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Abstract: This work proposes the design of β-keto esters as antibacterial compounds. The design
was based on the structure of the autoinducer of bacterial quorum sensing, N-(3-oxo-hexanoyl)-
l-homoserine lactone (3-oxo-C6-HSL). Eight β-keto ester analogues were synthesised with good
yields and were spectroscopically characterised, showing that the compounds were only present
in their β-keto ester tautomer form. We carried out a computational analysis of the reactivity and
ADME (absorption, distribution, metabolism, and excretion) properties of the compounds as well as
molecular docking and molecular dynamics calculations with the LasR and LuxS quorum-sensing
(QS) proteins, which are involved in bacterial resistance to antibiotics. The results show that all the
compounds exhibit reliable ADME properties and that only compound 7 can present electrophile
toxicity. The theoretical reactivity study shows that compounds 6 and 8 present a differential local
reactivity regarding the rest of the series. Compound 8 presents the most promising potential
in terms of its ability to interact with the LasR and LuxS QS proteins efficiently according to its
molecular docking and molecular dynamics calculations. An initial in vitro antimicrobial screening
was performed against the human pathogenic bacteria Pseudomonas aeruginosa and Staphylococcus
aureus as well as the phytopathogenic bacteria Pseudomonas syringae and Agrobacterium tumefaciens.
Compounds 6 and 8 exhibit the most promising results in the in vitro antimicrobial screening against
the panel of bacteria studied.

Keywords: β-keto esters; DFT; docking; LasR and LuxS; quorum sensing

1. Introduction

In the last few decades, the emergence of antibiotic-resistant bacteria has become a
significant concern for developing economies and global health. The World Health Orga-
nization (WHO) has published reports showing an increasing worry about this problem,
which is predicted to worsen in the coming years [1]. The primary cause behind this devel-
opment is the excessive use of antibiotics in both human and animal treatment and their
widespread application in the commercial industry [2,3]. Although many countries have
implemented strict regulations on antibiotic consumption, these measures have yet to halt
antibiotic resistance’s continuous development effectively. As a result, cases of multidrug-
resistant strains of common bacteria, such as Escherichia coli, Streptococcus pneumoniae, and
nontyphoidal Salmonella, have been documented worldwide [1]. It is essential to address
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this issue through research, developing new and more robust therapeutic strategies and
implementing methods for bacterial control in industry and agriculture. This will ensure
access to food and health resources for future generations [1,3].

One promising avenue of research is interfering with bacterial cell communication,
known as quorum sensing (QS), which synchronises the behaviours of the individual cells
within a multicellular community [4,5]. This process relies on producing, releasing, and
detecting small diffusible signalling molecules called autoinducers. In Gram-negative
bacteria, QS is regulated by a two-component system, including synthesizing the autoin-
ducer with LuxI homologs and the autoinducer-dependent transcriptional activator, a LuxR
homolog [6]. Many pathogenic bacteria use QS to facilitate pathogenesis, producing the
virulence factors necessary for host infection or evading the immune system by coordinat-
ing swarming behaviour and forming biofilms [7,8]. Therefore, interfering with bacterial
communication has become an attractive target for developing new therapies in medicine
and the agricultural and aquacultural industries.

Figure 1 shows the chemical structure of the autoinducer (3-oxo-C6-HSL) discovered
in the 1980s in the Vibrio fischeri lux genes of the QS system, which is responsible for
bioluminescence [9]. Since many Gram-negative bacteria use N-acyl-homoserine lactones
(AHLs) as autoinducers, these natural ligands are important starting points and inspiration
for discovering new QS modulators. Numerous synthetic ligands have been designed,
synthesised, and evaluated in this field, mimicking natural AHLs’ biological activity. The
backbone of AHLs consists of three fundamental parts: a lactone ring, their amide function,
and an acyl chain. It has been demonstrated that incorporating aryl functionality with
electron-withdrawing groups in the acyl side chain converts many small molecules of
AHL mimics into potent quorum-sensing inhibitors [10,11]. The central amide-connecting
function of AHLs can be replaced with various nonnatural moieties, and these derivatives
still retain their activity as synthetic LuxR-based quorum-sensing modulators [12,13]. On
the other hand, the hydrolysis of the lactone present in AHLs by mammalian lactonases
limits their potential as antivirulence drugs [14]. Several groups have identified nonnatural
quorum-sensing modulators inspired by AHLs in which the native homoserine lactone
group has been replaced by an aromatic group or carbocyclic rings [15,16].
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Additionally, other QS systems important to several types of bacteria correspond to
LuxS/AI-2 (S-ribosylhomocysteine lyase/autoinducer-2) and LasI-LasR with 3-oxo-C6-
HSL as an autoinducer. The first system is implicated in biofilm formation in bacteria
such as Staphylococcus aureus [17–19]. In contrast, the second is implicated in several
characteristics related to bacteria’s pathogenicity, such as those of Pseudomonas aeruginosa
and S. aureus [18,20,21].

