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Abstract: Staphylococcus aureus is a microorganism with high morbidity and mortality due to antibiotic-
resistant strains, making the search for new therapeutic options urgent. In this context, computational
drug design can facilitate the drug discovery process, optimizing time and resources. In this work,
computational methods involving ligand- and structure-based virtual screening were employed to
identify potential antibacterial agents against the S. aureus MRSA and VRSA strains. To achieve this
goal, tetrahydroxybenzofuran, a promising antibacterial agent according to in vitro tests described
in the literature, was adopted as the pivotal molecule and derivative molecules were considered
to generate a pharmacophore model, which was used to perform virtual screening on the Pharmit
platform. Through this result, twenty-four molecules were selected from the MolPort® database.
Using the Tanimoto Index on the BindingDB web server, it was possible to select eighteen molecules
with greater structural similarity in relation to commercial antibiotics (methicillin and oxacillin).
Predictions of toxicological and pharmacokinetic properties (ADME/Tox) using the eighteen most
similar molecules, showed that only three exhibited desired properties (LB255, LB320 and LB415). In
the molecular docking study, the promising molecules LB255, LB320 and LB415 showed significant
values in both molecular targets. LB320 presented better binding affinity to MRSA (−8.18 kcal/mol)
and VRSA (−8.01 kcal/mol) targets. Through PASS web server, the three molecules, specially LB320,
showed potential for antibacterial activity. Synthetic accessibility (SA) analysis performed on AMBIT
and SwissADME web servers showed that LB255 and LB415 can be considered difficult to synthesize
and LB320 is considered easy. In conclusion, the results suggest that these ligands, particularly
LB320, may bind strongly to the studied targets and may have appropriate ADME/Tox properties in
experimental studies.
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1. Introduction

Antimicrobial resistance is among the top 10 global health threats (Organization, n.d.).
Resistance of bacteria to antibiotics is an urgent global public health and socioeconomic
problem. Murray et al. [1] estimated that in 2019, 4.95 million deaths were associated
with bacterial resistance to antibiotics. Among the various existing human pathogens,
Staphylococcus aureus is one of the most interesting with regard to multidrug resistance, due
to its intrinsic virulence with the ability to cause various infections. Mortality in cases of
methicillin-resistant S. aureus bacteremia, for example, caused more than 100,000 deaths
in 2019.

S. aureus is a Gram-positive bacterium responsible for skin and soft tissue infec-
tions [2]. Currently used naturally occurring antimicrobials (penicillins, cephalosporins,
glycopeptides and β-lactams) with therapeutic potential have been shown to be increas-
ingly ineffective in eradicating the more virulent strains of S. aureus resistant to methicillin
(MRSA) [3].

Natural products are known as essential sources commonly used in drug discovery,
providing a wide variety of pharmacologically active new structures and making it possible
to obtain semisynthetic derivatives with different mechanisms of action [4]. Previous
works showed that dichloromethane extracts from the South American species Achyroclyne
satureoides (Asteraceae) presented remarkable antibacterial activity. The compound respon-
sible for biological activity was identified as achyrofuran [5], a prenylated polyoxygenated
dibenzofuran, which has shown antibacterial activity against a range of clinically rele-
vant Gram-positive bacteria, including MRSA strains [6]. The compound extracted from
the leaves of Pilidiostigma glabrum [7] and rhodomyrtoxin B originally from Rhodomyrtus
macrocarpa, both dibenzofurans, also showed high antibacterial activity [8,9]. Nevertheless,
according to Oramas-Royo et al. [10] there is still no conclusive information about the
properties associated with the structure–activity relationships of dibenzofurans. For this
reason, rational drug design strategies and tools using medicinal chemistry and molecular
modeling are essential [11,12].

Taking into account the context described above, this work was planned and developed
with the aim of identifying new chemical entities with antibacterial activity against MRSA
strains, from symmetrical polyoxygenated dibenzofurans. The molecules were 2-methyl-
1-(2,4,6-trihydroxyphenyl)-1-butanone and 2-methyl-1-(2,4,6-trihydroxy-3-propylphenyl)
butanone, which showed biological activity for ATCC 25923 S. aureus (MRSA), followed by
bioinformatics techniques (virtual screening, ADME/Tox predictions, biological activity,
molecular docking and molecular dynamic simulations, synthetic accessibility, lipophilicity
and water solubility predictions) [13,14].

2. Results and Discussion
2.1. Pharmacophoric Model Generation

The pharmacophoric model was obtained (Figure 1B) from the alignment of the
tetrahydroxybenzofuran molecule (pivot) with the nine selected molecules (Figure 1A). The
best alignment score was 32.476. Other in silico studies with similar method showed lower
alignment values than our work [15,16], as well as works that looked for antimicrobial
activity [17,18], indicating good quality of the pharmacophoric alignment.

This alignment gave rise to seven pharmacophoric characteristics: four hydrogen
bond acceptors (ACC), two hydrogen bond donors (DON), one aromatic (ARO). Thus, it
was confirmed that the aromatic pharmacophore ring (ARO) is located in the structure of
benzofuran. The hydrogen bond donors (DON1 and DON2) are found on two hydroxyl
groups attached to the aromatic ring of benzofuran. Three hydrogen bond acceptors
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(ACC2, ACC3 and ACC4) are also located on hydroxylated groups attached to the aromatic
ring. Finally, one of the hydrogen bond acceptor pharmacophores (ACC1) is located on
the oxygen atom of the furan ring of the structure. It is important to emphasize that
the pharmacophoric characteristics of DON 1 and ACC 3 are in the same position in the
molecule. Moreover, DON 2 and ACC 4 are also positioned in the same way (Figure 1C).
The pharmacophore model obtained was submitted to obtain the spatial coordinates of the
pharmacophore. The aligned molecules shared spatial characteristics, generating a model
with the following coordinates (Table S1).
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Figure 1. Pharmacophoric model: (A) Tetrahydroxybenzofuran molecule (pivot) 3D. (B) Pharma-
cophoric characteristics positioned in the tetrahydroxybenzofuran molecule (pivot). (C) Pharma-
cophoric characteristics: one aromatic (ARO), four hydrogen acceptors (ACC) and two hydrogen
donors (DON). Oxygen atoms in red, carbon atoms in gray and hydrogen atoms in white.

2.2. Pharmacophore-Based Virtual Screening

The range between the minimum and maximum values of each physicochemical
property was used as a filter; furthermore, only the Top100 molecules were selected [19]
(Table 1). The pharmacophoric model was satisfactory at this stage of the virtual screening
process, as we obtained 100 previously selected molecules, with 76 molecules excluded due
to their high RMSD values. Thus, only 24 molecules, with RMSD values ranging from 0.164
to 0.374, from this set were selected for the next analyzes.

Table 1. Physical–chemical properties of selected compounds in maximum and minimum filters.

Chemical Structure MW 1 RotB 2 PSA 3 LogP (a) Donor (HBD) Acceptor (HBA) Aromatic (b)

01 484.58 10 128.20 7.12 4 37

02 540.69 12 128.20 8.51 4 37

03 502.60 11 155.50 6.75 6 28

04 400.42 6 128.20 5.07 34 7

05 558.71 13 155.50 8.26 6 28
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Table 1. Cont.

