerous signaling transduction but also provided druggable targets for
implication in anti-cancer therapy.

Table 3. Performance of various machine learning algorithms on model construction.

Classifier
Performance

AUC Accuracy Sensitivity Precision

Total Features (218)

kNN 0.850 0.727 0.727 0.717

SVM 0.921 0.775 0.775 0.770

Random Forest 0.853 0.702 0.702 0.692

Neural Network 0.920 0.788 0.788 0.784

Naive Bayes 0.868 0.698 0.698 0.708

Logistic Regression 0.912 0.778 0.778 0.776

Gradient Boosting 0.891 0.730 0.730 0.722

Strictly Associated Features (31)

kNN 0.872 0.738 0.738 0.731

SVM 0.917 0.774 0.774 0.770

Random Forest 0.877 0.728 0.728 0.720

Neural Network 0.913 0.778 0.778 0.779

Naive Bayes 0.905 0.747 0.747 0.748

Logistic Regression 0.896 0.749 0.749 0.749

Gradient Boosting 0.905 0.755 0.755 0.750
The number of features for prediction models. At each feature selected set, the highest prediction performances
are highlighted in bold.
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Table 4. Classification results of real modulators using virtual screening platform.

Total Features (218) Strictly Associated Features (31)

SVM Neural Network SVM Neural Network

uPAR activity 9 9 9 9
No activity 0 0 0 0

2.4. Implication of uPAR Modulators in Anti-Cancer Therapy

In the study, the proposed mechanism of action of uPAR modulators was to affect
uPAR-mediated cancer hallmarks, including cell proliferation, migration, angiogenesis
and resisting cell death, via modulation of uPAR and its associated downstream cancer
driver genes. Compared to conventional uPA/uPAR inhibitors, this type of drug action
indeed favors drug discovery in the selection of appropriate drugs, since their effects can
be stratified according to the upfront activities on some specific driver genes. For example,
uPAR-mediated cancer hallmarks can be further divided into four signaling systems based
on composed cancer driver genes, as well as preferred marker genes. (Table 5) As seen, a
modulator possessing the activities on uPAR and MYC, an oncogene, could be prone to
affecting cell proliferation and survival, whereas one possessing the activities on uPAR and
SMAD4, a tumor suppressor gene, could affect angiogenesis and migration.

Table 5. Stratification of uPAR-mediated cancer hallmarks, driver genes and preferred markers.

Hallmarks Driver Gene Preferred Marker

proliferative signaling AKT1, EGFR, ERBB3, FGFR2, HRAS, JAK1, KRAS, MYC MYC
resisting cell death AKT1, EGFR, ERBB3, FGFR2, HRAS, JAK1, KRAS, MYC MYC
angiogenesis AKT1, EGFR, HRAS, KRAS, SMAD4 SMAD4
invasion and metastasis AKT1, EGFR, ERBB3, HRAS, KRAS, MYC, PIK3R1, SMAD4 PIK3R1, SMAD4

Furthermore, through surveying in-house and CMap data again, it was verified that
stains, including atorvastatin, simvastatin, and lovastatin, ellipticine and pterostilbene,
could be potential modulators for anti-cancer purpose, but haloperidol and phenazopy-
ridine could be carcinogenic. (Table 6) Using the pair rule to differentiate modulators’
pharmacological activities in advance, these potential anti-cancer agents could therefore
be more precisely applied to treat cancers in situ or in metastasis. This is a good fit with
clinical settings where cancer patients are often diagnosed at different progression stages
and need regimen options for treating various degrees of malignancy. Thus, the developing
uPAR modulators are expected to be a flexible but targeting anti-cancer remedy when used
with or without standard chemotherapies.

Table 6. Identified uPAR modulators and their possible implications.

