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Three-dimensional printing (3DP) is rapidly innovating the manufacturing process
and provides opportunities that have never been seen before. Pharmaceutical dosage forms
are no exception, and 3DP has been extensively investigated by researchers to realise this
potential [1–5]. This Special Issue, entitled “3D Printing of Drug Formulations”, aims to
showcase the latest developments and provide an overview of the diversity and complexity
of 3DP of pharmaceutical dosage forms. The published articles in this Special Issue fill
the gaps in our knowledge in achieving better medicines for patients. This Special Issue
covers a wide range of dosage forms, including PLA filaments for bone generation, 3D-
printed fast-dissolving oral films containing micro-ribbons and 3D-printed mucoadhesive
gastroretentive hydrophilic matrices. Excitingly, this Special Issue presents two interesting
review articles in the field of 3DP [6] and 4D printing [7].

To unfold this Special Issue, Khizer et al. (2023) employed fused deposition modelling
(FDM) 3DP to manufacture floating tablets containing gabapentin for the treatment of
overactive bladder. Their in vivo studies clearly demonstrated the extended-release nature
of the 3D-printed formulations following oral administration to white albino rabbits [8].

The article by Akram Ghumman et al. (2023) is not directly related to 3DP; however, it
is included in this Special Issue because the investigation achieved a disintegration time
of 9.5 s for orodispersible tablets, which may be considered a target for fast-dispersing
tablets/films prepared by FDM 3DP, as well as because of the methodology used for
optimisation of the disintegration time [9]. In this study, FDM 3D-printed orodispersible
tablets contained side channels to facilitate the disintegration of these tablets, a feature that
cannot be incorporated via conventional tableting techniques. However, the disintegration
time increased due to the thickness of the printing nozzle and the narrow diameter of the
channels. This suggests the need to improve the printing resolution or further optimisation
of the formulation. The disintegration time of paracetamol orodispersible tablets reduced
to 2 min and 22 s and met the European Pharmacopeia (Ph. Eur) criteria when mannitol
was included into the formulation at 10% w/w. Interestingly, Raman spectroscopy showed
the presence of crystalline or amorphous paracetamol within the printed tablets [10].

The work by Pillai et al. (2023) demonstrated the use of FDM 3DP to generate per-
sonalised scaffolds containing copper nanoparticles to promote bone regeneration. The
investigators clearly demonstrated the adhesion of human mesenchymal stem cells to
the scaffolds with significant cell growth [11]. In the same field, Mohammad et al. (2023)
employed FDM 3DP to produce scaffolds for improving bone generation through bone
cell oxygenation and resistance to bacterial infections [12]. The scaffolds contained calcium
peroxide and released oxygen with the help of native catalase in the recipient tissues.

In another study, FDM 3DP was employed to generate customised multi-compartmental
capsules that could be used for high-throughput synthesis with the ability to recover key
catalysts [13]. This will be important for the pharmaceutical industry to reduce the cost of
the drug development process for identifying hit or lead constructs. Interestingly, mesh
films were produced via FDM 3DP to maintain catalyst particles within a compartment.
Certainly, this approach could have an application in the development of pharmaceutical
dosage forms. Algellay et al. (2023) examined the use of micro-ribbons in FDM 3D-printed
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fast-dissolving oral films to improve the mechanical strength and disintegration time of
printed films while using low-melting-temperature polymers. They found that only hy-
drophilic micro-ribbons of chitosan were able to improve the disintegration time of the
films at low concentrations, perhaps by creating a network of hydrophilic channels within
the films [14]. FDM 3D-printed oral films were also investigated by Lee et al. (2022) [15].
These investigators compared 3D-printed films of hydroxypropyl cellulose containing
aripiprazole with solvent-cast counterpart films. They found that 3D-printed films disinte-
grated within 45 ± 4 s, while solvent-cast films dispersed within 63 ± 10 s. This is another
great achievement for FDM 3D-printed films. The observed short disintegration time for
3D-printed films could be due to the higher surface roughness compared to solvent-cast
films, allowing more exposure of the 3D-printed films to the disintegration media. Interest-
ingly, PVA films disintegrated within 71 ± 12 s, which was shorter than the disintegration
time for pure PVA films reported by Algellay et al. (2023). The difference could be due
to the use of different disintegration techniques: Algellay et al. (2023) employed a tablet
disintegration equipment, whereas Lee et al. (2022) used a Petri dish method. This high-
lights that a disintegration test method should be developed or accepted for evaluation of
fast-dissolving oral films across the pharmaceutical community for consistent comparisons.

The use of direct powder FDM printing provides the advantage of not requiring
solvents to make filaments. In this regard, Malebari et al. (2022) employed direct powder
extrusion 3D printing to produce personalised paediatric spherical minitablets of riton-
avir or lopinavir with the diameter of 6 and 7 mm, respectively. Although the produced
minitablets were not perfect spheres (as expected for FDM 3D printers for this size), the
weight coefficient of variation was less than 8% for both formulations [16].
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