Chemical Structure MW 1 RotB 2 PSA 3 LogP (a) Donor (HBD) Acceptor (HBA) Aromatic (b)

07 210.23 3 77.70 2.44 3 1
06 280.36 6 77.70 4.71 3 14

4

08 252.31 5 77.70 3.93 3 14

09 232.19 0 94.00 1.98 4 35

Minimum 210.23 0 77.70 1.98 3 4 1

Maximum 558.71 13 155.50 8.51 6 8 3
1 MW = molecular weight; 2 RotB = rotatable bonds; 3 PSA = polar surface area; (a) LogP = lipophilicity;
HBA = hydrogen bond acceptors; HBD = hydrogen bond donors; (b) PharmaGist.

2.3. Similarity of Tanimoto

At this stage, the 24 molecules selected in the previous analysis were compared
according to the similarity and diversity of the set, with the tetrahydroxybenzofuran
molecule (pivot) and with the commercial antibiotics methicillin and oxacillin.

Analyzing the Tanimoto indexes in comparison with the tetrahydroxybenzofuran
molecule (pivot), it is noted that they ranged from 0.371 (MolPort-035-706-257)
to 0.426 (Mol-Port-039-052-415); regarding methicillin, the values ranged from
0.225 (MolPort-035-706-258 and Mol-Port-035-706-259) to 0.275 (MolPort-039-338-750); and
in relation to oxacillin from 0.199 (MolPort-039-052-415) to 0.276 (MolPort-005-945-312)
(Table 2).

Table 2. Tanimoto index of the selected compounds in relation to pivot and the commercials methi-
cillin and oxacillin.

Chemical Structure
Tanimoto Index

Tetrahydroxybenzofuran (Pivot) Methicillin Oxacillin

MolPort-039-052-415 0.426 0.228 0.199
MolPort-001-741-320 0.421 0.262 0.250
MolPort-039-339-001 0.416 0.254 0.251
MolPort-001-742-504 0.416 0.253 0.249
MolPort-039-338-719 0.409 0.252 0.251
MolPort-039-338-651 0.409 0.251 0.250
MolPort-039-052-414 0.403 0.226 0.200
MolPort-039-338-750 0.401 0.275 0.269
MolPort-039-339-000 0.399 0.254 0.256
MolPort-005-945-435 0.397 0.251 0.238
MolPort-039-052-600 0.397 0.227 0.204
MolPort-035-706-258 0.394 0.225 0.205
MolPort-035-706-259 0.394 0.225 0.205
MolPort-028-610-187 0.393 0.250 0.240
MolPort-028-610-188 0.392 0.252 0.242
MolPort-005-945-312 0.388 0.266 0.276
MolPort-035-706-255 0.376 0.255 0.240
MolPort-035-706-257 0.371 0.234 0.225

The molecules MolPort-039-052-415 and MolPort-001-741-320 showed greater similar-
ity in relation to the tetrahydroxybenzofuran molecule (pivot). Analyzing the similarity
with methicillin, the molecules Mol-Port-039-338-750 and MolPort-005-945-312 can be high-
lighted. Examining the obtained values in relation to oxacylin, the MolPort-005-945-312
and MolPort-039-338-750 molecules show greater similarity.
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After this process, molecules with Tanimoto index values greater than or equal to 0.37
were selected, leaving only 18 molecules for carrying out pharmacokinetic and toxicological
predictions (ADME/Tox).

2.4. Predictions of Toxicological and Pharmacokinetic Properties of the New Hits

The 18 molecules were subjected to predictions of toxicological properties. Thus, it
was possible to predict carcinogenic activity of molecules in rats and mice. This prediction
can be “positive”, meaning that there is no carcinogenicity, or “negative”, indicating
the presence of this toxicological effect [20] (Table 3). It is observed that the molecule
tetrahydroxybenzofuran (pivot) presented a negative result for mice and positive for rats.
The two commercial compounds oxacillin and methicillin showed negative results for rats;
however, oxacillin showed positive results for mice. Out of the molecules tested, only
two (02) did not show carcinogenic properties, testing positive for mice and rats. The
Ames test is a method that can determine, using bacteria, whether a molecule or chemical
product has mutagenic capacity for the genetic material of the tested organism [17]. From
the 18 molecules analyzed, nine (09) were considered mutagenic (Table 3).

Table 3. Predicted toxicological, carcinogenic and mutagenic properties of the structures.

Chemical Structure
Carcinogenicity (a) Ames Test (a)

LD50
(b)

(mg/kg) Class (b)
Rat Mouse Mutagenicity

Tetrahydroxybutanefuran (pivot) Negative Positive Mutagenic 1000 4
Oxacillin Positive Negative Not mutagenic 5000 5
Methicillin Negative Negative Not mutagenic 2880 5
MolPort-001-741-320 Negative Positive Mutagenic 2000 4
MolPort-001-742-504 Negative Positive Mutagenic 2000 4
MolPort-005-945-312 Negative Negative Not mutagenic 2000 4
MolPort-005-945-435 Negative Negative Not mutagenic 10 2
MolPort-028-610-187 Negative Negative Mutagenic 10 2
MolPort-028-610-188 Negative Negative Not mutagenic 10 2
MolPort-035-706-255 Negative Positive Not mutagenic 690 4
MolPort-035-706-257 Positive Positive Not mutagenic 690 4
MolPort-035-706-258 Negative Positive Mutagenic 400 4
MolPort-035-706-259 Negative Positive Mutagenic 400 4
MolPort-039-052-414 Negative Positive Mutagenic 1060 4
MolPort-039-052-415 Positive Negative Not mutagenic 1060 4
MolPort-039-052-600 Negative Positive Not mutagenic 400 4
MolPort-039-338-651 Negative Positive Mutagenic 2000 4
MolPort-039-338-719 Negative Positive Mutagenic 2000 4
MolPort-039-338-750 Positive Positive Not mutagenic 2000 4
MolPort-039-339-000 Positive Negative Mutagenic 2000 4
MolPort-039-339-001 Negative Positive Not mutagenic 2000 4

(a) PreADMET; (b) ProTox-II; LD50 = median lethal dose. (b) Class 1: fatal if swallowed (LD50 ≤ 5); class 2:
fatal if swallowed (5 < LD50 ≤ 50); class 3: toxic if ingested (50 < LD50 ≤ 300); class 4: dangerous if ingested
(300 < LD50 ≤ 2000); class 5: may be harmful if swallowed (2000 < LD50 ≤ 5000); class 6: nontoxic (LD50 > 5000).

Regarding the pharmacokinetics properties, the tetrahydroxybenzofuran molecule
(pivot) showed a value above 90% for HIA (human intestinal absorption), the commercial
compound methicillin showed values above 87%, while the commercial compound oxacillin
had a percentage lower than 0.4%. This result corroborates the clinical observation that
oxacilin does not present with oral administration. All other molecules show HIA greater
than 84%, with the highest value being 92.40% (Table 4). The Caco-2 (human colorectal
carcinoma) cell lines were used extensively to predict the molecules’ capability to cross the
intestinal epithelium.
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Table 4. Predicted absorption properties of the structures.

