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Abstract: Background: Myocardial infarction is one of the leading causes of mortality worldwide;
hence, there is an urgent need to discover novel cardioprotective strategies. Kynurenic acid (KYNA),
a metabolite of the kynurenine pathway, has been previously reported to have cardioprotective effects.
However, the mechanisms by which KYNA may be protective are still unclear. The current study
addressed this issue by investigating KYNA’s cardioprotective effect in the context of myocardial
ischemia/reperfusion. Methods: H9C2 cells and rats were exposed to hypoxia/reoxygenation or
myocardial infarction, respectively, in the presence or absence of KYNA. In vitro, cell death was
quantified using flow cytometry analysis of propidium iodide staining. In vivo, TTC-Evans Blue
staining was performed to evaluate infarct size. Mitochondrial respiratory chain complex activities
were measured using spectrophotometry. Protein expression was evaluated by Western blot, and
mRNA levels by RT-qPCR. Results: KYNA treatment significantly reduced H9C2-relative cell death as
well as infarct size. KYNA did not exhibit any effect on the mitochondrial respiratory chain complex
activity. SOD2 mRNA levels were increased by KYNA. A decrease in p62 protein levels together with
a trend of increase in PARK2 may mark a stimulation of mitophagy. Additionally, ERK1/2, Akt, and
FOXO3α phosphorylation levels were significantly reduced after the KYNA treatment. Altogether,
KYNA significantly reduced myocardial ischemia/reperfusion injuries in both in vitro and in vivo
models. Conclusion: Here we show that KYNA-mediated cardioprotection was associated with
enhanced mitophagy and antioxidant defense. A deeper understanding of KYNA’s cardioprotective
mechanisms is necessary to identify promising novel therapeutic targets and their translation into the
clinical arena.

Keywords: kynurenic acid; myocardial infarction; cardioprotection; mitophagy; oxidative stress;
kynurenine pathway; ischemia/reperfusion injuries; cell death; hypoxia/reoxygenation

1. Introduction

Myocardial infarction (MI) remains one of the leading causes of morbidity and mortal-
ity in developed countries [1]. MI is a complex and a serious clinical problem that causes
irreversible damage to the heart. Timely reperfusion, either by thrombolytic therapy or by
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angioplasty, is a prerequisite to the salvaging of ischemic myocardium and improvement
of patient’s prognosis. However, myocardial reperfusion is paradoxically associated with
more damage to the heart including irreversible death of cardiomyocytes. Four types of
myocardial ischemia/reperfusion injuries have been described including myocardial stun-
ning, the no-reflow phenomenon, reperfusion arrhythmia, and lethal reperfusion injury [2].
Whilst several pharmacological and ischemic conditioning strategies were proven capable
of reducing myocardial reperfusion injuries in animal models and clinical studies, no effec-
tive cardioprotective strategy has been translated into the clinical arena [3,4]. Therefore,
innovative cardioprotective therapies are urgently required to prevent myocardial I/R
injuries and improve clinical outcomes.

The kynurenine pathway (KP) is the major route of tryptophan degradation [5,6].
Approximately 95% of free tryptophan is oxidized into kynurenine, a rate-limiting step
controlled by indolamine-2,3-dioxygenase (IDO) or tryptophan-2,3-dioxygenase (TDO)
in the liver. Thereafter, kynurenine is metabolized into either kynurenic acid (KYNA), or
quinolinic acid, via reactions catalyzed by kynurenine aminotransferase (KAT) and kynure-
nine 3-monooxygenase (KMO), respectively. KP metabolism is altered in various diseases
such as immune-related disorders, endocrine and metabolic conditions, cancers, and neu-
ropsychiatric diseases [7,8]. It has also been involved in chronic pain such as migraine and
neuropathic pain [9]. Thus, KP metabolites have been described as bioactive compounds
and carry out a broad range of biological functions, such as oxidant, antioxidant, anti-
inflammatory, neurotoxic, neuroprotective, and/or immunomodulatory activities [6,10,11].
Interestingly, their effects depend on their local concentration and cellular environment,
metabolic activity as well as complex positive and negative feedback loops [12]. Recently, a
study reported that downregulation of KP might improve the outcome of acute mesenteric
ischemia in rats [13]. Moreover, plasma levels or ratios of KP metabolites were associated
with adverse clinical outcomes [14].

Recently, alteration of KP has also been implicated in the pathophysiology of cardio-
vascular diseases (CVD) [15,16]. Several CVD are associated with the overactivation of
kynurenine pathway, including hypertension, atherosclerosis, ischemic heart diseases,
and stroke. Interestingly, KP metabolites have been described as potential diagnostic
and prognostic biomarkers in cardiovascular diseases [17]. Kynurenine or its metabolites
supplementation have been shown to improve the outcome of stroke [17]. In serum of
CVD patients, there were increases in kynurenine, kynurenine/Trp ratio (KTR), quinolinic
acid, KYNA, and 5-hydroxyindoleacetic acid, whereas in patients presenting documented
peripheral atherosclerosis, and ischemic heart diseases decreases in concentrations of Trp
and serotonin were observed [18]. Another study found that KTR levels predict acute
coronary events in older adults without previous coronary heart disease [19]. Moreover,
high levels of plasma kynurenines predicted increased risk of acute myocardial infarction
in patients with suspected stable angina pectoris. Altogether, these studies give evidence
that the kynurenine pathway metabolites may play a role in heart injuries. Nevertheless,
the role of KP in the heart is not completely clear yet. In previous works, we showed a plas-
matic kynurenine concentration increase in rats and humans following the cardioprotective
strategy of remote ischemic conditioning (RIC), suggesting a link between the kynurenine
pathway and cardioprotection [20–22]. Interestingly, RIC-induced cardioprotection was lost
in rats that received 1-methyl-tryptophan (1-MT) pretreatment, an inhibitor of kynurenine
synthesis from TRP [21]. Moreover, rats receiving a kynurenine intraperitoneal injection
10 min before a myocardial ischemia/reperfusion exhibited a smaller infarct size compared
to the vehicle-treated rats [20].

