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Abstract: The effectiveness of all antibiotics in the β-lactam group to cure bacterial infections has 

been impaired by the introduction of the New Delhi Metallo-β-lactamase (NDM-1) enzyme. At-

tempts have been made to discover a potent chemical as an inhibitor to this enzyme in order to 

restore the efficacy of antibiotics. However, it has been a challenging task to develop broad-spec-

trum inhibitors of metallo-β-lactamases. Lack of sequence homology across metallo-β-lactamases 

(MBLs), the rapidly evolving active site of the enzyme, and structural similarities between human 

enzymes and metallo-β-lactamases, are the primary causes for the difficulty in the development of 

these inhibitors. Therefore, it is imperative to concentrate on the discovery of an effective NDM-1 

inhibitor. This study used various in silico approaches, including molecular docking and molecular 

dynamics simulations, to investigate the potential of phytochemicals to inhibit the NDM-1 enzyme. 

For this purpose, a library of about 59,000 phytochemicals was created from the literature and other 

databases, including FoodB, IMPPAT, and Phenol-Explorer. A physiochemical and pharmacokinet-

ics analysis was performed to determine possible toxicity and mutagenicity of the ligands. Follow-

ing the virtual screening, phytochemicals were assessed for their binding with NDM-1using dock-

ing scores, RMSD values, and other critical parameters. The docking score was determined by se-

lecting the best conformation of the protein–ligand complex. Three phytochemicals, i.e., butein (pol-

yphenol), monodemethylcurcumin (polyphenol), and rosmarinic acid (polyphenol) were identified 

as result of pharmacokinetics and molecular docking studies. Furthermore, molecular dynamics 

simulations were performed to determine structural stabilities of the protein–ligand complexes. 

Monodemethylcurcumin, butein, and rosmarinic acid were identified as potential inhibitors of 

NDM-1 based on their low RMSD, RMSF, hydrogen bond count, average Coulomb–Schrödinger 

interaction energy, and Lennard–Jones–Schrödinger interaction energy. The present investigation 

suggested that these phytochemicals might be promising candidates for future NDM-1 medication 

development to respond to antibiotic resistance. 
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1. Introduction 

β-lactam antibiotics are the most widely used antibiotics; however, they are vulnera-

ble to inactivation by a growing number of β-lactamases [1]. The essential β-lactam ring 

of these antibiotics is hydrolyzed by the β-lactamase enzyme, making it difficult for the 

antibiotics to bind with their drug targets in the pathogen [2]. Multidrug resistance has 

become a significant concern to world health as a result of the advent and spread of su-

perbugs [3,4]. Recently, there has been a lot of concern about multi-drug resistance in 

Gram-negative bacteria [5]. Many infectious diseases, including tuberculosis and cholera 

that had been controlled in developed countries are recurring due to an alarming increase 

in antibiotic resistance [6]. Among various β-lactamases, NDM-1 (New Delhi Metallo-β-

lactamase) has prime importance due to its broad substrate specificity and wide spread 

[7]. Serine-β-lactamases (SBLs) and metallo-β-lactamases are the two primary families of 

β-lactamases that have been identified based on the mechanism of enzyme catalysis [8]. 

Additionally, based on similarities in their structures and sequences, these enzymes have 

been further divided into the A, B, C, and D classes. Class B enzymes are zinc-dependent 

hydrolases, whereas class A, C, and D enzymes are serine β-lactamases because they uti-

lize a catalytic serine residue as the reactive nucleophile [9,10]. The enzyme NDM-1 has 

been classified as a class B metallo-enzyme based on catalytic activity and sequence simi-

larity. 

The emergence of the NDM-1 enzyme from class B beta-lactamases has made β-lac-

tam antibiotics less effective in treating various infections. The NDM-1 enzyme was first 

discovered in Klebsiella pneumoniae, isolated from the clinical sample of a Swedish patient 

who was previously treated in New Delhi, India [11]. After NDM-1 was identified, its var-

iants started to appear all over the world, forcing the World Health Organization to issue 

a global alert [7]. The NDM-1 gene has been identified in a variety of bacterial pathogens, 

including Acinetobacter baumannii, Escherichia coli, Enterobacter cloacae, Klebsiella pneu-

moniae, and Pseudomonas aeruginosa [12–15]. Structurally, NDM-1 is a member of the MBL 

family’s subclass B1. The active site of NDM-1 is surrounded by a flexible loop and con-

tains two zinc ions that are connected by a hydroxide ion [16]. The amino acids His120, 

His122, and His189 and a hydroxide ion bind to the first zinc ion in the active site of NDM-

1, while the amino acids Asp124, Cys208, and His250 bind to the second zinc ion [16,17]. 