Predicted
Drug

CMap Expression Score *
Drug Effects

Referred
ValidationuPAR MYC SMAD4

Statins (atorvastatin) 88.31(KD) 99.15(KD) Anti-cancer In-house data, [12,13]
Ellipticine 91.97(KD) 90.64(KD) Anti-cancer [14]
Pterostilbene 95.19(KD) 94.29(KD) Anti-cancer [15,16]

haloperidol 94.07(OE) 98.59(KD) Carcinogenic [17]
phenazopyridine 92.97(OE) 94.41(KD) Carcinogenic [18]

* Data retrieved from CMap; KD denotes knock down and OE denotes over express.

3. Discussion

In this study, the whole uPAR signaling pathway, via linking associated target genes/
proteins retrieved from several large public databases (i.e., CMap, PubChem Bio-Assay,
SEA, etc.), was successfully constructed. The transformation of this cancerous signaling
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to a uPAR-centered drug-target network focused on therapeutic application was demon-
strated. Through assessing the constructed transcriptional and translational pathways, a
predictive machine learning model, using cancer driver genes as its features for identi-
fying so-called uPAR modulators from market drugs, was established. In addition, the
mechanism by which the uPAR signaling system changes cancer hallmarks was elucidated.
Nevertheless, it is the first study to show there are about 10 cancer pathways associated
with uPAR signaling.

The primary function of uPAR is the localization of the proteolytic activity of uPA on
the extracellular surface to degrade the extracellular matrix and promote cell migration [19].
Lately, a large body of evidence has implicated that uPAR has an intracellular role in the
regulation of various biological processes that contribute to cancer hallmarks. According
to comprehensive reviews [4,6], uPAR interacts with more than 42 proteins and behaves
as a central mediator in the epithelial–mesenchymal transition (EMT) process relating
cell proliferation, differentiation, migration and survival. Crosstalk between uPAR and
fMLP receptors (FPRs) regulates cell migration in vitro and in vivo [3,20]. The interaction
of CXCR4, which is strongly upregulated in various malignancies, with uPAR-associated
proteins drives disseminating cells toward metastatic sites [21], and the complexing of
uPA with uPAR regulates EMT to promote pancreatic cancer progression [22]. In addition,
the silencing of uPAR depressed hypoxia-induced EMT in multiple cancer cells, but the
overexpression of uPAR mimicked EMT under normoxia [23]. Moreover, a positive loop
connecting the uPA/uPAR system with TGF-β, where TGF-β could increase the expression
of uPA and uPAR, activates plasminogen to plasmin, then triggers latent TGF-β [24].
However, it should be noted that all these studies and reviews could not reveal the whole
landscape of uPAR signaling in mediating many physiological and pathological processes.
Therefore, in the study, we proposed this pharmaceutical bioinformatics approach to
elucidate the detailed crosstalk between uPAR and cancer, to highlight novel anti-cancer
targets and/or drugs, as this signaling system is essential in cancer biology [25,26].

In the transcriptional networking, the top 10 cancer driver genes identified to be kin
to the uPAR signaling are AKT1, KRAS, HRAS, PIK3R1, JAK1, EGFR, MYC, ERBB3, FGFR2
and SMAD4. Three of them, EGFR, ERBB3 and FGFR2, belong to the class of receptor
tyrosine kinases (RTKs), and RTKs are transmembrane proteins that control important
cellular processes such as cell growth, survival, and differentiation. It is well documented
that dysregulation of RTKs is linked to the pathogenesis of many diseases, notably cancer,
making RTKs a therapeutic target for treating tumors [27]. EGFR and ERBB3 both belong
to the ERBB family, which were reported by activating the PI3K pathway for transmission
signal [28]. The use of monoclonal antibodies (mAbs) or small molecule tyrosine kinase
inhibitors (TKIs) to inhibit ERBBs is the most common approach to providing anti-cancer ef-
fects. Cetuximab and Panitumumab are FDA-approved mAbs against EGFR, and Erlotinib
and Gefitinib are EGFR-TKIs first-line therapies for patients with non-small cell lung cancer
(NSCLC). In contrast to their therapeutic efficacy, however, these medicines suffer emerged
resistance and rapid tumors regrowth [29]. Previous data indicated that uPAR induced
the resistance to anti-cancer agents via the EGFR/p-AKT signaling pathway, as observed
in gefitinib-resistant human lung adenocarcinoma cells [30] and vemurafenib-resistant
melanoma cells [31].