KYNA is a key metabolite of the kynurenine-tryptophan pathway with pleiotropic
effects [23]. KYNA has anti-inflammatory and immunosuppressive functions as well
as antioxidant and neuroprotective properties [23,24]. Importantly, in 2016, Olenchock
et al. reported KYNA’s role in cardioprotection using ex vivo and in vivo myocardial
ischemia/reperfusion mouse models [25]. A more recent study showed that KYNA may
play a significant role in mediating cardiac protection following acute kidney injury [26].
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These findings reinforce a potential major role of KYNA in protecting the heart against
ischemia/reperfusion injuries. However, the mechanism by which KYNA is cardiopro-
tective was not unraveled and thus remains largely unknown. Thus, the objective of the
present study was to investigate KYNA’s cardioprotective effect and to elucidate potential
cardioprotective pathways using both an in vivo rat myocardial infarction model and an
in vitro hypoxia/reoxygenation H9C2 cell model.

2. Results
2.1. KYNA Reduced In Vitro Cell Death and Prevented Mitochondrial Membrane Potential
Decrease after Hypoxia/Reoxygenation

To evaluate KYNA’s cytoprotective effects in vitro, H9C2 cells were subjected to 4 h
and 50 min of hypoxia, followed by 2 h of reoxygenation with either DMSO or KYNA
treatments. As shown in Figure 1A, H/R increased cell death compared to the control (1.00
vs. 0.11± 0.02; p < 0.001). Relative cell death was significantly reduced in the KYNA-treated
groups compared to the H/R group (0.69 ± 0.10, 0.63 ± 0.17, 0.64 ± 0.19 for KYNA pre,
KYNA pre + per, KYNA pre + per + post vs. 1.00 in H/R, p = 0.024, p = 0.006, and p = 0.007,
respectively) (Figure 1A). H/R led to a significant decrease in the number of cells with a
conserved mitochondrial membrane potential (∆Ψm) (46.8 ± 7%) compared to the control
(91.5 ± 7%, p = 0.003). The KYNA treatment was able to significantly increase the number
of cells with a conserved ∆Ψm (72.72 ± 1.82%, 78.74 ± 9.50%, 80.97 ± 10.50%, p = 0.035,
p = 0.011, p = 0.007 vs. H/R; for KYNA pre, KYNA pre + per, KYNA pre + per + post,
respectively) (Figure 1B).
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Figure 1. Histograms showing (A) relative cell death and (B) percentage of cells with conserved
mitochondrial membrane potential in control cells that did not undergo hypoxia/reoxygenation
(H/R), and cells that underwent H/R, either vehicle (DMSO) or KYNA (1 µM) treated. KYNA
treatment was performed either 10 min pre hypoxia in DMEM medium, pre + per hypoxia, or pre +
per + post hypoxia for KYNA (n = 6–9 for relative cell death and n = 3–7 for mitochondrial membrane
potential). Data are expressed as mean ± SEM; * p <0.05, ** p < 0.01, *** p < 0.001.

2.2. KYNA Reduced Infarct Size In Vivo

In order to confirm the results obtained in vitro, KYNA or NaOH was injected into
male Wistar rats 10 min before a myocardial ischemia/reperfusion. Both the MI and MI
+ KYNA groups were subjected to 40 min of myocardial ischemia, followed by 2 h of
reperfusion. Infarct size was significantly lower in animals receiving KYNA as compared
to those receiving the vehicle only (AN%AAR = 53.3 ± 3% in MI + KYNA vs. 62.2 ± 2% in
MI, p = 0.023), whereas the AAR%LV was similar in the two groups (Figure 2).
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2.3. KYNA Did Not Influence the Mitochondrial Metabolic Function

As shown in Figure 3A, complex III proteins’ expression was increased in the MI
group compared to the sham (0.28 ± 0.02 in MI vs. 0.16 ± 0.02 in sham for complex III,
p < 0.001). To ensure consistent mitochondrial content between groups, we assessed the CS
activity in the same hearts used for the complex activity studies. The CS specific activity did
not differ among the sham, MI, and MI + KYNA groups. Next, we evaluated the specific
activities of complexes I, II, III, and IV, normalized to the CS activity. Despite no significant
differences among sham, MI, and MI + KYNA groups in each complex’s specific activity,
the equilibrium between respiratory complexes (complex ratio) (Figure 3B, right panel) was
significantly decreased for complex ratio I/II in the MI and MI + KYNA groups compared
to sham group (1.21 ± 0.07 in sham vs. 0.92 ± 0.06 in MI, p = 0.02 and vs. 0.88 ± 0.06 in
MI + KYNA, p = 0.009) and significantly increased for complex ratio III/I in the MI and
MI + KYNA groups compared to sham group (0.55 ± 0.04 in sham vs. 1.13 ± 0.17 in MI,
p = 0.002 and 1.24 ± 0.32 in MI + KYNA, p = 0.25). The AMPKα’s, a metabolic sensor
regulating PGC1α’s activity, phosphorylation levels were not significantly different among
the groups. PGC1α protein expression, a transcription factor mediating mitochondrial
biogenesis and oxidative phosphorylation, was not different among the sham, MI, and
MI + KYNA groups (Figure 3C).
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(A) Representative immunoblots and histograms showing quantification of protein expression for
the mitochondrial respiratory chain complex in non-ischemic (sham), ischemic + vehicle (MI), and
ischemic + kynurenic acid (MI + KYNA) left ventricle (LV) samples after 2 h of reperfusion (n = 5–10).
β-actin or GAPDH was used as loading control. (B) Histograms showing complex over citrate
synthase activity ratio (I/CS, II/CS, III/CS, IV/CS) or complex ratio activity (I/II, III/I, IV/I) in sham,
MI, and MI + KYNA LV samples after 2 h of reperfusion (n = 5–10). (C) Representative immunoblots
and histograms showing quantification of protein expression for AMPKα and PGC1α in sham, MI,
and MI + KYNA LV samples after 2 h of reperfusion (n = 5–10). Data are expressed as mean ± SEM;
* p < 0.05, ** p < 0.01, *** p < 0.001.