The first zinc ion aligns with the carbonyl group of the substrate for nucleophilic a�ack, 

whereas the second zinc ion interacts with the amide nitrogen and carboxyl group, both 

of which are β-lactam antibiotics properties. The nucleophilic a�ack on β-lactam rings is 

caused by the hydroxide, which finally leads to substrate hydrolysis [7].  

Due to the flexible active site and high catalytic efficiency of the enzyme, the efficacy 

of most of the β-lactam antibiotics, such as penicillin, cephalosporins, and carbapenems, 

has been impeded [18–20]. Variants of NDM-1 have been emerging around the globe, and 

gene encoding of this enzyme is frequently carried by plasmids [21]. Acknowledging the 

reported studies, NDM-1 is a principle contributor of the clinical threat; hence, designing 

a potent inhibitor would be helpful in combating this global threat [22].  

The hydrolytic nature of zinc ligands, catalytic processes, and rapid changes in the 

active site layout have been the major constraints in the development of NDM-1 inhibitors. 

Only a few inhibitors have been discovered, including Captopril, Aspergillomarasmine, 

and Thiorphan [23–26]. However, no clinically available inhibitor exists to treat NDM-1-

resistant bacterial strains, owing to the physiochemical nature of these inhibitors and 

safety concerns [19]. Captopril, which is a renowned blood pressure medication, chelates 

to the zinc ion, which is required for the normal functioning of the various human en-

zymes, such as the angiotensin-converting enzyme [27]. This drug has been shown to be 

an effective MBL inhibitor as a result of its capacity to chelate zinc ions via the free thiol 

group. D-captopril and L-captopril inhibit metallo-β-lactamases by using their free thiol 

group to displace the water molecule that bridges the two zinc atoms in the enzyme’s 
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active site [28]. However, focusing on metal chelators is not a good practice, because mu-

tations in allosteric site residue sequences in some MBLs can significantly reduce the en-

zymes’ reliance on zinc ions [28].  

Plant metabolites have been used to treat a variety of infectious diseases. A�empts 

are being made to identify the inhibitors from natural products and traditional medicines. 

Many databases have been created with the goal of gathering phytochemicals from vari-

ous food and medicinal plants [29,30]. These databases provide an ample source of phy-

tochemicals for the purpose of virtual screening. Use of secondary metabolites of plants 

with antimicrobial properties would be effective in therapeutic treatments [31]. It is worth 

mentioning that β-lactamase inhibitors should be used in combination with β-lactam an-

tibiotics to treat infections, as they can restore the antibacterial activity of the antibiotics. 

In silico strategies, like molecular docking, molecular dynamics simulations, and pharma-

cokinetics, can be particularly helpful for screening a large number of phytochemicals. 

These methods can forecast how a protein and its ligand will interact at a molecular level 

[32,33]. These techniques can anticipate the binding affinity, molecular interactions, and 

physiochemical characteristics of the hit compounds, saving time and money [32]. Previ-

ously, a number of in silico studies have been conducted using molecular docking and 

molecular dynamics simulations for the discovery of potent inhibitors of β-lactamases, 

particularly NDM-1, from various natural resources [34–37]. These studies have identified 

many phytochemicals with different chemical structures and properties that can inhibit 

NDM-1 [38,39], but none of them have yet been approved for use in humans. Screening 

these large libraries of phytochemicals to discover inhibitors of NDM-1 could lead to the 

identification of new and more potent drug candidates. The current study sought to iden-

tify potent metabolites that could act as natural NDM-1 inhibitors. 

2. Results 

2.1. Cross-Validation 

The results of cross-dockings have been evaluated on the basis of the lowest RMSD 

values of the ligands (Table S1). The cross-docking experiments revealed that 5ZGE 

showed the lowest RMSD value (0.30), and it was found to be the optimal structure of the 

NDM-1 enzyme that could take up new ligands. Overall, the percentage of good and close 

poses of native ligands was found to be 83% which is an ideal value for the validation of 

docking protocols. Hence, the structure 5ZGE (PDB ID) of NDM-1 was found to be an 

optimal structure; hence, it was selected for the screening purpose. 