PIK3R1 and AKT1 both belong to the PI3K pathway, which is the most frequently
altered pathway in cancer. PIK3R1 (the code for p85α) was the most abundant isoform
to be expressed broadly in normal tissues [32], functioning as a tumor suppressor. The
deficiency of PIK3R1-induced hepatocellular carcinogenesis [33] but complete loss of
PIK3R1 impaired mouse survival [34]. On the other hand, AKT1, also named threonine
kinase 1, was phosphorylated by PI3K as a critical node in the PI3K pathway. AKT1
dysregulation leads to tumorigenesis processes, including cancer cell proliferation, growth
and survival [35], tumor angiogenesis [36], recruitment of inflammatory cells required
for the tumor microenvironment [37] and resistance to apoptosis [38]. It was previously
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demonstrated that silencing of uPAR reduced PI3K/AKT downstream signaling activation
in rheumatoid arthritis [39] and astrocytoma [40].

KRAS and HRAS are in the RAS/MAPK pathway to relay signals from outside the cell
to the nucleus to instruct cell growth, proliferation and differentiation [41]. RAS proteins
are believed to be molecular switches and cycle between “on” and “off” conformations by
binding to GTP and GDP, respectively [42]. Among the RAS protein family, KRAS is the
most frequently mutated protein in human cancer, followed by NRAS and HRAS [42]. It is
evident that overexpressed uPAR could be related to oncogenic features such as adhesion
in RAS-mutated NSCLC and CRC cells [43].

Except for the above-mentioned seven cancer driver genes, MYC played a role in regu-
lation of protein-coding and non-coding genes to affect cellular functions, which include
cell proliferation, differentiation, survival and immune surveillance. In relation to uPAR
signaling, MYC downregulated the uPA system to reduce cell motility and invasiveness
in gastric cancer [44], while silencing uPAR was associated with decreased c-MYC expres-
sion in melanoma and colon cancer [45,46]. On the other hand, JAK1 could behave as an
oncogene or tumor suppressor under certain conditions. It played a critical role in different
stages of cancer progression [47] and was essential for transduction of IL6-class inflamma-
tory cytokine signaling; it was also involved in mediation of the oncogenic activation of
STAT3 in mammary cancer cells [48]. It is documented that the uPAR signaling complex
recruited JAK/STAT signaling components to transmit activation signals via STAT1 phos-
phorylation [49]. Therefore, the potential utility of uPAR signaling in anti-cancer therapy
simply cannot exclude the involvement of JAK/STAT signaling. There are some JAK1
inhibitors used in clinics, such as Ruxolitinib, a selective inhibitor of JAK1 and JAK2, for
the treatment of myelofibrosis and polycythemia [50]. However, there are limited clinical
trials for examining the efficacy of JAK inhibitors on solid tumors so far. Based on the
tight tangling between uPAR signaling and cancer, JAK inhibitors might be potential anti-
cancer repurposing drugs when used in combination with chemotherapy, radiotherapy,
immunotherapy or other targeted agents (e.g., the EGFR inhibitor Erlotinib) [51].

Lastly, SMAD4 as a transcription factor was the central mediator of TGF-β signaling,
and it broadly interacted with many classical pathways, such as MAPK, PI3K/AKT and
WNT/β-catenin, forming a complex network responsible for a wide range of cellular
processes, such as proliferation, differentiation, apoptosis and migration, as well as cancer
initiation and development [52]. In cancer signaling, SMAD4 was a tumor suppressor
whose deficiency commonly occurred in pancreatic, colorectal, cholangiocarcinoma and
many other less common cancers and was associated with pathological stages [53]. Whether
SMAD4 plays an essential role in transduction of uPAR signaling remained unsolved, but
it was reported that SMAD4 could regulate the expression of PAI-1 [54].