Various commercial β-keto esters, the simplest structures with potential anti-QS activ-
ity, have also been analysed [22]. It has been observed that these compounds, incorporating
an aryl substituent, interact with Lux-R-type proteins, thereby inhibiting quorum-sensing
(QS) communication. Evaluating more β-keto esters will provide crucial information about
the structure–activity relationships necessary for developing antivirulence agents. There-
fore, this study designed and synthesised eight β-keto ester analogues of AHL natural
autoinducers as potential quorum-sensing inhibitors (Figure 1). The compounds were
chemically characterized, and a computational analysis of the reactivity and ADME (ab-
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sorption, distribution, metabolism, and excretion) properties of the compounds as well as
molecular docking and molecular dynamics calculations with the LasR and LuxS quorum-
sensing (QS) proteins were carried out. An initial in vitro antimicrobial screening was
carried out against human pathogenic and phytopathogenic bacteria.

2. Results and Discussion
2.1. Synthesis and Spectroscopic Characterisation of β-Keto Esters

β-keto esters were synthesised from eight easily accessible commercial carboxylic
acids, yielding between 65% and 96%. The choice of carboxylic acid was based on their
substituents, with a primary focus on studying the impact of the ortho substitution of the
phenyl group and its interaction with the active site of the LasR and LuxS QS proteins. We
examined the interactions of the resonance-activating groups (3) or induction-activating
groups (2, 5, 6, 7, and 8) and the deactivating groups (4) concerning this model compound
(1). As shown in Scheme 1, target compounds 1–8 were synthesised. First of all, the commer-
cially available phenylacetic acid derivatives were activated with 4-dimethylaminopyridine
(DMAP) and N,N′-Dicyclohexylcarbodiimide (DCC) at 0 ◦C in dichloromethane solutions.
Subsequently, condensation with Meldrum’s acid at room temperature overnight afforded
the proper intermediates. Finally, the β-keto esters were efficiently obtained by refluxing
the intermediates in tert-butanol.
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To analyse these structures, we conducted NMR experiments using CDCl3 as the solvent.
In all the compounds, we observed three singlet signals at 1.46–1.50 ppm, 3.37–3.55 ppm,
and 3.82–4.25 ppm, which were assigned to the protons of the methyl group (–CH3) and the
methylene groups (–CH2) of carbons 2 and 4, respectively. These signals confirmed that all
the synthesised compounds existed in their keto form rather than their enolic form. However,
the signals of the phenyl group varied depending on the type of substituent they had (see
supporting information). Overall, all these analyses supported both the proposed structures
and the purity of the β-keto esters, making these compounds suitable for bioassays.

2.2. Computational Analysis of the Reactivity and ADME Properties

It has been described that the quantitative relationship between the bioactivity/toxicity
and the chemical structure of any compound can be established based on three aspects: [23]
the compound’s hydrophobic, electronic, and steric characteristics. The weight of these
three factors vary depending on the specific biological mechanism in which the compound
is involved; particularly, the steric aspects can be relevant, for example, in specific inter-
actions within the active site of the enzyme, which can be aborded through docking and
molecular dynamics modelling [24]. Lipophilicity (hydrophobicity) has been the main
focus in this area. However, electronic characteristics related to electrophile–nucleophile
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reactivity have also emerged as effective parameters to preliminarily assess the biological
and toxicological activities of compounds of pharmacological interest [25–27].

2.2.1. ADME Properties of the β-Keto Esters

We obtained the lipophilicity and other structural parameters, which allowed us to
estimate the pharmacokinetic properties (ADME: absorption, distribution, metabolism, and
excretion) of the compounds using the SwissADME server [28]. The descriptors predicted
by the SwissADME server are presented in Table 1.

Table 1. Physicochemical and pharmacokinetic descriptors calculated with SwissADME.

ID

Physicochemical Properties Lipophilicity Water
Solubility Pharmacokinetics

MW 1 Rot. Bond 2 HB-A 3 HB-D 4 TPSA 5 Consensus
Log Po/w

6
Solubility

(mol/L) GI Abs 7 BBB 8 log Kp

(cm/s) 9

1 234.29 6 3 0 43.37 2.6 8.67 × 10−5 High Yes −5.92
2 248.32 6 3 0 43.37 2.97 3.56 × 10−5 High Yes −5.75
3 264.32 7 4 0 52.6 2.63 6.53 × 10−5 High Yes −6.12
4 252.28 6 4 0 43.37 2.96 4.58 × 10−5 High Yes −5.96
5 268.74 6 3 0 43.37 3.18 2.13 × 10−5 High Yes −5.68
6 313.19 6 3 0 43.37 3.24 1.29 × 10−5 High Yes −5.91
7 279.29 7 5 0 89.19 1.93 3.69 × 10−4 High No −6.31
8 268.74 6 3 0 43.37 3.19 2.13 × 10−5 High Yes −5.68

1 Molecular weight (g/mol); 2 number of rotatable bonds; 3 number of hydrogen-bond acceptors; 4 number of
hydrogen-bond donors; 5 topological polar surface area [29]; 6 average of iLOGP, XLOGP, WLOGP, MLOGP,
and SILICOS-IT predictions [28]; 7 gastrointestinal absorption; 8 blood–brain barrier permeation; and 9 skin
permeation: QSPR model [30].

All the compounds presented acceptable parameters, meeting the drug-likeness crite-
ria (Table 2) according to Lipinski’s rule of five [31,32]. It is worth noting that seven of the
eight compounds should be able to permeate the blood–brain barrier, except for compound
7 (which contains a para-nitro group in the aromatic ring).

Table 2. Drug-likeness properties of the compounds calculated with SwissADME.