2.4. KYNA Reduced Foxo3α, Akt and ERK1/2 Phosphorylation Levels following Myocardial
Ischemia/Reperfusion

FOXO3α is a transcription factor known to regulate the expression of genes implicated
in essential cell functions (including oxidative stress, and mitophagy). After 15 min of
reperfusion, FOXO3α phosphorylation levels were significantly increased in the MI group
compared to the sham group (6.22 ± 1.61 vs. 1.68 ± 0.51, p = 0.044), whereas the KYNA
treatment significantly reduced FOXO3α phosphorylation levels (0.89 ± 0.36, p < 0.001
vs. MI) (Figure 4A). FOXO3α’s phosphorylation is regulated by Akt and ERK1/2. Hence,
we evaluated the potential effect of KYNA on their phosphorylation levels following
15 min of reperfusion. Myocardial ischemia/reperfusion induced an increase in ERK1/2
phosphorylation levels (1.61 ± 0.36 in the MI group vs. 0.07 ± 0.04 in the sham group,
p < 0.001). The KYNA treatment was associated with a significant decrease in ERK1/2
phosphorylation (0.56 ± 0.14 in MI + KYNA, p = 0.024), as well as a significant decrease in
Akt phosphorylation compared to the MI group (0.67 ± 0.06 in MI + KYNA vs. 0.92 ± 0.10
in MI, p = 0.047) (Figure 4B).
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Figure 4. Foxo3α, Akt and ERK1/2 phosphorylation levels by means of Western blot. (A) Repre-
sentative immunoblots and histogram quantification of protein expression levels for p-FOXO3α,
FOXO3α and (B) p-ERK1/2, ERK1/2, p-Akt, Akt, in non-ischemic (sham), ischemic + vehicle (MI),
and ischemic + kynurenic acid (MI + KYNA) left ventricle samples following 15 min of reperfusion
(n = 6–9). GAPDH was used as the loading control. Data are expressed as mean ± SEM. * p < 0.05,
*** p < 0.001.

2.5. KYNA Stimulated Antioxidant Defense following Myocardial Ischemia/Reperfusion

KYNA has been reported to exert reactive oxygen species (ROS) scavenger properties.
Thus, we evaluated mRNA as well as protein expression of SOD1, SOD2, SOD3, and
catalase. The SOD1 and catalase mRNA levels were significantly decreased following MI
(28.50 ± 1.81 in the MI vs. 38.33 ± 1.95 in the sham for SOD1, p = 0.004; 17.21 ± 1.39 in MI
vs. 26.08 ± 1.24 in sham for catalase, p < 0.001) whereas SOD2 and SOD3 mRNA remained
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unchanged. The KYNA treatment induced a significant increase in SOD2 mRNA expression
(59.68 ± 2.96 in the MI + KYNA vs. 49.33 ± 4.61 in the MI, p = 0.049) and an increase,
though not significant, in SOD3 mRNA levels (2.64 ± 0.18 in MI + KYNA vs. 2.24 ± 0.15 in
MI, p = 0.08) (Figure 5A). The SOD1 and SOD2 protein levels were comparable among all
groups. The SOD3 protein levels were significantly higher in the MI (1.02 ± 0.16) vs. the
sham group (0.44 ± 0.02; p < 0.001). Catalase protein levels were also significantly higher
in the MI (0.42 ± 0.03) vs. the sham group (0.25 ± 0.01; p = 0.007). Finally, the KYNA
treatment exhibited a trend towards increasing catalase protein levels compared to the MI
group (0.53 ± 0.05 in MI + KYNA vs. 0.42 ± 0.03 in MI, p = 0.055) (Figure 5B).
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Figure 5. Antioxidant markers mRNA and protein expression, respectively, by means of RT-qPCR
and Western blot. (A) SOD1, 2, 3, and catalase mRNA expression in non-ischemic (sham), ischemic
+ vehicle (MI), and ischemic + kynurenic acid (MI + KYNA) left ventricle samples following 2 h of
reperfusion (n = 6–11). (B) Representative immunoblots and histogram quantification of protein
expression for SOD1, 2, 3 and catalase in the sham, MI, and MI + KYNA groups following 2 h of
reperfusion (n = 6–9). GAPDH was used as the loading control. Values are expressed as mean ± SEM.
* p < 0.05, ** p < 0.01, *** p < 0.001.