Indeed, the top ten cancer drug genes could be utilized to derive a uPAR-centered
cancer hallmarks map that clearly illustrated the main cellular functions mediated by
uPAR signaling (Table 7 and Figure 4). Based on the numbers of connections, it could
be identified that angiogenesis, resisting cell death, proliferative signaling, invasion and
metastasis would be the target indications when developing uPAR modulators for anti-
cancer therapies. This is also in good agreement with empirical experience that indicates an
inhibitor blocking the uPA/uPAR signaling pathways may exhibit its function in regulating
the EMT process. On the other hand, as indicated in Section 2, the paired expressions of
uPAR and some specific cancer driver genes (i.e., MYC and SMAD4) can be utilized to
further differentiate drug effects for precise medication to revert cancerous phenotypic
change. This use facilitates the drug development process from screening of candidate
drugs toward appropriate indications. For example, statins, experimentally proven to
be uPAR modulators by us [12], were demonstrated to possess anti-proliferation and
anti-metastasis activities at concentrations higher than 10 µM in several studies [12,13,55].
Also, statins were shown to exhibit biphasic angiogenic effects at lower concentrations of
0.1–10 µM [56]. Given MYC and SMAD4 are known to be modulated by statins [57,58],
the phenotypic switch caused by high and low doses of the same uPAR modulator may
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become an interesting research topic to elucidate whether these cancer driver genes could
also serve as surrogate markers in anti-cancer therapies.

Table 7. Associations of top 10 uPAR-related cancer driver genes to cancer hallmarks.

Driver Gene Gene Description Hallmarks

AKT1 AKT serine/threonine kinase 1

proliferative signaling, evading growth suppressors,
invasion and metastasis, angiogenesis, resisting cell

death, deregulating cellular metabolism, genome
instability and mutations

EGFR ErbB (epidermal growth factor) receptor family,
epidermal growth factor receptor

proliferative signaling, avoiding immune destruction,
invasion and metastasis, angiogenesis, resisting cell

death, deregulating cellular metabolism

ERBB3
ErbB (epidermal growth factor) receptor family,

v-erb-b2 erythroblastic leukemia viral
oncogene homolog 3

proliferative signaling, invasion and metastasis,
resisting cell death

FGFR2 Type V RTKs: FGF (fibroblast growth factor)
receptor family, fibroblast growth factor receptor 2 proliferative signaling, resisting cell death

HRAS
RAS subfamily,

v-Ha-ras Harvey rat sarcoma viral
oncogene homolog

proliferative signaling, tumor-promoting inflammation,
invasion and metastasis, angiogenesis, genome

instability and mutations, resisting cell death, avoiding
immune destruction

JAK1 Janus kinase (JakA) family,
Janus kinase 1

proliferative signaling, avoiding immune destruction,
resisting cell death

KRAS
RAS subfamily,

v-Ki-ras2 Kirsten rat sarcoma viral
oncogene homolog

proliferative signaling, enabling replicative immortality,
tumor-promoting inflammation, invasion and
metastasis, angiogenesis, resisting cell death,

deregulating cellular metabolism

MYC Basic helix-loop-helix proteins,
v-myc myelocytomatosis viral oncogene homolog

proliferative signaling, angiogenesis, avoiding immune
destruction, genome instability and mutations,

deregulating cellular metabolism, resisting cell death,
invasion and metastasis, enabling

replicative immortality

PIK3R1
Phosphatidylinositol kinases,

phosphoinositide-3-kinase, regulatory
subunit 1 (alpha)

evading growth suppressors, enabling replicative
immortality, invasion and metastasis

SMAD4 SMADs, SMAD family member 4
evading growth suppressors, tumor-promoting

inflammation, invasion and metastasis, angiogenesis,
genome instability and mutations