ID Lipinski #
Violations 1

Ghose #
Violations 2

Veber #
Violations 3

Egan #
Violations 4

Muegge #
Violations 5

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 0
8 0 0 0 0 0

1 Lipinski (Pfizer) filter [32]: MW ≤ 500; MLOGP ≤ 4.15; N or O ≤ 10; and NH or OH ≤ 5. 2 Ghose filter [33]:
160 ≤MW ≤ 480; −0.4 ≤WLOGP ≤ 5.6; 40 ≤MR ≤ 130; and 20 ≤ atoms ≤ 70. 3 Veber (GSK) filter [34]: rotatable
bonds ≤ 10, and TPSA ≤ 140. 4 Egan (Pharmacia) filter [35]: WLOGP ≤ 5.88, and TPSA ≤ 131.6. 5 Muegge (Bayer)
filter [36]: 200 ≤MW ≤ 600; −2 ≤ XLOGP ≤ 5; TPSA ≤ 150; number of rings ≤ 7; number of carbon atoms > 4;
number of heteroatoms > 1; and number of rotatable bonds ≤ 15.

2.2.2. Reactivity Indices Based on Electronic Structure

The description of the electronic aspect of the compounds is critical, for example, in
aqueous toxicity mechanisms where nucleophile–electrophile interactions are the driving
force [27]. It has been described that strong electrophiles can exert toxicity by covalently
bonding with biological nucleophiles such as the cysteine or lysine amino-acid residues in
enzymes, among others [37]. We focused mainly on the tendency of these compounds to
react with potential biological nucleophiles by analysing their global electrophilicity and
the local electrophilic sites within the compound.
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The previous experimental spectroscopic evidence shows that the compounds were
in their keto form; therefore, we calculated the compounds considering only this tau-
tomer. β-keto esters 1–8 were optimised at the DFT M062x/6-311+G(d,p) level. We con-
ducted a conformational analysis on compound 1 to find the minimal energy conformation,
identifying three stable conformations. The minimal energy conformation is presented
in Figure 2.
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To study the susceptibility of β-keto esters 1–8 to suffering a reaction with biological
nucleophiles, we employed reactivity descriptors from conceptual DFT [27,38,39], which
are presented in Table 3.

Table 3. Vertical ionisation potential (IPv), vertical electron affinity (EAv), hardness (η), electronic
chemical potential (µ), and global electrophilicity (ω) calculated at DFT M062x/6-311+G(d,p) level
(all values in eV).

Compound IPv EAv η µ ω

1 8.98 −0.77 9.75 −4.11 0.86
2 8.76 −0.79 9.55 −3.98 0.83
3 8.27 −0.89 9.17 −3.69 0.74
4 9.12 −0.76 9.88 −4.18 0.88
5 9.05 −0.73 9.78 −4.16 0.88
6 8.99 −0.72 9.72 −4.14 0.88
7 9.58 0.63 8.95 −5.10 1.46
8 8.91 −0.62 9.53 −4.15 0.90

The results for the electronic chemical potential (µ) show that compound 3 presented
the highest escaping tendency of its electrons from equilibrium, while compound 7 presents
the lowest tendency. These results reflect the effect of the strongest electron-donating and
electron-accepting substituents on the aromatic ring. The molecular hardness, a measure of
the resistance of a compound to a charge transfer, shows that compound 4 presented the
highest resistance, while compound 7 presented the lowest resistance to a charge transfer.
This descriptor can be combined to produce a new descriptor, global electrophilicity (ω),
which accounts for energy stabilisation due to the maximum electron flow from a donor
environment. Compound 7 presented a remarkably high electrophilicity, indicating the
highest tendency towards undergoing a nucleophilic attack from a potential biological
nucleophile and, therefore, potential electrophilic toxicity [37]. Interestingly, there is also
the comparison between isomers 5 and 8 (ortho- and para-Cl), where the last one presented
the highest tendency towards undergoing a nucleophilic attack.

In order to analyse the local reactivity of the β-keto esters at more reactive positions,
C-carbonyl atoms 1 and 3, we calculated the condensed Fukui functions for an electrophilic
(fk−) and nucleophilic (fk+) attack and the condensed dual descriptor (fk2). We condensed
the local hypersoftness (s(2)k ) at these positions (Table 4). fk− and fk+ give us information
about susceptibility to undergoing an electrophilic and nucleophilic attack separately,
while the condensed dual descriptor (fk2) considers both reactivities simultaneously [38].
A positive value of fk2 indicates an atom that tends to react with nucleophiles, while a
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negative value indicates an atom that tends to react with electrophiles. These descriptors,
very useful for analysing the reactivity inside a molecule, do not allow a comparison among
different molecules. To overcome this drawback, another local reactivity descriptor has
been developed, local hypersoftness (s(2)k ), which allows us to compare the local reactivity
site among different molecules.

Table 4. Condensed Fukui functions for an electrophilic (fk−) and nucleophilic (fk+) attack, condensed

dual descriptor fk2, and condensed local hypersoftness s(2)k over the C-carbonyl atoms of compounds
1–8 (all values in eV).