2.6. KYNA Increased Mitophagy Markers following Myocardial Ischemia/Reperfusion

We assessed whether KYNA was capable of stimulating mitophagy as a cardiopro-
tective mechanism. P62 protein levels were significantly decreased following myocar-
dial ischemia/reperfusion compared to the sham intervention (0.67 ± 0.08 in the MI vs.
0.43 ± 0.03 in the sham, p = 0.004), decreasing even further following KYNA treatment
(0.22 ± 0.04 in MI + KYNA vs. MI, p = 0.008). In addition, PARK2 protein levels were
significantly increased in the MI group compared to the sham group (0.34 ± 0.03 in sham
vs. 0.71 ± 0.11 in MI, p = 0.036). The KYNA treatment tended to increase PARK2 protein
levels compared to the MI (1.23 ± 0.17 in MI + KYNA, p = 0.08) (Figure 6).
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3. Discussion

Myocardial infarction is a major cause of death and disability in the world [27]. Reper-
fusion is indispensable to salvage the ischemic myocardium. However, reperfusion injuries
still account for up to 50% of the final infarct size [28]. To date, no cardioprotective strat-
egy has been successfully translated to the clinical arena, which is disappointing. In the
current study, we sought to explore several potential cardioprotective pathways using
both in vivo and in vitro approaches. We demonstrated KYNA to be capable of reducing
ischemia/reperfusion injuries in both an in vitro rat cardiomyoblast H9C2 H/R model
and an in vivo myocardial infarction rat model. Moreover, our results suggest that KYNA-
induced cardioprotection is likely to be associated with a decrease in FOXO3α degradation
which could participate in increased mitophagy and antioxidant defense.

The role of the kynurenine pathway, the major route of tryptophan degradation, in
the heart is not clear. The first metabolite generated is kynurenine, which in turn can be
metabolized into KYNA. Previous studies have demonstrated the neuroprotective abili-
ties of KYNA. In a neonatal rat cerebral ischemia/reperfusion model (left carotid artery
ligation), KYNA was administrated at 300 mg/kg 2 h following cerebral hypoxic-ischemia.
This induced a reduction in brain lesions [29]. In another model, a middle cerebral artery
occlusion rat model, pretreatment with KYNA, similarly administered at 300 mg/kg, re-
duced cerebral infarct size [30]. There are few data on KYNA’s ability to protect the heart
in the myocardial ischemia/reperfusion setting. We previously reported that increased
plasmatic concentrations of kynurenine, KYNA’s precursor, were linked to cardioprotection
induced by remote ischemic conditioning [20,22]. KYNA’s protective role was described in
a mice model of myocardial ischemia/reperfusion injury [25]. Olenchock et al. generated a
mice model with an alpha-ketoglutarate (αKG)-dependent dioxygenase’s (Egln1) somatic
gene ablation. EGLN1 senses oxygen and regulates the hypoxia-inducible factor (HIF) tran-
scription, thus coordinating adaptive cellular responses to hypoxia/ischemia [31]. These
mice were protected against myocardial ischemia/reperfusion injuries via KYNA levels
increase. These authors reported that EGLN1′s down-regulation induced an accumulation
of circulating α-ketoglutarate, which is the co-factor for KYNA production. KYNA, in turn,
was increased, while mediating cardioprotection against myocardial ischemia/reperfusion
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injuries. They confirmed their findings by re-injecting KYNA into mice 2 h before and 2 h
following myocardial ischemia/reperfusion and shown capable of stimulating cardiopro-
tection [25]. However, the mechanisms and signaling pathways by which KYNA mediates
cardioprotection were not explored.

Ischemia/reperfusion injuries are associated with a dysfunction in oxidative phospho-
rylation [32]. Indeed, complex I and III activities are modulated following ischemia [33,34].
These complexes are key sites generating ROS responsible for at least in part mitochondrial
and myocardial damage [35,36]. A reversible blockage of complex I (e.g., by amobarbital)
during ischemia was shown to largely avoid reperfusion injury [37,38]. Cardioprotection
is partly related to lesser ROS damage, better cytochrome c retention, and preservation
of outer membrane integrity [37]. In a previous work, KYNA’s effect on mitochondrial
respiration was assessed using oxygraphy [39–41]. KYNA could act as an oxidative phos-
phorylation uncoupler, thus decreasing mitochondrial respiration in mitochondria isolated
from rat hearts under basal conditions, i.e., without ischemia/reperfusion. We, thus, tested
the hypothesis that KYNA could decrease myocardial ischemia/reperfusion injuries by
modulating mitochondrial metabolic function. In our model, KYNA did not influence
mitochondrial respiratory chain complex I, II, III, and IV protein expression or activities
following ischemia/reperfusion. Moreover, PGC1α is an essential regulator of mitochon-
drial biogenesis [42], with its activity regulated by AMPKα, a metabolic sensor [43,44]. In
our work, the phosphorylation levels of AMPKα, as well as protein expression of PGC1α,
were not modified by KYNA treatment, suggesting that, in our model, KYNA-induced
cardioprotection is not likely to act through either mitochondrial respiratory chain complex
activity modulation or regulation of metabolic signaling.