Chemical Structure HIA% (a) PCaco-2 (nm/s) (b)

Tetrahydroxybutanefuran (pivot) 90.04 20.23
Oxacillin 0.42 20.15
Methicillin 87.32 14.99
MolPort-001-741-320 90.45 7.82
MolPort-001-742-504 90.29 10.95
MolPort-005-945-312 88.58 12.02
MolPort-005-945-435 88.40 13.14
MolPort-028-610-187 92.38 17.18
MolPort-028-610-188 92.39 14.70
MolPort-035-706-255 86.88 18.19
MolPort-035-706-257 86.88 17.80
MolPort-035-706-258 86.88 17.80
MolPort-035-706-259 86.88 17.80
MolPort-039-052-414 91.59 20.06
MolPort-039-052-415 89.24 18.72
MolPort-039-052-600 86.05 20.02
MolPort-039-338-651 84.27 18.20
MolPort-039-338-719 88.40 18.58
MolPort-039-338-750 91.20 20.48
MolPort-039-339-000 92.40 15.95
MolPort-039-339-001 92.40 16.91

(a) HIA%= percentage of human intestinal absorption; (b) PCaco-2= permeability of differentiated cells of the
intestinal epithelium Caco-2 (nm·s−1).

Once these cells have morphological and functional properties similar to human
enterocytes, this model is a useful tool to predict the oral absorption of molecules in earlier
stages of drug discovery [21]. The permeability of Caco-2 cells was investigated considering
values above 500 nm·s−1 good and below 25 nm·s−1 bad [22]. All molecules, including the
tetrahydroxybenzofuran molecule (pivot) and the commercial ones, showed values below
25 nm·s−1 for cellular permeability.

Plasma protein binding (PPB) is an important property that influences the pharma-
cokinetic and toxicokinetic of drugs. Normally, plasma proteins play a crucial role in drug
distribution once they function as carriers of molecules from the site of absorption to the
molecular target. However, extensive PPB affects drug clearance, metabolism, efficacy and
safety [23].

Drug interactions can occur through a drug strongly bound to plasma proteins, as it
can displace another drug and dramatically increase its free drug concentration (unbound
portion), leading to adverse effects. In the literature, a percentage higher than 90% is
considered high PPB; therefore, satisfactory results are found below this cutoff [20]. Both
commercial drugs, oxacillin and methicillin, demonstrated weak PPB, with values lower
than 90%. However, all other molecules, including the tetrahydroxybenzofuran molecule
(pivot), showed extensive PPB values (see Table 5).

Predicting the blood–brain barrier permeation (Cbrain/Cblood) is an important descrip-
tor, since it estimates whether a compound is able to cross this compartment and act on the
central nervous system (CNS). Molecules that do not exert a main pharmacological effect on
the CNS must have blood–brain barrier permeation values less than 1 (Cbrain/Cblood < 1),
as any value above is an indication that the compound is in high concentration both in
the blood and in the brain, causing adverse effects [24,25]. Note that the commercial com-
pounds and only three molecules fit the values described as acceptable in the literature; see
Table 5.
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Table 5. Predicted distribution properties of the structures.

Chemical Structure
Distribution

PPB(%) (a) CBrain/CBlood
(b)

Tetrahydroxybutanefuran (pivot) 97.73 5.09
Oxacillin 61.92 0.03
Methicillin 56.05 0.11
MolPort-001-741-320 100.00 0.76
MolPort-001-742-504 100.00 2.38
MolPort-005-945-312 100.00 2.35
MolPort-005-945-435 100.00 3.20
MolPort-028-610-187 100.00 2.78
MolPort-028-610-188 98.76 3.43
MolPort-035-706-255 100.00 0.83
MolPort-035-706-257 100.00 1.28
MolPort-035-706-258 100.00 1.78
MolPort-035-706-259 100.00 1.78
MolPort-039-052-414 100.00 3.33
MolPort-039-052-415 100.00 0.19
MolPort-039-052-600 100.00 1.41
MolPort-039-338-651 100.00 1.49
MolPort-039-338-719 100.00 3.83
MolPort-039-338-750 100.00 6.62
MolPort-039-339-000 100.00 4.66
MolPort-039-339-001 100.00 5.63

(a) Plasma protein binding (%); (b) blood–brain barrier permeation.

2.5. Biological Activity Prediction

At this stage, only molecules with satisfactory results in the toxicological and pharma-
cokinetic analyses were submitted to the prediction of biological activity through the PASS
online server. The quantitative parameter presents Pa as the probability of the compound
being active and Pi as the probability of it being inactive; therefore, the activity was consid-
ered possible when Pa > Pi. Pa values close to 1 and Pi values close to 0 indicate a greater
probability of molecules being active in experimental studies [26].

The commercial compounds methicillin and oxacillin were previously tested to assess
the server’s degree of confidence; as expected, both showed antibacterial activity (Pa = 0.671
and Pa = 0.684, respectively) [27]. The tetrahydroxybenzofuran molecule (pivot) showed a
Pa value equal to 0.465 for antibacterial activity on S. aureus strains, which corroborates
with experimental works [10]. The MolPort-001-741-320 molecule showed potential for
antibacterial activity, as it was observed that the value of Pa (0.487) is higher when compared
to pivot; see Table 6.

The prediction of antibacterial activity via Antibac-Pred showed that the molecule
tetrahydroxybenzofuran (pivot), oxacilin, methicillin and the molecule Mol-Port-001-741-
320 showed activity against S. aureus (Pa ≥ 0.344). To facilitate reading, the nomenclature
code of hits found in the MolPort database was standardized to LB420 (MolPort-001-741-
320), LB255 (MolPort-035-706-255) and LB415 (MolPort-039-052-415), as shown in Table 6.

The parameter of probability of being active (Pa) reflects, first of all, the similarity
of the molecule under prediction with the structures of the molecules, which are the
most typical in a subset of “active” in the training set of Antibac-Pred. Therefore, there
is no direct correlation between the Pa values and the quantitative characteristics of the
activities [28,29]. Even active and potent compounds, whose structure is not typical of
the “active” structures of the training set, can obtain a low Pa value and even Pa < Pi
during prediction.

Analyzing the results of toxicological, pharmacokinetic and biological activity predic-
tions, only molecules LB420 (MolPort-001-741-320), LB415 (MolPort-039-052-415 and LB255
(Mol-Port-035-706-255) showed satisfactory results to follow for further analysis. After
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selecting promising molecules, this study proceeded to structure-based virtual screening
through molecular docking simulations.

Table 6. Prediction of antibacterial activity via PASS Online and Antibac-Pred.

