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34000 Kragujevac, Serbia
6 Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
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Abstract: Two newly synthesized coumarin–palladium(II) complexes (C1 and C2) were characterized
using elemental analysis, spectroscopy (IR and 1H-13C NMR), and DFT methods at the B3LYP-
D3BJ/6-311+G(d,p) level of theory. The in vitro and in silico cytotoxicity of coumarin ligands and
their corresponding Pd(II) complexes was examined. For in vitro testing, five cell lines were selected,
namely human cervical adenocarcinoma (HeLa), the melanoma cell line (FemX), epithelial lung
carcinoma (A549), the somatic umbilical vein endothelial cell line (EA.hi926), and pancreatic ductal
adenocarcinoma (Panc-1). In order to examine the in silico inhibitory potential and estimate inhibitory
constants and binding energies, molecular docking studies were performed. The inhibitory activity
of C1 and C2 was investigated towards epidermal growth factor receptor (EGFR), receptor tyrosine
kinase (RTK), and B-cell lymphoma 2 (BCL-2). According to the results obtained from the molecular
docking simulations, the inhibitory activity of the investigated complexes towards all the investigated
proteins is equivalent or superior in comparison with current therapeutical options. Moreover,
because of the low binding energies and the high correlation rate with experimentally obtained
results, it was shown that, out of the three, the inhibition of RTK is the most probable mechanism of
the cytotoxic activity of the investigated compounds.

Keywords: palladium(II) complexes; cytotoxicity; in silico; artificial intelligence; DFT optimization;
molecular docking

1. Introduction

In the past decades, numerous studies have been carried out in an attempt to identify
an effective drug or combinatorial therapy for various cancer types. The discovery of the
anticancerogenic properties of cisplatin, back in 1965, was the basis for the invention of
many metal-based compounds with a wide range of biological and physiological roles and
activities. A substantial majority of these new metal-based compounds were determined to
be unsuitable for clinical application due to excessive toxicity to healthy cells, interference
with regular metabolic processes, easily established resistance of tumor cells to the potential
medication, etc. Only a small number of compounds made their way to clinical usage. The
anticancer drugs that are currently in use are insufficiently effective due to a variety of side
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effects, non-selectivity, resistance, and other factors. Therefore, new drugs that will be more
effective in the fight against cancer are required [1–3].

Due to structural and thermodynamic similarities between platinum(II) and palla-
dium(II) complexes, research is also focused on the synthesis of new Pd(II) complexes [4–6].
Numerous studies on palladium(II) complexes have been conducted, including those on
their cytotoxicity and anticancer activity [4–6].

It is known that many plant-derived molecules act as antioxidants and have a syner-
gistic effect when combined with other biologically active compounds. Hybrids obtained in
this way often improve the biological properties of one or both parent molecules. This strat-
egy could lead to the discovery of new compounds with promising therapeutic applications
in the treatment of various cancers. Furthermore, the newly discovered compounds do
not have to be new anticancer drugs; rather, they could be substances used to supplement
existing therapeutic protocols [1–3].

Coumarins are an important group of natural compounds widely distributed in the
natural kingdom [7]. Coumarin was originally isolated from the seeds of D. odorata,
and after that it was isolated from numerous plants belonging to the families Rutaceae,
Umbelliferae (Apiaceae), Compositae (Asteraceae), Leguminosae, and Moraceae [7]. In the plant
world, they can be found in the highest concentration mainly in fruits and flowers, but
also in seeds, roots, leaves, and stems [8]. Coumarins have a variety of pharmacological
activities, including cytotoxic, antibacterial, and antifungal activity [9–11], and they are
used to treat HIV [12,13], cancer [14,15], and neurological illnesses [16,17]. They were
also employed for the scavenging of reactive free radical species [18,19]. Several reactive
coumarin derivatives have already been produced, and their biological reactivity has been
investigated and theoretically explained [20–23].

Coumarins, as biologically very active and therefore important compounds, were used
to obtain Pd(II) complexes. Thanks to their lipophilicity and solubility, some palladium
complexes have shown promising activity against various cell lines. For example, a palla-
dium(II) complex with the tridentate ligand 3-(1-(2-hydroxyethylamino)ethylidene)chroman-
2,4-dione was tested on several cell lines: L929 mouse fibrosarcoma, U251 human glioma,
and B16 mouse melanoma. The IC50 values obtained indicate that this compound exhibits
a greater cytostatic potency than the well-known cisplatin, inducing the apoptosis of cancer
cells through caspase activation, mitochondrial depolarization, and oxidative stress [24]. In
addition, Budzisz et al. synthesized an interesting coumarin–Pd complex that exhibits very
high cytotoxicity against A549, HeLa, and K562 cells. This complex most likely attaches to
double-stranded DNA as cisplatin induces changes in the short duplex DNA’s structure
and lowers the electrophoretic mobility of plasmid DNA as a result. The activity of this
compound is very similar to the activity of carboplatin and cisplatin [25].