FOXO3α is a transcription factor known for its role in promoting the transcription
of genes implicated in mitophagy and antioxidant defense [45,46]. FOXO3α’s activity
is regulated by multiple post-translational modifications. FOXO3α phosphorylation via
ERK1/2 and Akt [45] is a signal ensuring its degradation [47,48]. In our work, the decrease
in FOXO3α phosphorylation was associated with a decrease in ERK1/2 and Akt phos-
phorylation levels. In a study by Wang et al., FOXO3α was reportedly associated with
increased antioxidant gene transcription, thus decreasing myocardial ischemia/reperfusion
injuries [49]. We found a significant increase in SOD2 mRNA levels and high trend to-
wards increased catalase protein expression levels in the KYNA-treated group compared
to the vehicle-treated one, indicating possible stimulation of antioxidant defense system.
Furthermore, we found a trend for an increase in PARK2 levels, along with a decrease
in p62 protein levels suggesting an increase in mitophagy. Several studies have shown
FOXO3α’s relevance in regulating parkin-mediated mitophagy [50,51]. Indeed, Mei et al.
demonstrated a direct interaction between FOXO3α and (PTEN)-induced putative kinase 1
(PINK1) promoter. PINK1 constitutes an essential factor in the parkin-mediated mitochon-
drial autophagic pathway. Moreover, mitophagy’s relevance has been highlighted in the
cardioprotection setting [52]. For instance, parkin-deficient mice presented a larger infarct
size compared to that of the wild type, which was associated with reduced mitophagy and
an accumulation of defective mitochondria [53]. Moreover, parkin loss in mice abolished
the cardioprotective effect of ischemic preconditioning [54]. Therefore, maintaining the
integrity of mitophagy in cardiomyocytes proves to be crucial.

KYNA has been identified as a ligand of the recently de-orphanized G protein-coupled
receptor 35 (GPR35) [23]. The emerging relevance of GPR35 in cardiovascular diseases
was recently documented [55,56]. Like other G protein-coupled receptors, GPR35 has been
shown to modulate signaling pathways that may be implicated in myocardial damage
GPR35 was found to be positively regulated in the acute myocardial infarction phase and
cultured cardiomyocyte hypoxia cell models (HL-1 and neonatal mice cardiomyocytes) [55].
In GPR35−/− mice, cardioprotection by KYNA administered either 2 or 24 h prior to injury
in vivo or 10 or 30 min prior to ischemia/reperfusion in ex vivo hearts was completely
abrogated [57]. Moreover, in neonatal cardiomyocytes, KYNA decreased resting oxygen
consumption in a GPR35-dependent manner, and after simulated I/R, KYNA decreased
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mitochondrial reactive oxygen species production and preserved mitochondrial membrane
potential which is concordant with the results we obtained in vivo and in vitro [57]. Similar
to other G protein-coupled receptors, GPR35 has been suggested to modulate ERK1/2
and Akt phosphorylation levels [58,59]. Indeed, using phospho-ERK1/2 immunoblotting,
ligand activation of GPR35 was demonstrated. In these studies, 2-oleoyl lysophosphatidic
acid and tyrphostin-51 were recognized as GPR35 agonists in this type of experiment.
Using pertussis toxin, which abolishes Gαi/0 mediated responses, confirmed ERK1/2
phosphorylation stimulation by GPR35 [60]. Therefore, the exact link between KYNA,
GPR35, ERK1/2, and Akt is yet to be established.

Taken together, our present study further indicates KYNA as a potential novel and
promising cardioprotective therapeutic agent to reduce myocardial ischemia/reperfusion
injuries. We improved our understanding of underlying KYNA-mediated cardioprotection
mechanisms by exploring several possible pathways. Future directions would be to trans-
late this novel cardioprotective therapy that targets the kynurenine pathway into a clinical
setting, where there is a lack of effective cardioprotective strategies and unmet needs of
acute MI patients. The role of KYNA should be more comprehensively investigated to
promote its clinical applications.

Limitations

Our in vitro work demonstrated the cytoprotective effects of KYNA in H9C2 cells, a
widely employed immortalized cardiomyoblast cell line. These cells present a phenotype
differing from that of adult cardiomyocytes. We confirmed KYNA-induced cardioprotec-
tion in an in vivo rat myocardial ischemia/reperfusion model and proposed underlying
pathways. In order to explore them, we chose to work with a pretreatment model using
high KYNA dosing. GPR35 is a well-documented receptor for KYNA. Its implication in the
studied signaling pathways remains unclear. A pharmacological antagonism or genetic
inhibition of GPR35 could confirm its implication in the activation of potential downstream
effectors such as ERK1/2 and Akt. Thus, further studies are needed to further translate our
findings into the clinical arena.

4. Materials and Methods
4.1. Study Design and Methodology

An experimental study was conducted to explore KYNA-induced cardioprotective
pathways using both in vitro hypoxia/reoxygenation and in vivo ischemia/reperfusion
models. In vitro, H9C2 cells were subjected to hypoxia/reoxygenation and cell viability
as well as the mitochondrial membrane potential were evaluated. In vivo, rats were
subjected to a preclinical myocardial ischemia/reperfusion. Left ventricular tissue samples
collected at the end of the reperfusion period were used to assess infarct size, mitochondrial
respiratory chain complex activity, mRNA expression and protein levels.