Compound Atom fk
+ fk− fk

2 s(2)
k

1
C1 0.53 −0.18 0.71 5.56
C3 0.84 0.21 0.63 4.90

2
C1 0.61 −0.17 0.78 6.33
C3 0.25 0.16 0.09 0.77

3
C1 0.44 −0.16 0.60 5.25
C3 −0.15 0.11 −0.25 −2.23

4
C1 0.34 −0.18 0.51 3.90
C3 −0.11 0.25 −0.36 −2.71

5
C1 0.17 −0.16 0.33 2.54
C3 0.16 0.16 0.00 0.03

6
C1 0.07 −0.17 0.24 1.86
C3 0.35 0.09 0.26 2.02

7
C1 −0.14 −0.28 0.14 1.30
C3 0.26 0.83 −0.57 −5.27

8
C1 0.33 −0.16 0.49 4.01
C3 0.76 0.16 0.60 4.89

Experimentally, β-keto esters tend to react with nucleophiles at the esters’ C-carbonyl
atom, for example, in the transesterification reaction [40]. The presence of tert-butyl can be a
factor that alters this tendency through steric hindrance; however, it has been described that
transesterification occurs without a problem in β-keto esters with a tert-butyl attached to
their ester [40,41]. Our results for s(2)k show that C1 was more susceptible to a nucleophilic
attack in β-keto esters 1, 2, 3, 4, 5, and 7. On the other hand, for β-keto esters 6 and 8,
we found that their C3 was more electrophilic than their C1. These results suggest that
compounds 6 and 8 could react differently than the rest of the series.

2.3. In Silico Analysis of Quorum-Sensing Activity
2.3.1. Molecular Docking

To study how the compounds interact with the key targets involved in bacterial
quorum sensing, we docked them in LasR and LuxS, and then we rescored the docking
solutions using MM-GBSA. The results of these evaluations are presented in Table 5.
This table details the docking score and binding-free-energy values for each of the eight
compounds in their interaction with the proteins above. Lower binding-score values
suggest a higher binding affinity between a compound and the corresponding protein. On
the other hand, the MM-GBSA ∆GBind values provide a more accurate estimate of the
binding free energy when considering the mechanistic and solvation terms. These values
reflect the strength and stability of compound–protein interactions. Compounds with
shallow docking scores and MM-GBSA ∆GBind values were identified in the analysis of the
results, as is the case for compound 8. These values highlight a high affinity and stability
in the interaction of 8 with both proteins. β-Keto ester 8 shows a promising potential in
efficiently interacting with these key proteins in bacterial communication.
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Table 5. Docking and binding free energy of compounds 1–8.

Compound
LuxS LasR

Docking Score
(kcal/mol)

MMGBSA ∆G Bind
(kcal/mol)

Docking Score
(kcal/mol)

MMGBSA ∆G Bind
(kcal/mol)

1 −3.781 −22.82 −6.405 −69.71
2 −3.475 −29.17 −2.742 −75.95
3 −4.052 −28.77 −5.253 −71.19
4 −4.265 −28.34 −7.291 −73.54
5 −3.981 −28.55 −7.439 −80.07
6 −4.011 −28.35 −4.335 −77.37
7 −1.188 −31.69 −3.555 −73.08
8 −4.085 −31.38 −4.649 −77.67

2.3.2. Molecular Dynamics

Molecular dynamics simulations were carried out to explore the interactions between
compound 8 and both the LuxS and LasR proteins. Using simulations of a 500 ns duration
for each system, the time evolution of the complexes was analysed in detail. In this context,
the behaviour of compound 8 at the binding site of both proteins was examined, evaluating
its stability and conformation throughout the simulations. The results provide fundamental
information on the dynamics of these interactions and allow a more complete understand-
ing of the interaction between compound 8 and the LuxS and LasR proteins. Specifically,
remarkable stability was observed in the LuxS–compound 8 and LasR–compound 8 com-
plexes over the 500 ns of the trajectories. This stability is evidenced by the root mean square
deviation (RMSD) values of the protein backbones as shown in Figure 3A,B. The constancy
in the structural conformation over this period suggests a robust interaction between com-
pound 8 and both targets, reinforcing the validity of these interactions in the context of their
long-lived molecular dynamics. In the case of LuxS, the RMSD of compound 8 remained
consistently below 6 Å for the first 450 ns of the simulation. However, beyond this point, a
significant increase in the RMSD of the ligand was observed, reaching approximately 40 Å.
This change indicates an alteration in the interaction between the compound and LuxS. On
the other hand, in the case of LasR, the RMSD of compound 8 remained relatively constant,
in the range of 6 to 7 Å, throughout the entire 500 ns simulation. This points to a sustained
and well-tuned ligand position at the LasR binding site, indicating a more persistent and
stable interaction.
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Figure 3. Root mean square deviation (RMSD) of the MD trajectories for compound 8. (A) Complex
of LuxS–8 and (B) complex of LasR–8.