Antibacterial Activity

Pass Online Antibac-Pred

Structure Pa (a) Pi (b) Code Name Conf. (c) ChEMBL ID

Tetrahydroxybenzofuran 0.465 0.020 -
S. aureus 0.116 CHEMBL352
RESISTANT S. aureus 0.062 CHEMBL352
RESISTANT S. aureus subsp.
aureus RN4220 0.948 CHEMBL2366906

Oxacillin

RESISTANT S. aureus subsp.
aureus RN4220 0.948 CHEMBL2366906

0.684 0.005 - S. aureus 0.398 CHEMBL352
S. aureus subsp. aureus RN4220 0.213 CHEMBL2366906

Methicillin 0.671 0.005 -

RESISTANT S. aureus subsp.
aureus RN4220 0.878 CHEMBL2366906

S. aureus 0.344 CHEMBL352
S. aureus subsp. aureus RN4220 0.190 CHEMBL2366906
RESISTANT S. aureus 0.032 CHEMBL352

MolPort-001-741-320 0.487 0.018 LB320

RESISTANT S. aureus subsp. aureus
RN4220 0.059 CHEMBL2366906

Staphylococcus simulans 0.362 CHEMBL612425
Staphylococcus sciuri 0.353 CHEMBL613150

MolPort-035-706-255 0.344 0.045 LB255
RESISTANT S. simulans 0.310 CHEMBL612425
S. sciuri 0.210 CHEMBL613150
S. simulans 0.155 CHEMBL612425

MolPort-039-052-415 0.400 0.30 LB415 - - -
(a) Pa = probability of being active. (b) Pi = probability of being inactive. (c) Confidence.

2.6. Molecular Binding Mode

The biding sites were determined based on the crystallographic pose data of the
complexed ligands (QZN and 0Y5) with the specific molecular targets from S. aureus, the
penicillin-binding protein—PBP2a (PDB: 4CJN) and thymidylate kinase—TMK (PDB:4GSY),
respectively. Validation occurred through the evaluation of the root mean square deviation
(RMSD) between the pose of the crystallographic ligand (complex obtained using X-ray
crystallography) with the theoretical ligand (computational); thus, the approach was used
to select the active site based on biological studies.

The RMSD results were 1.047 Å for the QZN ligand and 1.889 Å for the 0Y5 ligand, as
can be seen in Figure 2. When the RMSD value obtained is equal to or less than 2.0 Å, it is
considered a satisfactory result and the methodology of molecular docking is validated [28].

High-level resistance to β-lactam antibiotics in methicillin-resistant Staphylococcus au-
reus (MRSA) is due to expression of penicillin-binding protein 2a (PBP2a), a transpeptidase
that catalyzes cell wall crosslinking in the face of the challenge from β-lactam antibiotics.
The activity of this protein is regulated by allostery at a site 60 Å from the active site, where
crosslinking of cell wall takes place [30].

Bouley et al. [31] determined the crystallographic structure of the complex of the
quinazolinone ligand (QZN) with the penicillin-binding protein (PBP2a), obtaining a high
resolution of 1.95 Å. Quinazolinone is located at the allosteric site of PBP2a. The critical
interaction of ligands such as peptidoglycan, derived from the cell wall, at the allosteric site
causes the opening of the active site, which allows for catalysis by PBP2a. The allosteric
domain includes residues Ser27-Pro326, where the N-terminal domain (Ser27-Asn138) and
the allosteric domain (Thr139-Pro326) are found. The main interactions of quinazolinone
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at the allosteric site are the following: salt bridge with Val273 and Asn316, Pi stacking
interactions with Val105 and Asp297. It has been shown that PBP2a has two binding sites,
an allosteric site and an active site separated by 60 Å. The binding of an allosteric effector
can influence protein function and predisposes PBP2a to inactivation; therefore, allosteric
binding sites can be targets for new drugs [32].
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TMK is a nucleotide kinase that catalyzes the phosphorylation of deoxythymidine
monophosphate (dTMP) to deoxythymidine diphosphate (dTDP) using ATP as a co-
substrate. This is a necessary step in the biosynthesis of deoxythymidine triphosphate
(dTTP) for DNA synthesis. This makes TMK an essential enzyme and a very attractive
target for therapeutic intervention [33].

Martínez-Botella et al. [33], in the search for selective and potent inhibitors of TMK,
synthetized new analogs from piperidinylthymine, and determined the crystallographic
structure of an inhibitor (0Y5) co-crystalized to S. aureus TMK. When anchored in the active
site, the 0Y5 ligand performs multiple hydrogen bonding interactions with residues Agr70,
Ser97 and Gln101, in addition to Pi stacking interactions with Phe66.

In order to assess whether the three promising molecules from the pharmacophore-
based virtual screening had a higher binding affinity than the complexed ligands (QZN
and 0Y5), the commercial compounds (methicillin, oxacillin and vancomycin) and the
tetrahydroxybenzofuran molecule (pivot) of the study, both for penicillin-binding protein
(PBP2a) and for the thymidylate kinase enzyme (TMK). Taking into account the heatmap
graph presented in Figure 3, the promising molecule LB320 was the one that presented
the best binding affinity results when compared to the control compounds, complexed
compounds and the pivot molecule, followed by the molecules LB415 and LB255.

It is noted that the promising molecule LB320 showed higher binding affinity re-
sults than methicillin and oxacillin controls on TMK and PBP2a-MRSA targets. In the
PBP2a-MRSA target, the promising molecule LB320 showed very close binding affinity
to the tetrahydroxybenzofuran molecule (pivot) of this study, showing a difference of
±0.337 Kcal/mol. The high binding affinity of vancomycin, superior to the complexed
ligands, was also observed. The other promising molecules (LB255 and LB415) in the study
showed binding affinity values lower than−7 Kcal/mol; nevertheless, further investigation
must be carried out to find out whether these ligands can bind to the PBP2a-MRSA active
site [34].

In the active site of the TMK enzyme, the promising molecules (LB255, LB320 and
LB415) showed some interactions with amino acid residues that corroborate the interactions
of the crystallographic ligand. The compound LB255 showed Pi–alkyl hydrophobic interac-
tions with the Tyr100 residue and Pi–Pi T-shaped with the Phe66 residue. The compound
LB320 showed Pi–alkyl hydrophobic interactions with residues Arg92 and Phe66. On the
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other hand, the compound LB415 kept the hydrogen bonds with Arg48 and Gln101, also
performed Pi–alkyl hydrophobic interactions with residues Leu52 and Tyr100, as well Pi–Pi
T-Shaped hydrophobic interactions with the residue Phe66, presenting a similar biding
mode to 0Y5, the co-crystallized ligand (Figure 4 and Table 7).
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Figure 4. Interactions of the co-crystallized ligand (complex) and the tested molecules (LB255, LB320
and LB415) with the amino acid residues of the Gram-positive bacterial enzyme thymidylate kinase
(TMK) (PDB ID 4GSY).

In recent decades, the discovery of new antibiotics has been a challenge for science,
industry and academia, as the need to treat infections of Gram-positive bacteria resistant to
current drugs is urgent [33]. The bacterial enzyme thymidylate kinase (TMK) is found at
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the junction of the de novo and rescue pathways of thymine triphosphate (dTTP) synthesis.
In view of its low sequence identity (22%) with the human enzyme, this enzyme becomes a
very attractive therapeutic molecular target for selective inhibition of microorganism DNA
synthesis [34].

Table 7. Binding affinity and interactions of promising molecules and complexed ligand in the active
site of bacterial thymidylate kinase enzyme (TMK) (PDB ID 4GSY).