2.2. Pharmacokinetics and Screening of Receptor–Ligand Interactions 

Based on the lowest RMSD determined through cross-validation (Table S1), the 3D 

structure of NDM-1 with PDB code 5ZGE (resolution of 1.0 Å) was taken for docking stud-

ies. A library of approximately 58,900 compounds was generated for virtual screening 

with the target protein. For the drug likeness study of the compounds, their physiochem-

ical properties, pharmacokinetic properties, toxicity profile, and synthetic availability 

were predicted by ADMETlab2.0 [40]. Out of 58,900 compounds, 6925 were found to be 

suitable for drug designing according to Lipinski’s rule of five (Table S2). The pharmaco-

kinetic properties of the 6925 compounds were further evaluated to ensure that they were 

within acceptable limits. Among these 6925 compounds, 132 compounds showed accepta-

ble results of the drug likeness test (Table S3). To further examine how these substances 

interact with the target protein, protein–ligand docking was conducted. Out of the 

screened compounds, 106 compounds were selected for further investigations primarily 

based on the least binding energy (meeting the threshold values −7.0 kcal/mol) and the 

best conformation (Table S3). Other docking analysis parameters were considered, such 

as zinc–ion interactions, the hydrogen bond count, pi–pi interactions, T-shaped pi–pi in-

teractions, and critical residue interactions. Some compounds were not included in sub-

sequent studies because of the weak interactions (only alkyl interactions). Eventually, a 
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total of four compounds were selected based on protein–ligand interaction (Table 1), and 

these potential compounds were subjected to further studies.  

These four compounds were found to be non-mutagenic and non-carcinogenic, as 

determined by the Ames test. Moreover, the oral toxicity class was also determined for the 

potent compounds. In this regard, the Center for Drug Evaluation and Research (CDER) 

has designated four categories, with category I designating substances that are poisonous 

or irritant, and category IV designating substances that are neither toxic nor irritant. Out 

of these four compounds, monodemethylcurcumin was in toxicity class IV, whereas three 

compounds (butein, butyl 3-O-Caffeoylquinate, and rosmarinic acid) were in toxicity class 

III. However, butyl3-O-Caffeoylquinate was found to be damaging to the liver; hence, it 

was not further investigated. The remaining three compounds (butein, monodemethyl-

curcumin, and rosmarinic acid) with high gastrointestinal absorption, non-AMES toxicity, 

no liver toxicity, and no violations of Lipinski’s guidelines were chosen for future study 

based on the findings of the pharmacokinetic analysis (Table 1). 

Table 1. Comparison of drug-like properties of predicted metabolites and previously synthesized 

inhibitors of NDM-1. 

Compound Name 

Binding 

Energy 

(kcal/mol

) 

Ki 

(µM) 
LogS 1 LogP 2 Ames 3 

Carcinogenic-

ity 

Toxico-

phores 

Synthetic 

Accessibil-

ity 

Lipinski 
Refer-

ence 

Butein −9.1 2.04 −2.99 2.63 0.826 0.509 3 2.22 
Ac-

cepted 

This 

Study 

Monodemethylcur-

cumin 
−9.3 3.33 −3.33 2.57 0.289 0.599 3 2.49 

Ac-

cepted 

Rosmarinic acid −8.9 7.35 −2.43 1.77 0.035 0.275 3 2.90 
Ac-

cepted 

Aspergillomaras-

mine 
−7.36 508.94 −2.15 −5.94 0.013 0.067 3 3.42 Rejected [25] 

Tiopronin −7.94 586.05 −0.51 −0.47 0.015 0.03 3 2.92 
Ac-

cepted 
[41] 

Thiorphan −7.04 1.25 −1.73 1.23 0.603 0.117 3 2.44 
Ac-

cepted 
[41] 

Dimercaprol −3.1 510.9 −0.54 0.59 0.814 0.931 2 4.39 
Ac-

cepted 
[42] 

D-captopril −6.63 600.3 −0.61 0.27 0.01 0.029 3 3.03 
Ac-

cepted 
[43] 

1 Aqueous solubility value. 2 Octanol/water distribution coefficient. 3 Values ranging from 0 to 0.3 

are considered acceptable. In case of carcinogenicity, values ranging from 0 to 0.5 are considered 

acceptable. The class one and two of toxicophores are considered highly toxic. The lower the value 

of synthetic accessibility, the easier it is to synthesize a compound. 

2.3. Predicted Ki Values of Potent Metabolites and their Comparison with Reported Synthetic 

Inhibitors 

The Ki values of the potent metabolites were predicted through AutoDock4.2. All of 

the three selected predicted compounds showed a Ki value of less than 100 µM (Table 1). 

An inhibitor showing a Ki value of less than 100 µM was considered good with reference 

to its binding affinity toward the receptor [44]. The predicted binding energies of almost 

all compounds were be�er than those of the previously reported synthetic inhibitors, in-

cluding Aspergillomarasmine (−7.36 kcal/mol), Tiopronin (−7.94 kcal/mol), Thiorphan 

(−7.04 kcal/mol), Dimercaprol (−3.10 kcal/mol), and D-captopril (−6.63 kcal/mol) (Table 1). 

Among the predicted compounds, butein had the binding energy (−7.8 kcal/mol) and Ki 



Pharmaceuticals 2023, 16, 1404 5 of 15 
 

 

value (2.04 µM), followed by monodemethylcurcumin (−9.3 kcal/mol and 3.33 µM) and 

rosmarinic acid (−8.9 kcal/mol and 7.35 µM) (Table 1).  