During the 500 ns MD, we analysed the interaction frequencies within the complexes.
We focused mainly on the residues that exhibited interactions with a frequency higher
than 20% during the trajectory. In the case of the LuxS–8 complex (Figure 4A), different
interactions were detected. These included π–π interactions involving His54; hydrophobic
interactions with Ala60 and Ala120; and ionic interactions with His54, His58, and Cys126.
In the LasR–8 complex (Figure 4B), the residues Tyr64, Leu36, and Ala127 presented
interactions with a significant frequency. In addition, π–π interactions were identified with
Tyr64 and Trp60, whereas hydrogen-bonding interactions were established with Trp60.
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Notably, water-bridge interactions were observed with Tyr47 and Asp65. These interaction
profiles contribute significantly to the stability of the LuxS–8 and LasR–8 complexes.
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Figure 4. Interaction fractions over 500 ns of molecular dynamics simulations. Only residues that
presented an interaction percentage higher than 20% over 500 ns of molecular dynamics simulations.
(A) Complex of LuxS with 8 and (B) complex of LasR with 8. The interactions of the protein with the
ligand could be controlled throughout the simulation. Protein–ligand interactions are classified into
four types: hydrogen bonds, hydrophobic interactions, ionic interactions, and water bridges. Each
type of interaction contains more specific subtypes.

Additionally, interaction modes corresponding to each complex are presented in
Figure 5 where we also compare how the cocrystalised ligands interacted with the key
proteins (Figure 5A,C). Compound 8 interacted with LuxS (Figure 5B) and LasR (Figure 5D)
similar to the cocrystalised ligands; this suggests a possible shared affinity toward these
residues regarding their ligand–protein interactions.
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(B) LuxS–8 complex, (C) LasR–cocrystalised ligand complex (PDB code: 3IX3), and (D) LasR–8 complex.
Dashed black lines correspond to hydrophobic interactions; dashed yellow lines correspond to salt
bridges; magenta lines correspond to hydrogen bonds; and grey lines correspond to water bridges.
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2.4. Antibacterial Activity

Following the theoretical assessment of the reactivity of the β-keto esters, an initial
exploration was conducted to ascertain the antibacterial efficacy of these compounds
against both pathogenic and phytopathogenic strains. Previous works have described
various compounds’ antibacterial properties, potentially possessing antiquorum-sensing
attributes [42,43]. Notably, several synthesised compounds could inhibit the activities of
P. aeruginosa, S. aureus, P. syringae, and A. tumefaciens.

Figure 6 illustrates the inhibitory diameters of the β-keto ester compounds against
two common foodborne pathogens and two phytopathogenic bacteria. This technique is
widely acknowledged as a useful semiquantitative method for assessing the sensitivity
of microorganisms to specific compounds. Negative controls were employed using disks
impregnated with acetone. To prevent any antimicrobial effects from acetone, these disks
were dried under the flow of a biosafety chamber. Among the tested compounds, 2,
3, 6, and 8 demonstrated inhibitory activity against these pathogens, with diameters
ranging from 8 to 15 mm, classified as moderate/mild inhibitory activity compared to the
values reported by other authors [44]. The minimum inhibitory concentration (MIC) and
minimum bactericidal concentration (MBC) were determined only for the compounds that
showed inhibition.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 10 of 16 
 

 

  

  
Figure 6. Inhibitory activity (mm) of β-keto ester compounds against pathogens and phytopatho-
genic bacteria. (■) β-keto ester compounds and (■) kanamycin, positive control. 

Table 6 reveals that the selected microorganisms exhibited susceptibility to the action 
of these compounds, with MIC values ranging from 0.08 mg/mL to 0.63 mg/mL and MBC 
values from 1.25 mg/mL to 5.00 mg/mL. Notably, β-keto ester 3 demonstrated higher re-
sistance to antimicrobial activity against most of the strains, except for A. tumefaciens. Kan-
amycin (50 µg) served as the positive control for bacterial inhibition. Among the phyto-
pathogenic bacteria, P. syringae (1.25 mg/mL MIC and 5.00 mg/mL MCB) and A. tumefa-
ciens (0.08 mg/mL MIC and 1.25 mg/mL MCB) exhibited the highest susceptibility to com-
pound 8, requiring lower concentrations to inhibit bacterial growth. On the other hand, 
the bacteria of clinical importance, S. aureus (0.32 mg/mL MIC and 2.50 mg/mL MCB), 
were most susceptible to β-keto ester 8. 

Table 6. Antibacterial activity of β-keto ester compounds. 

Bacteria 
MIC 1 (mg/mL) Kan 3 

(µg/mL) 
MBC 2 (mg/mL) Kan 3 

(µg/mL) 2 3 6 8 2 3 6 8 
Pathogenic           

Pseudomonas aeruginosa (ATCC 19429) ND ND 0.32 0.63 5.00 ND ND 2.50 5.00 10.00 
Staphylococcus aureus (ATCC 29737) 0.63 ND 0.63 0.32 2.50 5.00 ND 5.00 2.50 10.00 

Phytopathogenic           
Pseudomonas syringae (MF547632) ND ND ND 1.25 1.25 ND ND ND 5.00 2.50 

Agrobacterium tumefaciens (ATCC 19358) 0.16 0.16 ND 0.08 1.25 2.50 2.50 ND 1.25 5.00 
1 Minimum inhibitory concentration. 2 Minimum bactericidal concentration. ND: inhibition not de-
tected. ATCC: American Type Culture Collection (USA). MF547632 is the accession number to the 
Genbank of the respective bacteria.3 Minimum bactericidal concentration (positive control). 