Structures ∆G (a) Hydrogen Bond (Å Distance) Hydrophobic Interactions

Complex (0Y5) −9.185 ARG48 (2.93) (3.02), PHE66 (5.36), ARG70 (2.89),
SER97 (2.67) and GLN101 (2.79) (2.83)

PRO38, ARG48, LEU52, PHE66, ARG92
and TYR100

LB255 −7.870 GLU62 (2.15), ARG92 (3.14) and ARG105 (4.08) PHE66 and TYR100

LB320 −8.184 ASP156 (1.61) PHE66, ARG92 and TYR100

LB415 −8.048 LYS15 (3.37), ARG48 (5.08), ARG92 (5.13) and
GLN101 (2.68) (2.71) LEU52, PHE66, ARG92 and TYR100

(a) Binding energy of the best conformation (Kcal/mol).

In the allosteric site of penicillin-binding protein (PBP2a-MRSA), the promising com-
pounds also performed some interactions with amino acid residues that corroborate the
interactions of the co-crystallized ligand. The LB320 molecule showed a carbon–hydrogen-
type interaction with Tyr105 residue. The LB415 molecule performed a Pi–Pi T-shaped
hydrophobic interaction with the Tyr297 residue and conventional hydrogen bond with the
Lys316 residue (see Figure 5 and Table 8).

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 12 of 25 
 

 

 
Figure 5. Interactions of the co-crystallized ligand (complex) and the tested molecules (LB255, LB320 
and LB415) with penicillin-binding protein (PBP2a-MRSA) amino acid residues (PDB ID 4CJN). 

Table 8. Binding affinity and interactions of promising molecules and ligand complexed at the active 
site of penicillin binding protein (PBP2a-MRSA) (PDB ID 4CJN). 

Structures ΔG (a) Hydrogen Bond (Å Distance) Hydrophobic Interactions 

Complex (QZN) −8.046 
TYR105 (4.18), GLU294 (2.64) and LYS316 
(2.94)  ASN146 and TYR297 

LB255 −7.199 
LYS273 (2.84), ASP275 (2.69) and  ASP295 
(1.66) (2.93) TYR105 and TYR144 

LB320 −8.019 
ASN104 (2.82), TYR105 (4.14), ILE144 (2.77) 
and LYS273 (2.87) ILE144 and LYS273 

LB415 −7.691 
ASN104 (3.37), ASN146 (2.49) (2.74), ASP295 
(2.53), GLY296 (2.88) and LYS316 (2.81) TYR105 and TYR297 

(a) Binding energy of the best conformation (Kcal/mol). 

Penicillin, methicillin and β-lactam antibiotics are analogous structures of penicillin-
binding proteins (PBPs) whose role is to catalyze the formation of peptide crosslinks 
(transpeptidation) between glycan chains of the cell wall. The covalent inhibition of PBPs 
leads to the weakening of the cell wall and eventually its death [35]. 

The complexes obtained using molecular docking served as a starting point for mo-
lecular dynamics simulations. For each TMK and PBP2a complex interacting with the lig-
ands, 100 ns of md simulations were generated. The RMSD graphs for each complex can 
be seen in Figures 6 and 7. 

Figure 5. Interactions of the co-crystallized ligand (complex) and the tested molecules (LB255, LB320
and LB415) with penicillin-binding protein (PBP2a-MRSA) amino acid residues (PDB ID 4CJN).

Penicillin, methicillin and β-lactam antibiotics are analogous structures of penicillin-
binding proteins (PBPs) whose role is to catalyze the formation of peptide crosslinks
(transpeptidation) between glycan chains of the cell wall. The covalent inhibition of PBPs
leads to the weakening of the cell wall and eventually its death [35].
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Table 8. Binding affinity and interactions of promising molecules and ligand complexed at the active
site of penicillin binding protein (PBP2a-MRSA) (PDB ID 4CJN).

Structures ∆G (a) Hydrogen Bond (Å Distance) Hydrophobic Interactions

Complex (QZN) −8.046 TYR105 (4.18), GLU294 (2.64) and LYS316 (2.94) ASN146 and TYR297

LB255 −7.199 LYS273 (2.84), ASP275 (2.69) and ASP295 (1.66) (2.93) TYR105 and TYR144

LB320 −8.019 ASN104 (2.82), TYR105 (4.14), ILE144 (2.77) and
LYS273 (2.87) ILE144 and LYS273

LB415 −7.691 ASN104 (3.37), ASN146 (2.49) (2.74), ASP295 (2.53),
GLY296 (2.88) and LYS316 (2.81) TYR105 and TYR297

(a) Binding energy of the best conformation (Kcal/mol).

The complexes obtained using molecular docking served as a starting point for molec-
ular dynamics simulations. For each TMK and PBP2a complex interacting with the ligands,
100 ns of md simulations were generated. The RMSD graphs for each complex can be seen
in Figures 6 and 7.
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of LB415 system.

Throughout the molecular dynamic simulations, all ligands remained interacting with
the binding pocket. None of them detached from the target protein and, according to
the profile of the RMSD graphs, their conformational changes in the binding cavity were
not sudden; thus, we can infer that the results obtained using molecular docking were
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satisfactory, since the mode of interaction obtained in docking did not undergo sudden
changes, therefore, without major change in the binding mode of the compounds.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 14 of 25 
 

 

 
Figure 7. RMSD plot along the path of molecular dynamics simulations. RMSD graphs for 100 ns of 
MD simulations. In all the figures, the RMSD plot of the PBP2a backbone is represented by the color 
black, while the RMSD of the ligands is represented in different colors. (A) RMSDs of complex sys-
tem (co-crystallized ligand), (B) RMSDs of LB255 system, (C) RMSDs of LB320 system, (D) RMSDs 
of LB415 system. 

2.7. Prediction of Synthetic Accessibility (SA) 
AMBIT and SwissADME were used to evaluate the SA of LB255, LB320 and LB415 

(Table 10). Only the LB320 molecule presented the predicted synthetic accessibility as 
easy, obtaining a score of 65.08%. LB255 and LB415 had SA reaching a score above 36.58% 
and 38.88%, respectively, indicating median accessibility for synthesis. In comparison, the 
accessibility prediction for pivot was 51.30%. 

Table 10. Synthetic accessibility (SA) prediction for selected compounds. 

Compound SA (%) (a) SA SCORE (%) (b) 
Pivot 51.31 40.98 
LB255 36.58 50.17 
LB320 65.08 30.88 
LB415 38.88 50.06 
(a) AMBIT program ranges easy (score ≥ 50), median (10 < score ≤ 49), and difficult (score ≤ 10); (b) 
SwissADME—SA scores range from 10 (very easy) to 100 (very difficult). 