4.2. In Vitro H9C2 Hypoxia/Reoxygenation

H9C2-SV40 cells, an immortalized rat cardiomyoblast cell line, were employed for
in vitro hypoxia/reoxygenation [61] in order to mimic myocardial ischemia/reperfusion.
Cells were cultured in a standard cell culture medium, Dulbecco’s modified eagle medium
(DMEM) with high glucose (4.5 g/L), antibiotics (penicillin and streptomycin 10 mL/L),
and 10% fetal bovine serum (FBS) (Dutscher, Brumath, France). Hypoxia was induced by
washing away the DMEM complete medium three times and replacing it with a glucose-
and serum-free isotonic solution (Tyrode’s solution [mM]) (NaCl 130, KCl 5, Hepes 10,
MgCl2 1, CaCl2 1.8, pH 7.4). The cells were placed into a hypoxia chamber flushed with
a stream of pure nitrogen for 4 h and 50 min at 37 ◦C. The oxygen rate was kept at 0.5%.
Reperfusion was mimicked by replacing Tyrode’s solution with the complete medium in a
standard incubator under normoxic conditions for 2 h. The groups were defined as follows
(Figure 7A):
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– Control group: Cells did not undergo any intervention and were kept in normoxic
conditions and a culture medium for 7 h.

– Hypoxia/reoxygenation (H/R) group: Cells underwent H/R with the DMSO (vehicle)
treatment 10 min before hypoxia and throughout the procedure.

– H/R + KYNA group: Cells underwent H/R with the KYNA treatment (1 µM) either
10 min before hypoxia (pre), pre + during hypoxia (pre + per), or pre + per + during
reoxygenation (pre + per + post).
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Figure 7. In vitro and in vivo experimental design of protocols and groups. (A) In vitro: H9C2
control cells underwent no intervention; cells from the hypoxia/re-oygenation (H/R) groups were
submitted to 4 h 50 min of hypoxia followed by 2 h of reoxygenation and were either treated with a
vehicle (DMSO) or with kynurenic acid (KYNA 1 µM) 10 min pre hypoxia, pre + per hypoxia, or pre
+ per + post hypoxia. Cell death quantification as well as mitochondrial membrane potential were
performed two hours after reoxygenation. (B) In vivo: The sham animals underwent no injection
and no left anterior descending coronary artery (LAD) ligation; the MI group underwent 40 min of
ischemia followed by 2 h of reperfusion. Then, 10 min before coronary artery occlusion, a vehicle
(NaOH 1 M) or KYNA (300 mg/kg) was administrated intraperitoneally. Infarct size assessment
using 2,3,5-triphenyltetrazolium chloride (TTC) staining was realized after 2 h of reperfusion; tissue
sampling was performed after either 15 min or 2 h of reperfusion.

4.3. Cell Death and Mitochondrial Membrane Potential (∆Ψm) Assessment

At the end of reoxygenation (i.e., 2 h), the cells were detached from the plates using
Accutase (PAA Laboratories, Toronto, ON, Canada). Cell death was quantified by flow
cytometry (LSR-Fortessa X-20 BD Biosciences, Franklin Lakes, NJ, USA) using 1 µg/mL
propidium iodide (PI) (ex: 488 nm; em: 590 nm) (Sigma Aldrich, St. Louis, MO, USA). Cell
death in the H/R group was considered equal to one, and other data were expressed as
relative mortality compared to H/R. ∆Ψm was appreciated using 20 nM DilC1 (1,1′,3,3,3′,3′-
hexamethylindodicarbocyanine iodide) (ex: 633 nm; em: 658 nm) (Enzo Life Sciences,
Villeurbanne, France), a cationic dye that accumulates in potentiated mitochondria. Results
were expressed as the percentage of cells that conserved mitochondria with high ∆Ψm.
Triplicate samples were prepared for each condition, and a total of 10,000 events were
acquired by fluorescence-activated cell sorting (FACS) for each sample [61].

4.4. Animal Studies

Male adult Wistar rats, aged 8 to 10 weeks and weighing 250 to 300 g, were used in
this study. They were kept in a temperature-controlled room (22 ± 2 ◦C) with an adequate
12-h light/12 h dark cycle. Food and water were available ad libitum. All experiments
were conducted in agreement with the guidelines from EU Directive 2010/63/EU, French
Decree no. 2013-118 of the European Parliament on the protection of animals used for
scientific purposes. The protocol was approved by the Ethics Committee in Animal Ex-
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perimentation of Pays de la Loire and by the French Ministry of Higher Education and
Research (APAFIS#8668-20 170 12417473589 v3).

Hearts were excised under deep anesthesia (60 mg/kg of sodium pentobarbital
(Exagon®, Axience, France). Afterwards, in one set of experiments, hearts were excised for
infarct size assessment and, in another set of experiments, freeze-clamped and stored at
−80 ◦C for mRNA expression analysis, protein analysis, and assessment of the mitochon-
drial respiratory chain complex activity.

4.5. Myocardial Ischemia/Reperfusion Rat Model

The rats were anesthetized by means of an intraperitoneal injection of 60 mg/kg of
sodium pentobarbital (Exagon®, Axience, France), orotracheally intubated, and mechani-
cally ventilated with room air by means of a small animal ventilator (SAR-830 A/P, CWE,
Ardmore, PA, USA), as previously described [21]. Body core temperature was maintained
at 37 ± 0.5 ◦C (HB101/2 RS; Bioseb, Vitrolles, France). The pericardium was removed to ex-
pose the heart after a median sternotomy. Coronary occlusion was induced by carrying out
a left anterior descending coronary artery (LAD) ligature. Using a 7.0 monofilament suture
(Premio 7.0, Peters Surgical, Boulogne-Billancourt, France) passed through a short length
of tubing (PE50), a reversible snare was performed and clamped onto the epicardial surface
directly above the coronary artery. The occurrence of epicardial cyanosis and dyskinesia
of the ischemic region confirmed ischemia. Following 40 min of occlusion, reperfusion
was achieved by loosening the snare and confirmed by observing an epicardial hyperemic
response. The anesthesia depth was checked by toe pinch before and during surgery. An
extra dose of 30 mg/kg pentobarbital was injected in the event of positive nociceptive
response. Rats were randomly assigned to one of the following groups (Figure 7B):

– Sham group: animals undergoing all the surgical procedure except ligature of the
coronary artery.