3. Materials and Methods 
3.1. Synthesis of β-Keto Esters 

Synthesis of the β-keto esters used our group’s previously described method (see 
supporting information) [45]. 
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Table 6 reveals that the selected microorganisms exhibited susceptibility to the ac-
tion of these compounds, with MIC values ranging from 0.08 mg/mL to 0.63 mg/mL
and MBC values from 1.25 mg/mL to 5.00 mg/mL. Notably, β-keto ester 3 demonstrated
higher resistance to antimicrobial activity against most of the strains, except for A. tume-
faciens. Kanamycin (50 µg) served as the positive control for bacterial inhibition. Among
the phytopathogenic bacteria, P. syringae (1.25 mg/mL MIC and 5.00 mg/mL MCB) and
A. tumefaciens (0.08 mg/mL MIC and 1.25 mg/mL MCB) exhibited the highest susceptibility
to compound 8, requiring lower concentrations to inhibit bacterial growth. On the other
hand, the bacteria of clinical importance, S. aureus (0.32 mg/mL MIC and 2.50 mg/mL
MCB), were most susceptible to β-keto ester 8.
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Table 6. Antibacterial activity of β-keto ester compounds.

Bacteria
MIC 1 (mg/mL) Kan 3

(µg/mL)

MBC 2 (mg/mL) Kan 3

(µg/mL)2 3 6 8 2 3 6 8

Pathogenic
Pseudomonas aeruginosa (ATCC 19429) ND ND 0.32 0.63 5.00 ND ND 2.50 5.00 10.00

Staphylococcus aureus (ATCC 29737) 0.63 ND 0.63 0.32 2.50 5.00 ND 5.00 2.50 10.00
Phytopathogenic

Pseudomonas syringae (MF547632) ND ND ND 1.25 1.25 ND ND ND 5.00 2.50
Agrobacterium tumefaciens (ATCC 19358) 0.16 0.16 ND 0.08 1.25 2.50 2.50 ND 1.25 5.00

1 Minimum inhibitory concentration. 2 Minimum bactericidal concentration. ND: inhibition not detected. ATCC:
American Type Culture Collection (USA). MF547632 is the accession number to the Genbank of the respective
bacteria. 3 Minimum bactericidal concentration (positive control).

3. Materials and Methods
3.1. Synthesis of β-Keto Esters

Synthesis of the β-keto esters used our group’s previously described method (see
supporting information) [45].

tert-Butyl 3-oxo-4-(o-tolyl)butanoate (2). This compound was prepared according to
the general procedure described in the supporting information using 2-methylphenylacetic
acid (0.30 g, 2.00 mmol), Meldrum’s acid (0.29 g, 2.00 mmol), DCC (0.45 g, 2.20 mmol), and
DMAP (0.27 g, 2.20 mmol). Purification by column chromatography (0→1→2.5→5%
EtOAc/hexane) gave β-keto ester 2 (0.37 g, 75%) as a yellow oil. 1H NMR (CDCl3,
400 MHz): δ 1.49 (s, 9H, CH3), 2.28 (s, 3H, CH3), 3.39 (s, 2H, H-2), 3.87 (s, 2H, H-4),
and 7.15–7.22 (m, 4H, Ph). 13C NMR (CDCl3, 100 MHz): δ 19.7 (CH3), 28.0 (CH3), 48.3 (C-4),
49.7 (C-2), 82.1 (CCH3), 126.4, 127.7, 130.6, 132.4 (Ph), 166.4 (C-1), and 200.9 (C-3). HRMS
calculated for C15H20O3 [M-H]− was 247.1329; we found 247.1337.

tert-Butyl 4-(2-methoxyphenyl)-3-oxobutanoate (3). This compound was prepared
according to the general procedure described in the supporting information using
2-methoxyphenylacetic acid (0.30 g, 2.00 mmol), Meldrum’s acid (0.29 g, 2.00 mmol),
DCC (0.45 g, 2.20 mmol), and DMAP (0.27 g, 2.20 mmol). Purification by column chro-
matography (0→2.5→5→10% EtOAc/hexane) gave β-keto ester 3 (0.37 g, 75%) as a yellow
oil. 1H NMR (CDCl3, 400 MHz): δ 1.48 (s, 9H, CH3), 3.39 (s, 2H, H-2), 3.79 (s, 3H, CH3),
3.83 (s, 2H, H-4), 6.99–6.86 (q, 2H, Ph), 7.16 (d, J = 7.3 Hz, 1H, Ph), and 7.28 (t, J = 7.8 Hz,
1H, Ph). 13C NMR (CDCl3, 100 MHz): δ 28.1 (CH3), 44.8 (C-4), 49.8 (C-2), 55.5 (OCH3), 81.8
(CCH3), 110.7, 120.9, 128.9, 131.5 (Ph), 166.7 (C-1), and 201.5 (C-3). HRMS calculated for
C15H20O4 [M-H]− was 263.1278; we found 263.1295.

tert-Butyl 4-(2-Bromophenyl)-3-oxobutanoate (6). This compound was prepared ac-
cording to the general procedure described in the supporting information using
2-bromophenylacetic acid (0.59 g, 3.47 mmol), Meldrum’s acid (0.50 g, 3.47 mmol), DCC
(0.79 g, 3.82 mmol), and DMAP (0.47 g, 3.82 mmol). Purification by column chromatogra-
phy (0→1→2.5→5% EtOAc/hexane) gave β-keto ester 6 (1.09 g, 78%) as a yellow oil. 1H
NMR (CDCl3, 400 MHz): δ 1.49 (s, 9H, CH3), 3.46 (s, 2H, H-2), 4.02 (s, 2H, H-4), 7.15–7.33
(m, 3H, Ph), and 7.60 (d, J = 8.0 Hz, 1H, Ph). 13C NMR (CDCl3, 100 MHz): δ 28.1 (CH3),
50.1 (C-4), 50.3 (C-2), 82.3 (C), 125.2, 127.8, 129.2, 132.0, 133.0, 134.1 (Ph), 166,4 (C-1), and
199.8 (C-3). HRMS calculated for C14H17BrO3 [M-H]− was 311.0277; we found 311.0257.