The result obtained using SwissADME for the LB320 showed an SA score of 30.88%. 
LB255 and LB415 presented, respectively, a score of 50.17% and 50.06 (see Table 10). Com-
pared to pivot, which presented a SA score of 40.98%, the SA values were close, ranging 
between ±14.73 and ±12.43 for LB255 and LB415, respectively. LB255 and LB415 can be 
considered difficult to synthesize, considering the results obtained and the data found in 

Figure 7. RMSD plot along the path of molecular dynamics simulations. RMSD graphs for 100 ns
of MD simulations. In all the figures, the RMSD plot of the PBP2a backbone is represented by the
color black, while the RMSD of the ligands is represented in different colors. (A) RMSDs of complex
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After the dynamic simulations, the complexes were again evaluated for their affinity
energy. All complexes demonstrated that they can spontaneously remain interacting, as the
affinity energy values obtained with the MM/GBSA method were all negative, as we can
see in Table 9.

Table 9. Binding free energy for systems.

Compounds System TMK System PBP2a

Complex −30.54 −32.87
LB255 −35.84 −29.15
LB320 −38.54 −36.52
LB415 −33.42 −35.76

2.7. Prediction of Synthetic Accessibility (SA)

AMBIT and SwissADME were used to evaluate the SA of LB255, LB320 and LB415
(Table 10). Only the LB320 molecule presented the predicted synthetic accessibility as
easy, obtaining a score of 65.08%. LB255 and LB415 had SA reaching a score above 36.58%
and 38.88%, respectively, indicating median accessibility for synthesis. In comparison, the
accessibility prediction for pivot was 51.30%.
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Table 10. Synthetic accessibility (SA) prediction for selected compounds.

Compound SA (%) (a) SA SCORE (%) (b)

Pivot 51.31 40.98
LB255 36.58 50.17
LB320 65.08 30.88
LB415 38.88 50.06

(a) AMBIT program ranges easy (score ≥ 50), median (10 < score ≤ 49), and difficult (score ≤ 10);
(b) SwissADME—SA scores range from 10 (very easy) to 100 (very difficult).

The result obtained using SwissADME for the LB320 showed an SA score of 30.88%.
LB255 and LB415 presented, respectively, a score of 50.17% and 50.06 (see Table 10). Com-
pared to pivot, which presented a SA score of 40.98%, the SA values were close, ranging
between ±14.73 and ±12.43 for LB255 and LB415, respectively. LB255 and LB415 can be
considered difficult to synthesize, considering the results obtained and the data found in
the literature. Regarding the pivot, the LB320 molecule showed a variation of ±13.77 for
AMBIT web server and ±10.11 for SwissADME.

2.8. Prediction of Lipophilicity and Water Solubility and Structure–Activity Relationship (SAR) of
the Promising Molecule

The commercial compounds (methicillin and oxacillin) presented consensus LogP
values below 2, which shows that they are water-soluble molecules, which helps in blood
distribution since these molecules are administered intramuscularly/intravenously [36].

On the other hand, promising molecules showed particular characteristics in relation
to LogP. The LB255 molecule was the closest to the commercial compounds, showing its
consensual LogP lower than 2, which characterizes it as a water-soluble molecule. This
is due to the fact that this molecule has few unsaturations and no aromatic groups in
its structure. On the contrary, molecules LB320 and LB415 were a little more lipophilic
(LogP > 2) when compared to the other compounds studied, therefore less soluble in
water, which is confirmed by a greater number of unsaturations (carbonyl groups) in their
structures (Tables 11 and 12).

Table 11. Prediction of lipophilicity (LogPo/w) through the SwissADME web server.

Chemical Structure iLOGP XLOGP3 WLOGP MLOGP SILICOS-IT Mean

Methicillin 2.24 1.22 0.57 1.01 0.78 1.16
Oxacillin 2.23 2.38 1.51 1.56 1.59 1.85
LB255 3.31 1.48 1.68 0.78 1.69 1.79
LB320 2.98 4.61 3.23 2.13 3.38 3.27
LB415 1.14 2.56 2.62 1.14 4.26 2.34

Table 12. Prediction of water solubility (LogS) using the SwissADME web server.

Chemical Structure ESOL Ali SILICOS-IT Mean

Methicillin −2.74 −3.56 −2.75 −3.01
Oxacillin −3.79 −4.92 −4.23 −4.31
LB255 −2.83 −3.11 −1.57 −2.50
LB320 −5.26 −6.75 −2.32 −4.77
LB415 −3.85 −4.92 −3.14 −3.97

The three compounds with the most promising results at the end of the virtual screen-
ing were searched on SciFinder® (https://scifinder.cas.org/ (accessed on 26 March 2023)).
No additional information was found on the selected LB415 compound in the search; only
information about some physical and chemical properties has already been reported in the
MolPort database.

https://scifinder.cas.org/
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The LB255 molecule revealed important properties for Gram-positive bacteria such as
Bacillus subtilis and Staphylococcus aureus for MRSA FAD209P strains [34]; primarily, the
two carbonyl groups are essential for antibacterial activity [37].

The LB320 molecule having the presence of the methoxy group attached to the aromatic
ring of the structure significantly alters the mechanism of action [38]. In addition, it
revealed important properties against methicillin-resistant Staphylococcus aureus (MRSA)
for similar structures for strains of MRSA 1903, MRSA 63718, MRSA 62097, MRSA 62059,
MRSA 67755 and MRSA 1679, and promising synergistic activities with antibiotics [39].
Overall, the results of the present study suggest that selected compounds can be tested for
biological activities with good evidence to reproduce the in silico results. Therefore, future
studies are needed to confirm the antibacterial activity for Staphylococcus aureus strains of
MRSA 700699 by these molecules.

3. Materials and Methods

All methodological steps and computational tools used in this study are summarized
in Figure 8.
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Figure 8. Flowchart of the methodological steps taken in this study.

3.1. Selection of Molecules

The molecules were selected based on the Minimum Inhibitory Concentration (MIC)
values for ATCC 25923 S. aureus (MSSA—methicillin-susceptible S. aureus), ranging from
0.24 µg/mL to >30 µg/mL from the study by Oramas-Royo et al. [40] (Table 13). The
molecules were arranged in ascending order of MIC (µg/mL), from the most active to
the least active, respectively. The tetrahydroxybenzofuran (01) molecule was selected as
the pivotal structure of this study, based on the lowest MIC value (Figure 9). Molecular
structures were drawn using ChemSketch software. Molecular structures can be seen in
Figure 10.
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Table 13. Selected structures and their respective biological activity values (MIC) for ATCC 25923 S.
aureus (MSSA).

Nº Code SMILES MIC (a)

01 C[C@H](CC)C(=O)c1c2oc3c(c2c(O)c(CCC)c1O)c(O)c(CCC)c(O)c3C(=O)[C@H](C)CC 0.24
02 Oc1c(c(O)c(c(O)c1CCC)c1c(O)c(CCC)c(O)c(C(=O)C(C)CC)c1O)C(=O)C(C)CC 2.00
03 C[C@@H](CC)C(=O)c1c2oc3c(c2c(O)c(CCC(C)C)c1O)c(O)c(CCC(C)C)c(O)c3C(=O)[C@H](C)CC 2.16
04 C[C@H](CC)C(=O)c1c2oc3c(c2c(O)cc1O)c(O)cc(O)c3C(=O)[C@@H](C)CC 3.20
05 Oc1c(c(O)c(c(O)c1CCC(C)C)c1c(O)c(CCC(C)C)c(O)c(C(=O)C(C)CC)c1O)C(=O)C(C)CC 4.64
06 Oc1c(c(O)cc(O)c1CCC(C)C)C(=O)C(C)CC 8.96
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Table 13. Cont.