In the analysis of translational networking, RTKs were again found to play important
roles in the transduction of uPAR signaling to mediate cellular functions, suggesting our
approach was useful in the elucidation of complicate cancer biology whether it is genomic
data or not. On the other hand, RPS6KA3, identified as one of the top 10 cancer driver
targets in the uPAR translational networking, belongs to a family called ribosomal S6
kinases (RSKs). It worked as a downstream substrate of extracellular signal-regulated
kinases (ERK) to function in the RAS/MAPK pathway, regulating many physical and
pathological processes [59,60]. In the presence of RPS6KA3 boosters [61], cell migration
was significantly decreased while silencing uPAR. Nevertheless, this is the first time that
the uPAR signaling system, via bridging two intracellular kinase systems, i.e., RTKs and
RSKs, was shown to execute and exhibit its functions.
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Moreover, the pathway enrichment analysis results suggested that approximately 80%
of uPAR-mediated signaling crosstalked to the identified 10 cancer pathways, where the
MAPK and PI3K-AKT pathways were evident to be the most augmented. The involve-
ment of these two pathways in cancer was likely through the complexing of uPAR with
integrins/RTKs, as discussed above. The MAPK pathway was tightly regulated by phos-
phatases to communicate bidirectionally with other pathways, including the PI3K/AKT/m-
TOR pathway. Dysregulation of the MAPK and PI3K-AKT pathways could bring uncon-
trolled cell proliferation, and such a machinery was already labeled as a part of the cancer
hallmarks [62]. Given the close relationships of uPAR with these identified cancer pathways,
our study should help illustrate which druggable targets in uPAR signaling are useful for
reversing cancer hallmarks. Consequently, the potential uPAR modulator proposed by this
study could be a new class of anti-cancer agents for effectively treating cancers, since how
these compounds change cancer hallmarks, such as via sustaining proliferative signaling,
resisting cell death, inducing/accessing vasculature and activating invasion and metastasis,
etc., is much clearer now.

Finally, a machine learning screening platform based on cancer driver genes for the
identification of potential uPAR modulators was established. This model could be used
for in silico drug screening, but also for mechanism of action elucidation based on the
intracellular uPAR signaling system, which was composed of about 30 cancer driver genes
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that impelled its versatile functionalities. While market drugs could have more certain
safety profiles than investigating compounds, our approach could offer the profound
benefits as finding a candidate and deciphering its mechanism of action at the same time.
Compared to conventional uPA/uPAR inhibitor development, this indeed provides a paved
way to efficiently identify small molecule anti-cancer agents that are either new synthetic
compounds or old market drugs.

4. Materials and Methods

In the study, an integrated pharmaceutical bioinformatics approach (Figure 5) that
combined modulator identification, driver gene ontology networking, protein targets
prediction and networking, pathway analysis and uPAR modulator screening platform
construction was employed to address the crosstalk between uPAR signaling and cancer,
as well as to explore the druggable targets in uPAR signaling for potential anti-cancer
applications. Interactome data, including transcriptional (mRNA), translational (protein)
and perturbation (modulator) data retrieved from multiple public databases (Table 8),
were used to mine the uPAR networking and to decipher its essences in modulating cancer.
Cancer driver genes used for this framework study were adopted mainly from authoritative
literature sources [10]. Since the first layer data (uPAR modulator) were generated from a
database covering merely 3848 targets, the mapping ratio of driver to non-driver genes was
around 1:12.

Table 8. Publicly accessible databases used in this pharmaceutical bioinformatics study.

Resource Description Website Ref.

Translational (protein)

PubChem
A web-based informatics environment
for data from small molecules and their

biological activities.

https://pubchem.ncbi.nlm.nih.gov/
(accessed on 1 July 2023) [63]

Similarity ensemble
approach (SEA)

An open resource related to proteins
based on the set-wise chemical
similarity among their ligands.

http://sea.bkslab.org/ (accessed on 1
July 2023) [64]

Transcriptional (gene)

Connectivity Map (CMap)

A public catalog of gene expression
data collected from human cells treated
with chemical compounds and genetic

reagents

https://clue.io/cmap (accessed on 1
July 2023) [65]

KEGG

A curated database collecting
comprehensive data including genes,

reactions, pathways, drugs and
diseases, for studying functions and

utilities of the biological systems

http://www.kegg.jp/kegg/ (accessed
on 1 July 2023) [11]