2.4. Molecular Interactions and Binding Mode of Potential Metabolites with NDM-1. 

It is important to investigate whether ligands interact with the key amino acid resi-

dues of an enzyme, because this interaction determines whether the ligand can inhibit the 

enzyme. For this purpose, the 2D structures of the protein–ligand complex were thor-

oughly investigated. It was found the rosmarinic acid forms hydrogen bonds with the 

amino acids Asp124, His122, and Glu152 and pi–sulfur interactions with the amino acid 

Cys208. It also has metal–acceptor interactions with the zinc ions Zn303 and Zn301 (Figure 

S1). Butein forms hydrogen bonds with the amino acids Asn220, His250, Lys211, and 

Ser251 and a pi–alkyl interaction with the amino acid Ile35. It also has a metal–acceptor 

interaction with the zinc ion Zn303 (Figure S2). Monodemethylcurcumin forms hydrogen 

bonds with the amino acids Gln123, Asp124, Lys211, and Asn220 and pi–alkyl interactions 

with the amino acids Val73 and Phe70. It also has a pi–donor hydrogen bond with the 

amino acid His250, a carbon–hydrogen bond with the amino acid His189, and a metal–

acceptor interaction with the zinc ion Zn301 (Figure S3). 

2.5. Molecular Dynamics Simulations 

Molecular dynamics (MD) simulations were applied to carefully investigate the bind-

ing kinetics of three important ligands (namely, butein, monodemethylcurcumin, and ros-

marinic acid) across a period of 200 ns. These simulations were aimed at capturing the 

extent of dynamic interactions between the ligands and the target protein. Remarkably, 

all three ligands exhibited minimal deviation, with RMSD values of less than 0.1 Å, as 

illustrated in Figure 1A. The low RMSD values serve as a strong indicator of the stability 

and specificity of these ligand–protein complexes. Essentially, a lower RMSD value un-

derscores that the ligands have found a ‘comfortable’ binding pocket within the protein, 

thus minimizing their positional shifts during the 200 ns simulation. 

This notion is also validated when the first and last frame of the molecular dynamics 

trajectories were visualized (Figure 2). The three ligands showed small structural devia-

tions in their binding pockets. This suggests not only a stable interaction but also implies 

that these ligands could be strong candidates for drug development, warranting further 

experimental validation. 

In regard to the RMSF (root mean square fluctuation) values, all of the examined pro-

tein–ligand complexes displayed strikingly similar behaviors. Noteworthy fluctuations in 

the RMSF values were observed within specific amino acid residue ranges: 67–72, 171–

176, and 214–228, as depicted in Figure 1B. The significance of these RMSF fluctuations 

cannot be overstated. The active site of NDM-1 is composed of three pivotal loops—L3 

and L10, to be precise [43]. Among these, L3 has been previously implicated in substrate 

specificity and binding [45,46]. The amino acid residues Lys171 and Asn180, located in 

L10, also play a crucial role in substrate binding [46]. Recent studies have highlighted the 

importance of residues like Ser217, Gly219, and Asn220 in biological interactions [34]. El-

evated RMSF values in these specific regions suggest that these amino acid residues are 

highly dynamic and likely participate in the critical interactions with the ligands. These 

dynamic regions might serve as adaptable docking points or as regions that could un-

dergo conformational changes upon ligand binding, thereby affecting the overall stability 

and function of the protein–ligand complex. 

By accounting for the overall number of hydrogen bonds produced between ligands 

and proteins, the hypothesis is bolstered even further. All of the three ligands formed a 

similar number of hydrogen bonds throughout 200 ns of the MD simulation (Figure 1C). 

The consistent formation of hydrogen bonds throughout the simulation signifies a stable 

interaction, reinforcing the low RMSD values previously discussed. Hydrogen bonds are 

key elements in maintaining the structural integrity of biological complexes. A consistent 

number of such bonds implies that the ligands are not only fi�ing well into the protein’s 
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active site but also maintaining a stable network of interactions. This could be indicative 

of a strong, long-lasting binding affinity between the ligand and the protein, making these 

ligands prime candidates for further study and potential drug development.  

  

 

Figure 1. Molecular dynamics trajectory analysis of ligand-protein complex. (A) Root mean square 

deviation (RMSD) value of protein backbone and ligand over a period of 200 ns. (B) Root mean 

square fluctuations of C-alpha of protein due to binding of ligands (C) Total number of hydrogen 

bonds between ligands and protein. 
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Figure 2. Binding confirmation of selected ligands with the protein at start and end steps of molec-

ular dynamics simulations. (A) Butein structural deviation at binding site at 0 ns (in green) and 200 

ns (in yellow) (B) Monodemethylcurcumin structural deviation at binding site at 0 ns (in magenta) 

and 200 ns (in orange) (C) rosmarinic acid structural deviation at binding site at 0 ns (in red) and 

200 ns (in pink). 