– MI group: animals undergoing myocardial ischemia/reperfusion and injected 10 min
before ischemia with NaOH 1 M (vehicle).

– MI + KYNA group: animals undergoing myocardial ischemia/reperfusion and in-
jected 10 min before ischemia with 300 mg/kg KYNA (Sigma Aldrich, St. Louis, MO,
USA). The dose was chosen based on previously published data [30,62].

4.6. Area at Risk and Infarct Size Determination

Following 120 min of reperfusion, the hearts of the vehicle and KYNA-treated groups
were excised, with the LAD re-occluded using the monofilament suture kept in place. The
area at risk (AAR) was outlined after a retrograde perfusion with Evans blue (1%). From
the apex to the base, the heart was cut into five equal slices, then incubated with a 1%
solution of 2.3.5-triphenyltetrazolium chloride (TTC) (Sigma-Aldrich, St. Louis, MO, USA)
in phosphate buffer at pH 7.4 and 37 ◦C. TTC staining enabled the distinction between
infarcted myocardium in white and viable myocardium colored brick red. The slices were
photographed. Infarct size was quantified using planimetry with Image J software (NIH,
Bethesda, MD, USA). The area of necrosis (AN) was expressed as a percentage of the AAR
(AN%AAR), and AAR as a percentage of total left ventricular (LV) area (AAR%LV) [63].

4.7. Real-Time Quantitative Reverse Transcription Polymerase Chain Reaction (RT-qPCR)

We quantified the expression of genes encoding catalase, and superoxide dismutase 1,
2, 3 (SOD1, 2, 3) following 120 min of reperfusion [64]. Genes encoding hypoxanthine phos-
phoribosyltransferase (hprt) and glucuronidase beta (gusb) were employed as a reference.
Primer sequences have been listed in Table 1.

Total RNA was extracted using the RNeasy MiniKit (Qiagen, Hilden, Germany) ac-
cording to the manufacturer’s instructions from approximately 30 µg of frozen LV tissue
samples from the ischemic zone of the MI and MI + KYNA animals or non-ischemic zone
in the sham animals. The cDNA was synthesized using the Quantitect Reverse Transcrip-
tion Kit (Qiagen, Hilden, Germany) following the manufacturer’s instructions. In a total
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volume of 20 µL reaction system (10 ng of cDNA), SYBR™ Select Master Mix (Applied
Biosystems, Foster City, CA, USA) was applied to perform qPCR using a Lightcycler® 480 II
Thermocycler (Roche, Switzerland). The thermal cycling conditions were as follows: 95 ◦C
for 3 min, followed by 40 cycles at 95 ◦C for 15 s and 60 ◦C for 1 min. The results of the
target genes’ mRNA were normalized on the mean Ct value of the reference genes mRNA
and expressed as 2∆Ct, where ∆Ct is defined as the difference between the Ct of reference
genes and Ct of target genes.

Table 1. Forward and reverse primer sequences for target and reference genes.

Gene NCBI Genbank Forward Sequence Reverse Sequence

cat NM_012520.2 5′-ttgccaaccacctgaaagat-3′ 5′-agggtggacgtcagtgaaat-3′

gusb NM_017015.2 5′-ctctggtggccttacctgat-3′ 5′-cagactcaggtgttgtcatcg-3′

hprt NM_012583.2 5′-gaccggttctgtcatgtcg-3′ 5′-acctggttcatcatcactaatcac-3′

sod1 NM_017050.1 5′-ggtccagcggatgaagag-3′ 5′-ggacacattggccacacc-3′

sod2 NM_017051.2 5′-attgccgcctgctctaatc-3′ 5′-gatagtaagcgtgctcccaca-3′

sod3 NM_012880.1 5′-cttgggagagcttgtcaggt-3′ 5′-caccagtagcaggttgcaga-3′

4.8. Western Blot (WB) Analysis

The freeze-clamped ischemic (MI and MI + KYNA animals) and non-ischemic (sham)
LV rat hearts were employed following 15 min or 120 min of reperfusion for WB analysis
as previously described [63]. Briefly, 40 µg of total proteins were separated by SDS-PAGE
and transferred into a nitrocellulose or PVDF membrane. The membranes were incubated
with antibodies diluted in TBS buffer containing 5% non-fat dried milk, against p-ERK1/2,
ERK1/2, p-Akt, Akt, phosphorylated AMP-activated protein kinase (p-AMPKα), AMPKα,
p-FOXO3α, FOXO3α (1/1000; Cell Signaling Technology, Danvers, MA, USA), and cata-
lase (1/1000; Sigma-Aldrich, St. Louis, MO, USA). Total OXPHOS Rodent WB Antibody
Cocktail (1/250; Abcam, Cambridge, United Kingdom), peroxisome proliferator-activated
receptor gamma co-activator 1alpha (PGC1α), SOD2 (1/1000, Abcam, Cambridge, United
Kingdom) SOD1 (1/500, Enzo Life Sciences, New York, NY, USA), SOD3, nucleoporin
p62 (p62) (1/1000, Enzo Life Sciences, New York, NY, USA), and parkin (PARK2) (1/1000,
Abnova, Taipei, Taïwan). GAPDH (1/10,000; Sigma-Aldrich, St. Louis, MO, USA) and
β-actin (1/1000; Sigma-Aldrich, St. Louis, MO, USA) were employed as loading controls.
The membranes were incubated with appropriate (rabbit or mouse) secondary antibodies
(1/5000, Thermo Fisher Scientific, Waltham, MA, USA) conjugated to horseradish perox-
idase. The blots were developed using the enhanced chemi-luminescence method. The
band densities were analyzed using Image Lab (BioRad, Hercules, CA, USA).