Nº Code SMILES MIC (a)

07 O=C(c1c(O)cc(O)cc1O)C(C)CC 13.44
08 Oc1c(c(O)cc(O)c1CCC)C(=O)C(C)CC 16.13
09 Oc1cc2oc3cc(O)cc(O)c3c2c(O)c1 >30

(a) MIC = µg/mL.

3.2. Geometric Optimization of Selected Structures

The optimization of the three-dimensional structure of the compounds was performed
in ChemSketch software using molecular mechanics methods with the CHA-ARMM force
field [15,16].

3.3. Construction of the Pharmacophoric Model

The PharmaGist web server (http://bioinfo3d.cs.tau.ac.il/pharma/php.php, accessed
on 13 April 2021) was used to build several pharmacophoric models, where the best result
was filtered from the obtained score values [41].

3.4. Pharmacophore-Based Virtual Screening

Pharmit has large prebuilt libraries generated from MolPort, ChEMBL, ChemDiv,
PubChem and NCI Open Chemical Repository. Only the MolPort database presents more
than 6.5 million compounds. In an attempt to reduce the number of molecules, Pharmit
allows the user to add nonstructural filters constituted by molecular properties, such
as molecular weight (MW), number of rotatable bonds (NRB), polar surface area (PSA),
coefficient of lipophilicity (LogP), number of hydrogen bond donors and acceptors (HBD
and HBA, respectively), as well as amount of aromatic groups. In this way, molecules can
be filtered by specifying desired ranges for those molecular properties that are often used
to recognize drug-like molecules [19].

In this step, the Pharmit online platform (http://pharmit.csb.pitt.edu/search.html,
accessed on 15 April 2021) was used to search new hits based on selected pharmacophoric
model. This web server is an interactive environment for virtual screening of large databases
of compounds using pharmacophores, molecular shape and minimization of energy [42].
Thus, according the pharmacophoric characteristics, molecular parameter filters were
applied, such as molecular weight (MW), number of rotatable bonds (RotB), lipophilicity
(LogP), polar surface area (PSA), hydrogen bond acceptors (HBA), hydrogen bond donors
(HBD), extracted from online platforms Molinspiration (https://www.molinspiration.
com/, accessed on 30 September 2023) and ProTox-II (http://tox.charite.de/protox_II/,
accessed on 15 April 2021). The Top100 structures of the MolPort® company database
(~7.9 million compounds) (https://www.molport.com/shop/index, accessed 20 April
2021) were obtained based on the filter of maximum and minimum values of the molecular
descriptors, according to Dos Santos et al. [43].

3.5. Similarity of Tanimoto coefficient

The Tanimoto coefficient (Equation (1)) is a measure of similarity with values range
from 0 to 1. This index represents the similarity between two compounds based on the
bits (molecular fragments) of fingerprint, that is, the higher the value, the greater the
similarity [44].

Tanimoto coe f f icient =
C

(A + B− C)
(1)

where A corresponds to the number of bits in A, while B corresponds to the number of bits in
compound B and C to the number of common bits in compounds A and B [44]. The similar-
ity calculation was performed on BindingDB (http://www.bindingdb.org/bind/index.jsp,
accessed on 20 April 2021), a web-accessible database. At this stage, tetrahydroxyben-

http://bioinfo3d.cs.tau.ac.il/pharma/php.php
http://pharmit.csb.pitt.edu/search.html
https://www.molinspiration.com/
https://www.molinspiration.com/
http://tox.charite.de/protox_II/
https://www.molport.com/shop/index
http://www.bindingdb.org/bind/index.jsp
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zofuran (pivot) and two approved drugs, methicillin and oxacillin, served as reference
ligands [45]. Thus, the hits provided by pharmacophore-based virtual screening were
compared to reference ligands, according to studies carried out by Ferreira et al. [22]. After
this step, the hits most similar to the reference compounds were submitted to toxicological
and pharmacokinetic predictions.

3.6. Prediction of Pharmacokinetic and Toxicological Properties of the New Hits

The PreADMET web server (https://preadmet.webservice.bmdrc.org/adme/, ac-
cessed on 20 April 2021) was used to evaluate the pharmacokinetic properties of the new
hits using oxacillin and methicillin as controls. Thus, the following properties were eval-
uated: human intestinal absorption (HIA), in vitro Caco-2 permeability (PCaco-2), plasma
protein binding (PPB) and blood–brain barrier permeation (CBrain/CBlood). Toxicological
properties such as carcinogenicity and the Ames test were also calculated on this server. The
ProTox-II web server (https://tox-new.charite.de/protox_II/index.php?site=compound_
search_similarity, accessed on 23 April 2021) was used to evaluate the median lethal dose
(LD50) of compounds provided using pharmacophore-based virtual screening [46].

3.7. Biological Activity Prediction of the New Hits

The prediction of the biological activity of the structures was performed using the
PASS server (http://www.akosgmbh.de/pass/index.html, accessed on 17 September 2022),
which predicts up to 2000 biological activities for chemical compounds with high accu-
racy (70–80%). This server provides two probabilities with values ranging between 0.000
and 1.000, Pa (probability of being active) and Pi (probability of being inactive) for each
investigated target [26].

Prediction of antibacterial activity was obtained via Antibac-Pred (http://www.way2
drug.com/antibac/, accessed on 17 September 2022). This web server allows the user to
predict if a chemical compound is able to inhibit the growth of one or more than 353 species
of bacteria at concentrations below 10,000 nM. The score for each compound is expressed
as confidence in its activity, which is a difference between the probabilities that a chemical
compound inhibits or does not inhibit the growth of a given bacteria. As confidence
increases, the chances of the prediction being true are greater. Only activities with Pa > Pi
(i.e., confidence > 0) are considered possible for a given compound [29].

3.8. Molecular Docking

The structures for the molecular docking study were prepared with the help of BIOVIA
Discovery Studio® v. 20.1.0 software [47] to remove residual water and cofactors. In this
study, the molecular targets of the S. aureus organism, penicillin-binding protein 2 and
thymidylate kinase enzyme were obtained from the Protein Data Bank (https://www.rcsb.
org/, accessed on 20 September 2022), with the respective PDB ID codes: 4CJN (resolution
1.95 Å) [28] and 4GSY (resolution 1.71 Å) [33].

The validation of the molecular docking methodology occurred through the study of
molecular redocking, where the crystallographic ligands themselves were submitted to the
docking process using the DockThor web server (https://dockthor.lncc.br/v2/, accessed
on 22 September 2022) [48] and calculated the RMSD (root mean square deviation) values of
the crystallographic pose of the ligands in comparison to the computational study [49–51].