We also analyzed the molecular dynamics (MD) trajectory of the protein–ligand com-

plex to calculate the binding energy values. The Coulomb–Schrödinger (Coul-SR) and 

Lennard–Jones–Schrödinger (LJ-SR) binding energy values of the ligands with the pro-

teins were calculated (Figure 3, Table 2). 

Table 2. Coul-SR and LJ-SR values of the investigated phytochemicals. 

Names of Compounds 
Average Energy Interactions 

kJ.mol−1 (Coul-SR) 

Average Energy Interactions 

kJ.mol−1 (LJ-SR) 

Butein −77.533 −61.658 

Monodemethylcurcumin −46.918 −98.748 

Rosmarinic acid −50.221 −101.427 

All three compounds showed comparable Coul-SR and LJ-SR interactions energies, 

indicating their comparable binding affinities with the protein. The Coul-SR values offer 

understandings of the electrostatic interactions between the ligands and the proteins, 

which are fundamental in stabilizing the complex. A consistent Coul-SR value across the 

ligands indicates that they all have comparable electrostatic interactions with the protein, 

suggesting that they are equally efficient in establishing a stable complex. On the other 

hand, the LJ-SR values provide information about van der Waals forces, which are critical 

for the ‘fit’ of the ligand within the protein’s binding pocket. Comparable LJ-SR values 

signify that the ligands are equally adept at snugly fi�ing into the binding pocket, which 

is an essential a�ribute for potent ligand candidates. The similar Coul-SR and LJ-SR inter-

action energies across the ligands further support their comparable binding affinities with 

the target protein. This consistent energy profile, coupled with the previously discussed 

low RMSD and stable hydrogen bonding, makes these ligands compelling candidates for 

further research and possible drug development. 

 

Figure 3. Coul-SR (A) and LJ-SR (B) binding energy values of ligands with protein. The analysis was 

performed for a 200-nanosecond duration. The phytochemicals butein, monodemethylcurcumin, 

and rosmarinic acid were included in the investigation. 
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3. Discussion 

β-lactam antibiotics are effective against a wide range of bacterial infections, but their 

effectiveness is challenged by the growing prevalence of β-lactamases, especially NDM-1. 

This enzyme can break down the key β-lactam ring of a wide range of antibiotics. Car-

bapenems are among the most powerful antibiotics available, and they are often used as 

a last resort to treat infections caused by bacteria that are resistant to other antibiotics [23]. 

Despite the fact that many NDM-1 inhibitors have been developed [47–51], none have 

been approved for clinical use [7]. Among these, Captopril was discovered to be a poten-

tial NDM-1 inhibitor, as the thiol group in this drug has the potential to chelate zinc ions 

[19,52]. Similarly, Aspergillomarasmine (AMA) inhibits NDM-1 by releasing a second zinc 

ion from the active site of the enzyme, but its great hydrophilicity also prevents its further 

development [24]. Brem et al. investigated the efficacy of D-captopril and L-captopril as 

NDM-1 enzyme inhibitors; however, it is critical to note down the unexpected harmful 

effects due to cross-reactivity with human metallo-enzymes [25,28]. Furthermore, muta-

tions in allosteric site residue sequences in some MBLs can significantly reduce the need 

for zinc ions in the enzymes, indicating that focusing solely on metal chelators is not the 

best approach [53]. Recently, research has highlighted the role of magnolol, a natural com-

pound, as an effective NDM-1 inhibitor. Magnolol is a less toxic compound derived from 

plants. Researchers have proposed that combining magnolol or other plant-based inhibi-

tors with existing antibiotics could be an effective way to combat antibiotic resistance [19]. 

Similarly, the efficacy of antibiotics was restored when used in combination with other 

inhibitors [25,54]. Flavanol compounds (such as quercetin, myricetin, and morin) have 

also been identified as potent NDM-1 inhibitors [55]. 

One of the most efficient techniques is to screen inhibitors from known small mole-

cules, i.e., natural compounds with demonstrable biological action, and lead compounds 

targeting antibiotic resistance enzymes. The idea of combination therapy, i.e., a β-lactam 

antibiotic and a synthesized inhibitor, are proved to be successful against NDM-1 [3]. The 

development of an inhibitor for the inhibition of NDM-1 and to restore the efficacy of 

existing β-lactam antibiotics has become a pressing therapeutic necessity [56]. 