4.1. Modulator Identification

To address the crosstalk between uPAR signaling and cancer, we first used the gene
perturbation data from the Connectivity Map (CMap) [65] database to identify compounds,
namely the uPAR modulator, as its perturbation score of uPAR gene exceeding 0.9. In
total, 2429 compounds collected in CMap were subjected to modulator extraction using
self-written computer scripts.

https://pubchem.ncbi.nlm.nih.gov/
http://sea.bkslab.org/
https://clue.io/cmap
http://www.kegg.jp/kegg/


Pharmaceuticals 2023, 16, 1435 14 of 18
Pharmaceuticals 2023, 16, x FOR PEER REVIEW 15 of 20 
 

 

 
Figure 5. Workflow of this integrated pharmaceutical bioinformatics study. 
Figure 5. Workflow of this integrated pharmaceutical bioinformatics study.



Pharmaceuticals 2023, 16, 1435 15 of 18

4.2. Target/Cancer Driver Gene Ontology Networking

Two procedures were used to map out the uPAR signaling with cancer driver genes, the
identification of uPAR co-activated cancer driver genes from the CMap perturbation data
and connection of all these identified targets, to assemble the uPAR–driver genes network.
The identification of active (co-expressed) cancer driver genes from the perturbation data
of uPAR modulators was the same as that used above, in the identification of uPAR
modulators (i.e., perturbation score exceeding 0.9), whereas the network construction and
analysis of uPAR signaling was performed by means of Cytoscape 3.8.2, which is a popular
visualization interface for probing complicated biological interactions [66]. The type of
networking is called the uPAR transcriptional network.

4.3. Therapeutic Target Prediction, Networking and Pathway Analysis

To interpret the possible functional interaction between uPAR signaling and cancer,
an alternative uPAR-mediated target–pathway (T-P) network was also constructed in
this study. This involved retrieving the protein targets that experimentally or putatively
interacted with the uPAR modulators, from the PubChem BioAssay [63] and similarity
ensemble approach (SEA) [64] databases, and filtering out non-cancer driver protein targets;
the enriched T–P network of the translational uPAR-signaling was constructed by means
of STRING-DB (11.0), with targets tagged Homo sapiens taxonomy and confidence scores
greater than 0.7. For pathway analysis, the extraction of the representative annotations and
cancer pathways of the top 10 clusters was performed by using CytoHubba [67]. This is
called the uPAR translational network.

4.4. Data Mining and Predictive Model Construction

To further explore the usefulness of uPAR modulator in cancer therapy, an in silico
screening platform based on the expressions of cancer driver genes as features and modula-
tor activity as dependent variables was constructed. Except for the 254 uPAR modulators
identified in the above process, the negative dataset, including 185 uPAR-sham modulators,
was prepared from the CMap compounds pool with uPAR perturbation scores between
−0.2 to 0.2. The model construction was performed by machine learning using seven
algorithms implemented in Orange [68], which included logistic regression, support vec-
tor machine (SVM), random forest, naïve Bayes, neural network, gradient boosting and
k-nearest neighbors (kNN). In this procedure, 70% of the compounds were set for training
and 30% for testing using a relevance-based feature selection (CFS) algorithm and tenfold
cross-validation for model construction. A confusion matrix was applied to calculate the
sensitivity, precision and overall accuracy of each algorithm.

5. Conclusions

In the study, the cancer driver genes and/or targets that compose the uPAR signaling
system were successfully identified. The crosstalk between uPAR signaling and cancer
pathways could be illustrated through kinase signaling (i.e., RTKs and RSKs) and intracellu-
lar cancer signal pathways, such as MAPK and PI3K-AKT pathways, to communicate and
to affect cellular phenotypes (i.e., cancer hallmarks) during tumorigenesis and progression.
With elucidation of the complicate networking between uPAR modulation and cancer
biology, our results nevertheless provide the strongest context for further developing uPAR
modulators as a new class of anti-cancer medicines.
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