The x, y, z coordinates of the active site of each target were selected according to
Table 14. The molecular docking simulation followed the preestablished protocol on
the webserver [52,53] using the precision of the search algorithm in “Standard” mode,
where 1,000,000 evaluations and 24 races are held. The analysis took into account the
binding affinity results (Kcal/mol) and the molecular interactions of the receptors with the
commercial compounds (vancomycin, methicillin and oxacillin) comparing the promising
compounds and the complexed ligands of each target.

https://preadmet.webservice.bmdrc.org/adme/
https://tox-new.charite.de/protox_II/index.php?site=compound_search_similarity
https://tox-new.charite.de/protox_II/index.php?site=compound_search_similarity
http://www.akosgmbh.de/pass/index.html
http://www.way2drug.com/antibac/
http://www.way2drug.com/antibac/
https://www.rcsb.org/
https://www.rcsb.org/
https://dockthor.lncc.br/v2/
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Table 14. Coordinates of active sites of molecular targets.

Receptor Ligand/ID Grid Center Coordinates Grid Box Dimensions

Penicillin-binding protein
(PBP2a-MRSA)
PDB ID: 4CJN

(E)-3-(2-(4-Cyanostyryl)-4-
oxoquinazolin-3(4H)-yl)benzoic
acid/QZN

X= 8.992933
Y= −1.203300
Z= −69.561400

20x
20y
20z

Thymidylate kinase enzyme
(TMK)
PDB ID: 4GSY

4-{[(3S)-3-(5-Methyl-2,4-dio-xo-
3,4-dihydropyr-midi-
1(2H)yl)piperidin-1-yl]methyl}-2-
[3(triflu-
oromethyl)phenoxy]benzoic
acid/0Y5

X= 8.577139
Y= 0.252556
Z= 27.171667

20x
20y
20z

3.9. Molecular Dynamic Simulations

The RESP charges of the ligands were obtained with HF/6-31G [54], the parameters
were created using Antechamber [55], being described by the GAFF [56]. Molecular
dynamic (MD) simulations were performed using Amber 18 software [57,58]. The tLEaP
module was used to add the missing hydrogens to protein structures. The PDB2PQR server
(https://server.poissonboltzmann.org/pdb2pqr, accessed on 26 September 2022) [59] was
used to determine the protonation state of protein residues. MD simulations were run
using the 14SB force field [60]. TIP3P water molecules [61] were used to solvate the systems
in an octahedron periodic box. The distance for the shear radius was 12 Å for all directions.
Counterions were added to neutralize the system charges.

The sander.MPI module was used to perform energy minimizations. First, the water
molecules and ions were optimized using 2000 cycles of the steepest descent and 3000 cycles
of conjugate gradient. The position of receptor–ligand hydrogen atoms was then optimized
using 4000 steps of steepest descent algorithm and 3000 steps of conjugate gradient. At
the third stage, hydrogen atoms, water molecules, and ions were further optimized using
2500 steps of steepest descent algorithm and 3500 steps of conjugate gradient. All atoms
were minimized using 3000 steps of the steepest descent algorithm and 3 steps of the
conjugate gradient.

Then, the complexes were heated up to 300k in five steps for a total time of 500 ps. In
the initial four steps, a harmonic force constant of 25 kcal/mol.Å−2 was used to constrain the
heavy atoms. In the last step, the harmonic force constant was reduced to zero. To balance
the systems, MD simulations of 5 ns were performed at 300 K without any restrictions.
Finally, MD production simulations were run for a total time of 100 ns.

The particle mesh Ewald method [62] was used for the calculation of the electrostatic
interactions and the bonds involving hydrogen atoms were restricted with the SHAKE
algorithm [63]. The temperature control was performed with the Langevin thermostat [64]
within a collision frequency of 2 ps−1.

3.10. Free Energy Calculations

The molecular mechanics/generalized Born surface area (MM/GBSA) method [51,65]
was applied to estimate the receptor–ligand affinity energy. For our calculations, we used
500 snapshots of the last 5 ns of MD simulation.

The free energy was estimated according to Equation (2):

∆Gbind = ∆EMM + ∆Gsolv − T∆S (2)

∆Gbind is the affinity energy resulting from the sum of the total energy in the gas phase
(∆EMM), free energy of solvation (∆Gsolv) and entropy (T∆S).

∆EMM is the sum of ∆Einternal (connections, angles and dihedra), ∆Eelectrostatic (electro-
static contributions) and ∆EvdW (van der Waals contributions), according to Equation (3):

∆EMM = ∆Einternal + ∆Eelectrostatic + ∆Evdw (3)

https://server.poissonboltzmann.org/pdb2pqr
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∆Gsolv can be obtained from the resolution of Equation (4):

∆Gsolv = ∆GGB + ∆GSASA (4)

where the polar contribution (∆GGB) is calculated using the GB model and the nonpolar
contributions (∆GSASA) are determined from the calculation of the solvent-accessible surface
area (SASA).

3.11. Synthetic Accessibility Prediction

Synthetic accessibility (SA) prediction of LB255, LB320, LB415 and pivot) was per-
formed using AMBIT and SwissADME (http://www.swissadme.ch/, accessed on 1 Octo-
ber 2022). AMBIT uses the model for SA that represent different structural and topological
features combined in an additive scheme. SA is issued with a score ranging from 0 to 100,
where 100 is the molecule that is most easily synthesized [66]. The SwissADME runs on
a score based on piecemeal analysis of the structures with the hypothesis that the more
frequent a molecular fragment, the easier it is to obtain the molecule. The SA score range is
set between 10 (easy synthesis) and 100 (very difficult synthesis) [67].

3.12. Prediction of Lipophilicity and Water Solubility and SAR of the Promising Molecules

Lipophilicity and water solubility values were predicted on the SwissADME web-
server [68] This server has a large database where it is possible to accurately estimate physic-
ochemical properties, lipophilicity, water solubility, pharmacokinetics, “drug-likeness” and
medicinal chemistry properties. The analyses followed the methodological proposal of Se-
pay et al. [69] which consists of using the various predictive methods of LogP and LogS that
the SwissADME makes available, such as: iLOGP, XLOP3, WLOGP, MLOGP, ESOL, the Ali
method and the SILICOS-IT method (http://silicos-it.be.s3-website-eu-west-1.amazonaws.
com/index.html, accessed on 1 October 2022). In this way, a consensual analysis of all
informed descriptors is carried out. Therefore, the more diverse the prediction methods
are, the more accurate the consensus value [70].

4. Conclusions

In this work, computational strategies of virtual screening based on pharmacophore
and ligand were applied with the objective of identifying new chemical entities with
antibacterial activity against Staphylococcus aureus MRSA strain, from symmetrical poly-
oxygenated dibenzofurans, 2-methyl-1-(2,4,6-trihydroxyphenyl-1) butanone and 2-methyl-
1-(2,4,6-trihydroxy-3-propylphenyl)butanone. The main results obtained from the virtual
screening, ADME/Tox, DM and affinity energy (MM/GBSA) were satisfactory, bearing
in mind that these results were fundamental in the selection of the potential molecule.
Analyses of lipophilicity and water solubility were essential to predict the hydrophilic
and lipophilic character of the molecule. The molecular docking study was necessary for
the selection of the three promising molecules based on the binding affinity values and
the interactions with the amino acid residues present in the molecular targets used in this
study.

Supplementary Materials: The following supporting information can be downloaded at: https:
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cophoric Model.
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