Several plant species and their metabolites have been used effectively against the an-

tibiotic resistance conferred by serine-based class and resistance through the penicillin-

binding proteins. In vivo and in vitro studies against β-lactamase have been observed by 

using the extracts of edible plants [57]. This led us to explore various edible as well as 

other plant sources with reported properties against antibiotic resistance through NDM-

1. Virtual screening was performed through AutoDock as a docking engine, which helped 

to identify the best metabolites that could inhibit NDM-1. Synthesized inhibitors against 

NDM-1, such as Aspergillomarasmine, Tiopronin, Thiorphan, Dimercaprol, and D-capto-

pril, have been taken as a reference to compare the important parameters, such as binding 

energy, with metabolites predicted in the current study [25,26,42,58]. Upon consideration 

of the toxicity class and the AMES mutagenesis, our predicted metabolites are found to be 

non-AMES mutagenic, and they fall in toxicity classes III and IV. Furthermore, AutoDock4 

was used to obtain the Ki values of the hit compounds, as a low Ki value implies high 

potency of the ligand with a range in the micro molar to be qualified as a hit or lead can-

didate [59]. While comparing the docking scores of reported inhibitors, it has been ob-

served that energy values of our predicted metabolites, i.e., butein, rosmarinic acid, and 

monodemethylcurcumin, were closely related to the reported ones. In one of the reported 

in vivo studies, the compound 4,5-Dicaffeoyl quinic acid was proved to be an inhibitor of 

pigmentation by reducing melanin synthesis [60], and narirutin, which is found in citrus 

peels, possesses anti-cancer activity along with other metabolites [61]. Three other phyto-

chemicals—coriandrinonediol, oleanderolide, and uzarigenin—were discovered to be 

highly effective NDM-1 inhibitors in another recent investigation [62]. Following molecu-

lar docking, it was determined that their binding affinities to NDM-1 ranged from −8.3 

kcal/mol (coriandrinonediol) to −8.1 kcal/mol (uzarigenin) [62]. Similarly, withaferin A, 

diosgenin, and beta-sitosterol have been proposed as possible inhibitors of NDM-1 based 
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on the binding energies and molecular stability [36]. In another recent investigation, ten 

phytochemicals were discovered as broad-range MBL inhibitors. One of these phytochem-

icals, C30H22O13, with the ChEMBL ID CHEMBL3422281, displayed extremely low binding 

energy, measuring −22.7 kcal/mol [34].  

On the basis of the aforementioned predictions, the lowest binding energies, the mo-

lecular interactions with active site residues, and the molecular dynamics and simulations 

of the compounds, butein, rosmarinic acid, and monodemethylcurcumin were found to 

be good candidates for future drugs to inhibit NDM-1 and prevent the β-lactam antibiotics 

from hydrolysis.  

The important active site residues in NDM-1 have been revealed in various prior 

structural investigations. For instance, Ile35, Met67, Val73, Trp93, Cys208, Asn220, and 

His250 were identified by Wang and colleagues as being important NDM-1 residues [63]. 

Similarly, Met67, Phe70, Lys211, Lys216, Ser217, and Asn220 were identified by Kar and 

colleagues as crucial residues for the interaction of an enzyme and a substrate. [62]. In a 

separate investigation, NDM-1 was docked with 16 commercially available antibiotics or 

inhibitors. The binding energies of the enzyme–substrate complex ranged from −5.20 

kcal/mol (imipenem) to −8.53 kcal/mol (meropenem) [36]. During the investigation, it was 

observed that meropenem formed hydrogen bonds with amino acid residues Gln123, 

Asp124, Lys211, Asn220, and His250 of NDM-1. Additionally, the importance of amino 

acid residues Ile35, His122, Val173, His189, Cys208, and Gly219 was also established, as 

these residues were engaged in hydrophobic interactions [36]. The compounds that were 

discovered in the current study were found to interact with most of the abovementioned 

amino acid residues.  

Rosmarinic acid has previously been linked to a number of pharmacological effects, 

including being anti-inflammatory [64] and preventing acute myocardial infarction via 

controlling Ca2+ homeostasis and plasma antioxidant enzymes [65]. Its application also led 

to the regeneration of the liver [66] and the protection of the liver against cholestasis [67]. 

Rosmarinic acid was found to be safe in tests involving cell lines and zebrafish embryos 

for cytotoxicity and genotoxicity. In a recent experiment, it was revealed that rosmarinic 

acid strongly inhibited VIM-2 metallo-β-lactamases, while NDM-1 was weakly inhibited 

[49]. It is interesting to note that NDM-1 was severely suppressed by salvianolic acid A, a 

rosmarinic acid derivative [49]. It has already been documented that butein has anti-can-

cer properties [68,69]. Studies have demonstrated that it has a neuroprotective effect 

against damage brought on by H2O2 [45]. Interestingly, because it can mask the hACE2 

receptor, butein has been predicted as a potential hit phytochemical to block SARS-CoV-

2 entry into human cells [70]. 