4.9. Mitochondrial Respiratory Chain Complex Enzymatic Activity Assessment

The activities of lactate dehydrogenase (LDH), citrate synthase (CS), and the electron
transport chain complexes (complexes I–IV) were spectrophotometrically measured at 37 ◦C
with a UV spectrophotometer (SAFAS, UVmc2, Monaco) in the sham, MI, and MI + KYNA
LV muscle homogenates following 2 h of reperfusion [65,66]. Homogenates were obtained
after repeating the homogenization and centrifugation step twice (20 min at 650× g) while
discarding the pellet.

The CS activity was measured in a reaction medium consisting of 100 mM Tris·HCl
pH 8.1, 150 µM 5.5′-dithio-bis (2-nitrobenzoic acid) (DTNB), 50 µM oxaloacetate, 30 µM
acetyl-CoA, and 0,1% Triton X-100. After 2 min of incubation, the reaction was initiated by
adding 10 µL/mL homogenate, with the change in optical density at 412 nm recorded over
1 min.
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NADH ubiquinone reductase (complex I) activity was assayed in KH2PO4 buffer pH
7.5, 3.75 mg/mL bovine serum albumin (BSA), 100 µM decylubiquinone, and 10 µL/mL
homogenate, with (to determine background rates, subsequently subtracted) or without
10 µM rotenone. After 2 min of incubation at 37 ◦C, the reaction was initiated by adding
0.1 mM NADH. The activity was measured at 340 nm by monitoring NADH oxidation over
2 min.

The succinate dehydrogenase (complex II) activity was measured after the reduction
of 2,6-dichlorophenolindophenol (DCPIP) at 600 nm in a buffer containing 50 mM KH2PO4,
2.5 mg/mL BSA, 6.5 µM rotenone, 5 µmg/mL antimycin, 25 mM succinate, 1 mM KCN,
and 100 µM DCPIP, pH 7.5. After 2 min of incubation at 37 ◦C with 15 µL of homogenate,
the reaction was initiated by adding 100 µM decylubiquinone, with the optical density
recorded for 2 min.

The ubiquinone-cytochrome c reductase (complex III) activity was determined by
monitoring the reduction of cytochrome c at 550 nm. Overall, 10 µL/mL homogenate was
incubated for 60 s in a reaction medium consisting of 100 mM KH2PO4 pH 7.5, 250 µM
ethylenediaminetetraacetic acid (EDTA), 1 mg/mL BSA, 1 mM KCN, and 100 µM oxidized
cytochrome c, with or without 5 µg/mL antimycin (non-enzymatic reduction of cytochrome
c). The reaction was initiated by adding 100 µM decylubiquinol, and the optical density
was measured over 40 s. The specific complex III activity was calculated by subtracting the
activity of the non-enzymatic reaction from that of the total activity.

The cytochrome-c oxidase (complex IV) activity was measured by monitoring the
oxidation of reduced cytochrome c at 550 nm. An 80 µM solution of reduced cytochrome
c (92–97% reduced using dithionite) in 55 mM KH2PO4, pH 7.0 was pre-incubated over
2 min. The reaction was initiated by adding 10 µL/mL of homogenate, with the change in
optical density measured over 40 s.

A control with beef heart mitochondria was executed in parallel with each set of
samples to ensure proper running of the experiments. The cellular protein content was
determined using the BCA protein assay kit (Thermo Scientific, Waltham, MA, USA) with
BSA as standard. Specific complex activities were expressed as a ratio of and normalized to
CS activity.

4.10. Statistical Analysis

Statistical analysis was performed using SPSS Statistics v.17.0 software (SPSS Inc.,
Chicago, IL, USA). After verifying data’s distribution’s normality using Shapiro–Wilk
test, the appropriate statistical test was performed. Differences between the two groups
(for AAR%LV and AN%AAR) were evaluated using Student’s t-test. For multiple group
comparison, either a one-way ANOVA followed by an LSD post hoc test was performed or a
Kruskal–Wallis test followed by a Pairwise Comparison’s post hoc test. Data are expressed as
mean ± standard error of the mean (SEM); a p < 0.05 was considered statistically significant.

5. Conclusions

KYNA reduced ischemia/reperfusion injuries in both in vitro and in vivo models.
KYNA-mediated cardioprotection was associated with decreased ERK1/2 and Akt phos-
phorylation levels, which may have contributed to a decrease in FOXO3α phosphorylation,
possibly linked with increased mitophagy and antioxidant defense. Additional studies
are needed to establish the exact link between these different downstream effectors. For
instance, inhibition of underlying signaling pathways would validate their implication in
the conferred cardioprotection. Moreover, GPR35′s implication would require confirmation
by testing KYNA’s cardioprotective effects in GPR35 knockout mouse model or using antag-
onists of GPR35. Further in-depth investigations of KYNA’s cardioprotective mechanisms
using other rodents and mammalian models are required. Thus, supplementation of KYNA
might be helpful to improve acute myocardial infarction management.
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