3.2. ADME Properties’ Evaluation

The pharmacokinetic properties (ADME: absorption, distribution, metabolism, and
excretion), physicochemical descriptors, and drug-likeness of the compounds were calcu-
lated using the SwissADME server [28]. Briefly, 42 descriptors were predicted for each
compound, including physicochemical properties such as molecular weight, logP, solubility,
and pharmacokinetic properties. Based on the descriptors obtained, the acceptability of the
compounds based on bioavailability score (drug-likeness) could be assessed [28].
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3.3. Quantum Chemical Calculation

β-keto esters were calculated using the Gaussian 09 [46] program package (Revision
a.01; Gaussian, Inc.: Wallingford, CT, USA). No symmetry constraints were imposed on the
optimisations performed at the DFT M06-2x/6-311+G(d,p) level. No imaginary vibrational
frequencies were found at the optimised geometries, indicating true minima of the potential
energy surfaces. Reactivity descriptors from Conceptual Density Functional Theory were
obtained using the finite difference approximation (FDA) to analyse and compare the
reactivity of β-keto esters.

Global reactivity descriptors were calculated as follows [27]:

Electronic Chemical Potential µ = −0.5 (IPv + EAv) (1)

Chemical Hardness η = IPv − EAv (2)

Electrophilicity ω =
µ2

η
(3)

where IPv and EAv correspond to the vertical ionisation potential and vertical electron
affinity, respectively.

Local reactivity descriptors were calculated as follows [38]:

Fukui Function for Nucleophilic Attack f+k = Nk(N)− Nk(N + 1) (4)

Fukui Function for Electrophilic Attack f−k = Nk(N − 1)− Nk(N) (5)

Dual Descript f (2)k = f+k − f−k (6)

Local Hypersoftness s(2)k =
f (2)k
η2 (7)

where Nk(N), Nk(N + 1), and Nk(N − 1) correspond to the electronic populations on atom
k in neutral, radical anion, and radical cation species obtained through natural population
analysis [39].

3.4. Docking and DM Calculations

To study the antibacterial potential of the β-keto esters, we selected the LasR and
LuxS targets. These targets are involved in the pathogenicity of several bacteria, such
as P. aeruginosa and S. aureus [14,18,20,21]. To determinate the binding site, we used the
structure of LasR-OC1 cocrystalised with N-3-oxo-dodecanoyl-l-homoserine lactone (PDB
code: 3IX3) [47] and LuxS cocrystalised with (2S)-2-amino-4-[(2R,3R)-2,3-dihydroxy-3-N-
hydroxycarbamoyl-propylmercapto]butyric acid (PDB code: 2FQO) [48]. Prior to molecular
docking calculations, proteins were prepared using the Protein Preparation Wizard tool
included in Maestro. The ligands, waters (beyond 5 Å), and metals were removed from
the structure; then, hydrogens were added, and ionisation states were calculated at pH
7.4 [49]. The proteins were energy-minimised with the OPLS4 force field. The centre of
the grid boxes was located using the cocrystalised ligand in each structure. Molecular
docking simulations were performed for LasR-OC1, with the outer edge of the grid set
to 26 Å, and for LuxS, with the outer edge of the grid set to 22 Å. The standard precision
function (SP) of Glide [50] was employed for docking simulations, and the best ten pose
solutions per docked ligand were further subjected to postprocessing and rescoring by
calculating binding free energy (∆Gbind) using the molecular-mechanics-generalised Born
surface area (MM-GBSA) protocol in Prime [51]. The best complexes, according to ∆Gbind,
were subjected to 10 ns of equilibrium molecular dynamics (MD) simulations each using
Desmond software [52] and the OPLS4 force field [53]. Then, 500 ns of production MD
was performed for each complex. To prepare both systems, the complexes were solvated
with pre-equilibrated single point charged (SPC) water molecules in a periodic-boundary-
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condition box. Neutralisation of the systems was done by adding Na+ or Cl− counterions,
and then, to simulate physiological conditions, a final concentration of 0.15 M NaCl was
set. Each system was relaxed using the default Desmond relaxation protocol and then
was equilibrated for 10 ns using the NPT ensemble at 1 atm and 300 K. A spring constant
of 10.0 kcal × mol−1 × Å−2 was applied to the ligand and the protein. The last frame
of equilibration MD was employed to perform production MD of 500 ns using the same
conditions as those described above.