Based on current study, it is suggested that the compounds butein, rosmarinic acid, 

and monodemethylcurcumin can be further optimized as leads in the drug discovery pro-

cess to develop future drug candidates against NDM-1. 

4. Materials and Methods 

4.1. Ligand Selection and Preparation 

A detailed literature survey has been conducted for the compilation of plant metab-

olites that have been reported for the inhibition of different classes of β-lactamases. Com-

pounds from the various phytochemical classes, including flavonoids, tannins, glycosides, 

saponins, coumarins, terpenoids, alkaloids, and polyphenols, were obtained from FooDB 

(h�ps://www.foodb.ca (accessed on May 18, 2022)), Phenol-Explorer (h�p://phenol-ex-

plorer.eu (accessed on March 10, 2021)) [29], and IMPPAT, the Indian medicinal plant da-

tabase (h�ps://cb.imsc.res.in/imppat (accessed on April 06, 2021)) [30]. 

More than 58,900 compounds were retrieved from the aforementioned databases and 

collected from the reported literature survey based on their antibacterial properties. The 

names or SMILES of the ligands were searched in various databases, including the Pub-

Chem–NCBI database [71,72] accessible at (h�ps://pubchem.ncbi.nlm.nih.gov/ (accessed 
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on June 27, 2022)), and the ZINC database (h�ps://zinc.docking.org/) [73], in order to ob-

tain chemical structures of the ligands in a structured data format (SDF). Compounds 

whose structures were not listed in these databases had their diagrams created using the 

stand-alone program ChemDraw. In order to prepare the ligands for docking, SDF for-

mats of the ligands were further translated to Protein Data Bank (PDB) forms. Using Linux 

instructions for AutoDock Vina, each ligand was treated to 3D protonation and energy 

minimization. All of the ligand was eventually saved in pdbqt format. 

4.2. Drug-Likeness Prediction using ADMETlab2.0 

All compounds acquired from various databases must pass a drug likeness test in 

order to conduct docking experiments. The prediction of drug likeness properties for all 

compounds was carried out using ADMETlab2.0 [40]. ADMETlab2.0 is a quick, accurate, 

and easy to use program for the prediction of Absorption, Distribution, Metabolism, Ex-

cretion, and Toxicophoric (ADMET) properties. In addition to ADMET properties, this 

program evaluates many pharmaceutical properties of compounds, like mutagenicity, 

carcinogenicity, and physiochemical properties of the compounds. This program evalu-

ates the compounds based on different rules of pharmaceutical companies, like Lipinski’s 

rule [74], which states that the molecular weight of compounds for drug should be <500 

Da. The H bond donor should be less than <5, the H bond acceptor should be <10, the 

number of rotatable bonds should be less than <5, and the log p value should be <5. For a 

compound to pass the carcinogenic and mutagenic property of drug likeness test, the 

probability value for this compound should be <0.5. Compounds with the greatest num-

ber of drug-like properties within the standard value range were chosen for further dock-

ing studies. The pkCSM server was used to forecast the liver toxicity of phytochemicals 

[75]. 

4.3. Protein Selection and Preparation 

The selection of suitable molecular targets is a crucial step in docking studies; hence, 

the 3D structures of NDM-1 were retrieved from the protein data bank (PDB) in PDB for-

mat (PBD IDs: 4RL2, 6NY7, 6O3R, 4EYB, 6TWT, 5ZGE). The native ligand was observed 

from the target protein. The MGL Tool version 1.5.7 (Molecular Graphics Laboratory Tool) 

of AutoDock Vina was used for the preparation of the protein for docking. The MGL Tool 

was used for the removal of crystallographic water molecules, the addition of the polar H, 

along with the distribution of Kollman charges. Finally, the modified structure of the pro-

tein was saved in the pdbqt file format. Knowing the binding site before the docking pro-

cess improves the docking efficiency dramatically; hence, BIOVIA Discovery Studio Vis-

ualizer was used to specify the potential ligand binding site in the target protein.  

4.4. Validation of Target Protein–Ligand Complexes 

For the validation of the docking protocols, native ligands from different crystallo-

graphic structures of NDM-1 were taken (Table S1). Native ligands, i.e., 3S3 from the struc-

ture 4RL2: PDB, L8J from 6NY7: PDB, XJE from 6O3R: PDB, 0WO from 4EYB: PDB, EPE 

from 6TWT: PDB, and Z27 from 5ZGE: PDB, were taken. 

Cross-dockings were performed, where each native ligand was docked to other avail-

able structures of NDM-1 in the protein data bank and the quality of best fit was predicted 

on the basis of ligand RMSD values (Table S1). This approach is said to be valid if the 

obtained RMSD value is ≤ 2.0 Å so that the test compounds can be docked with a target 

protein within same binding site. 

4.5. Receptor–Ligand Docking and Evaluation of Docking Results  

The following stage involved testing a library of possible compounds against the 

NDM-1 protein’s active site residues. The input files necessary for AutoDock Vina were 

created and used for this purpose. The notepad file with the AutoDock Vina Perl script 
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was obtained. Additionally, the MGL tool was used to determine the size of the grid box. 

In AutoDock, the grid box size was maintained at 76, 94, and 82 for the X, Y, and Z dimen-

sions. The default se�ings for the energy range and exhaustiveness were maintained at 4 

and 10, respectively. The AutoDock Vina developers’ shell script was used to implement 

Vina files. With Kcal/mol as the unit, the binding affinity of ligands was seen as a negative 

score. The AutoDock Vina script produced ten poses with distinct binding energies for 

each ligand. Using PyMOL, the ligand’s position with the highest binding affinity was 

retrieved from the docked complex and stored in a complex.pdb format. With an empha-

sis on hydrogen bonds, interactions with zinc ions, pi–pi stacking, pi–sulfur contacts, pi–

alkyl interactions, and other favorable interactions, the best docking pose was then visu-

alized using BIOVIA Discovery Studio Visualizer. The residues responsible for substrate 

specificity identified from the active site were Leu65, Met67, Val73, Gln123,Asp124, 

Lys211, Asn220, His250, Zn301, and Zn303. On the basis of the best interaction, the final 

compounds were selected for the prediction of the inhibition constant. The reported syn-

thesized inhibitors, i.e., Aspergillomarasmine, Tiopronin, Thiorphan, Dimercaprol, and 

D-captopril, against the NDM-1 were taken as a reference to compare the energy values 

of these reported compounds with the potential metabolites in our study. 

4.6. Prediction of Inhibition Constant of Selected Compounds using AutoDock 4.2 

The final hit compounds were subjected to AutoDock4 [76] for the prediction of Ki 

values. In AutoDock4, both the receptor and ligands files were saved in a PDBQT format. 

The grid box was set and the AutoDock files, i.e., autodock4.exe and autogrid4.exe, were 

also copied from the program files in the C drive to the working directory. Immediately 

after the execution, the output files for the evaluation were automatically generated in the 

gpf (grid parameter file) and dpf (docking parameter file) files. 

4.7. Molecular Dynamics (MD) Simulations 

The dynamic bindings of the top three ligands with the protein were assessed using 

MD simulations, which were performed using GROMACS 5.0.5 [77]. The CHARMM-36 

all atoms force field was used to prepare the topology file of the protein [78]. For the prep-

aration of the topology files of the ligands, CGenff internet service was applied [79]. For 

the solvation of the protein–ligand complex, a TIP3P water system was used. The solution 

was neutralized by adding the appropriate amount of Na and Cl ions. The energy mini-

mization was carried out to stabilize the system using the gradient descent optimization 

algorithm [80]. Before 200 ns of the production phase, 100 ps of NVT and NPT equilibra-

tion was carried out. After the production phase, the trajectory was analyzed for the root 

mean square deviation (RMSD), root mean square fluctuations (RMSF), the total number 

of hydrogen bonds, and the binding energies of ligands and the protein during simula-

tions. 

5. Conclusions 

Due to the rapid evolution and dissemination of antibiotic resistance genes, there is 

an urgent need for time to develop new antibiotics, especially against β-lactamases. A sig-

nificant pool of prospective antibiotic possibilities is offered by phytochemicals. Three 

compounds—butein, rosmarinic acid, and monodemethylcurcumin—were identified in 

the current study as strong inhibitors of NDM-1 β-lactamase. The outcomes were further 

supported by a molecular dynamics simulations study of the structural stability of pro-

tein–ligand complexes. In order to create new antibiotics to combat bacterial strains re-

sistant to β-lactams, further research into the recently identified chemicals is necessary. 

Supplementary Materials: The following supporting information can be downloaded at: 

h�ps://www.mdpi.com/article/10.3390/ph16101404/s1. Table S1. Structures of NDM-1, their native 

ligands, and predicted RMSD values. Table S2. Pharmacokinetics and physiochemical analysis of 

phytochemicals. Table S3. List of phytochemicals showing acceptable values of pharmacokinetics 
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and Lipinski’s rule of five. Figure S1. The 2D and 3D representations of binding of rosmarinic acid 

with the protein. Figure S2. The 2D and 3D representations of binding of butein with the protein. 

Figure S3. The 2D and 3D representations of binding of monodemethylcurcumin with the protein. 

Reference [81] are cited in the supplementary materials. 
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