3.5. Antibacterial Activity
3.5.1. Strain and Growth Conditions

β-keto esters were employed in assessing their antibacterial activity against several
strains of bacteria, including the human pathogenic bacteria Pseudomonas aeruginosa (ATCC
19429) and Staphylococcus aureus (ATCC 29737) as well as the phytopathogenic bacteria
Pseudomonas syringae (MF547632) and Agrobacterium tumefaciens (ATCC 19358). The bacteria
were inoculated in nutrient broth containing 5.0 g/L of peptone and 3.0 g/L of meat extract
followed by an incubation period of 18 h. Incubation temperatures were set to 25 ◦C for
plant pathogens and to 35 ◦C for human pathogens. The incubation process was conducted
with orbital shaking at 150 rpm utilising an incubator (MRC LOM-80).

3.5.2. Paper-Disk Diffusion Method

The antibacterial properties of β-keto ester compounds were assessed following a
method originally outlined by Parra et al. with modifications [34]. Initially, a stock solution
of β-keto esters at a 20 mg/mL concentration was prepared using acetone as the solvent.
Subsequently, 15 µL of this stock solution was applied to 5 mm sterile cellulose filter
paper disks. In parallel, control disks impregnated with acetone were prepared to serve as
negative controls. The impregnated disks were then dried within a biosafety chamber.

Disks containing 50 µg of kanamycin were employed as positive controls assessing
bacterial inhibition. Fresh bacterial inoculum for each bacterial species was prepared as
previously described, was diluted to a 0.5 McFarland standard (representing a bacterial
concentration of 1.5 × 108 CFU/mL), and was uniformly spread onto plates containing
nutrient broth supplemented with 12 g/L of agar. The dried, impregnated disks were
positioned equidistant from each other on the agar plates. Subsequently, the plates were
incubated for 24 h at either 25 ◦C or 35 ◦C at the appropriate temperature. Following the
incubation period, the diameter of bacterial-growth inhibition was measured, characterised
by a transparent halo surrounding each disk where no bacterial growth was observed. To
ensure precision and reproducibility, these tests were conducted in triplicate.

3.5.3. Minimum Inhibitory Concentration (MIC)

The determination of the minimum concentration of β-keto esters required to inhibit
bacterial growth followed the methodology detailed by Parra et al. [34]. The β-keto esters
were evaluated using a concentration range from 0 to 10 mg/mL. Each concentration was
prepared in a final working volume of 200 µL and was inoculated with the respective
bacteria to be tested. These inoculated samples were then incubated in 96-well plates at
either 25 ◦C or 35 ◦C at the appropriate temperature.

To serve as a control, nutrient broth without the compound was inoculated with
each bacterium to monitor normal growth (growth control). Additionally, nutrient broth
containing β-keto esters at concentrations ranging from 0 to 10 mg/mL, without bacterial
inoculation, was employed to assess the compounds’ growth and sterility (negative control).
To estimate the minimum inhibitory concentration (MIC) of acetone for each bacterium,
an assay was conducted using acetone concentrations spanning from 0 to 90%. It was
observed that acetone did not exhibit inhibitory effects on any of the four bacteria tested.
After a 24 h incubation period, the lowest concentration of the compound at which no
bacterial growth was detected was identified as the MIC for each bacterium.
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3.5.4. Minimum Bactericidal Concentration (MCB)

The bactericidal capacity of β-keto esters was assessed based on a method detailed by
Parra et al. [34], focusing on the last three wells in the MIC assay that exhibited no bacterial
growth. To determine the minimum concentration of β-keto esters where no growth was
observed (MCB) for each microorganism, 100 µL of the bacterial cultures was plated on
nutrient-broth plates supplemented with 15 g/L of agar. A culture that exhibited microbial
growth in the MIC test was employed to serve as a growth control. Subsequently, the
plates were incubated for 24 h at the appropriate temperature. Following incubation, the
concentration of β-keto esters at which no growth was detected was recorded as the MCB
for each microorganism.

4. Conclusions

We modelled and synthesised β-keto esters as antibacterial compounds in this work.
The design was based on the structure of autoinducers of quorum-sensing Gram-negative
bacteria. Eight β-keto ester analogues were synthesised with good yields, and they were
spectroscopically characterised, showing that the compounds were only in their β-keto
ester tautomer form. We carried out a computational analysis of the reactivity and ADME
(absorption, distribution, metabolism, and excretion) properties of the compounds as well as
molecular docking and molecular dynamics calculations with the LasR and LuxS quorum-
sensing (QS) proteins, which are involved in bacterial resistance to antibiotics. The results
show that all the compounds exhibited reliable ADME properties; none violated Lipinski’s
rule. Based on the reactivity parameters obtained from the conceptual DFT calculations,
only compound 7 could potentially present electrophile toxicity. The theoretical local
reactivity study shows that compounds 6 and 8 reacted with nucleophiles at the keto
C-carbonyl, unlike the rest of the series, which reacted with nucleophiles at the ester C-
carbonyl. The molecular docking calculations show that compound 8 presented a better
profile of affinity and stability in its interaction with the LasR and LuxS QS proteins. The
molecular dynamics calculations allowed us to study the stability of the interaction between
compound 8 and both proteins, being remarkable in both cases, particularly with LasR.
An initial in vitro antimicrobial screening was performed against the human pathogenic
bacteria Pseudomonas aeruginosa and Staphylococcus aureus as well as the phytopathogenic
bacteria Pseudomonas syringae and Agrobacterium tumefaciens. Compounds 6 and 8 exhibited
the most promising results in the in vitro antimicrobial screening against the panel of
bacteria studied.
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