Previous studies have shown that Pd(II) complexes containing coumarin hybrids have
cytotoxic potential against pancreatic adenocarcinoma cell lines. [21,26]. This inspired
the idea of developing new coumarin ligands and the investigation of malignant cancer
cell lines. This research builds results that continue our prior work on the creation of
novel coumarin-based ligands and corresponding palladium(II) complexes [20,27,28]. The
obtained compounds were investigated for cytotoxicity in vitro and in silico. A molecular
docking study was carried out to investigate the efficient binding of new compounds to
receptor tyrosine kinase, as well as other proteins relevant for potential anticancer activity
according to the literature and SwissTargetPrediction server. Additionally, the obtained
compounds were tested in vitro for their antimicrobial activity.

2. Results and Discussion
2.1. Chemistry

The complexation reaction was performed by mixing equimolar amounts of ligands
and potassium tetrachloropalladate(II) K2[PdCl4], resulting in the formation of palla-
dium(II) complexes, C1 and C2 (Scheme 1). The stability of the investigated complexes
was determined by UV-Vis spectroscopy. The investigated compounds excreted excellent
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stability during 48 h. The obtained UV-Vis spectra are presented in Figures S1 and S2 in the
Supplementary Materials.
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Scheme 1. The general procedure for the synthesis of the ligands L1 and L2, and consequently the
complexes C1 and C2.

2.2. Spectroscopic and DFT Characterization

One set of signals was obtained in the recorded 1H and 13C NMR spectra of the
prepared Pd(II) complexes (C1, C2) in DMSO-d6. The coordination of the metal ion to
the ligands [21] was confirmed by the absence of the NH group signal at 15.30 ppm in
the 1H ligand NMR spectra and by the differences in the chemical shifts of the 1H and
13C atom signals in the NMR spectra after coordination (∆δcoord., complexation coefficient,
calculated according to the relation ∆δcoord. = δcomplex − δligand). After binding to a metal
ion, the signals of the H-5, H-2′ and H-6 atoms in the 1H NMR spectra were shielded
(∆δcoord.) by −1.21 ppm, −0.43 ppm, and −0.27 ppm, respectively (Figure 1A). All the
other 1H atom signals of the complexes were negligibly shielded (∆δcoord. ≤ −0.1 ppm).
The differences in the chemical shifts in the 13C NMR spectra provided more information
about the coordination site of the Pd(II) ion (Figure 1B). The most significant changes
were observed in the chemical shifts of the two shielded atom signals: C-4 and C-1′

(∆δcoord. = −8.4 ppm, −6.7 ppm), and in the chemical shifts of the three deshielded atom
signals: C-1′ ′, C-3, and C-2′ (∆δcoord. = 11.0 ppm, 8.1 ppm, 3.5 ppm). The NMR spectroscopy
results show that the ligands in the DMSO-d6 solution were bonded to the Pd(II) ion
in a chelating mode via N,O-atoms. All recorded NMR spectra can be found in the
Supplementary Materials (Figures S3–S8).

Because X-ray crystallography could not be used to identify the dominant isomer
of and overall structure of the investigated compounds, the DFT model mentioned in
the methodology section was implemented. This theoretical model has been proven to
be valid in previous studies of the structure of similar coumarin derivatives and their
complexes [28,29]. The optimized structures of the cis and trans isomers of C1 and C2 are
shown in Figure 2.
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Figure 1. The main differences in the chemical shifts of the (A) 1H and (B) 13C atom signal after
complexation between the ligand L1 (lower spectrum) and its Pd(II) complex C1 (upper spectrum).
Coordination coefficients (∆δcoord.) are indicated to the lines in each case. The intensity in the
downfield region of the 1H spectra (A) is multiplied by four.
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Theoretically, two isomers, cis and trans, can be obtained in the last step of the synthe-
sis process presented in Scheme 1. When the energies of these isomers were compared, it
was revealed that the trans isomers were more stable in both circumstances. The energy dif-
ferences between the two isomers are 11.26 and 16.11 kJ/mol for the C1 and C2 complexes,
respectively, while the Boltzmann distribution values are 99.95% and 99.98%. Based on
these numbers, the trans isomer is clearly dominant in both cases. This is due to the steric
interference and charges repulsion of aromatic rings. Additionally, the NMR and IR spectra
of both isomers were simulated to confirm that the hypothesized theoretical structures
of the studied compounds correspond to the structure of the synthesized compounds.
Tables S1–S3 show the structural parameters for the most stable structures of all studied
compounds. Tables S4 and S5 provide the experimental and computed values for chemical
shifts. The correlation coefficient (R) and mean absolute error (MAE) were used to assess
the validity of the linear correlation between the experimental and computed chemical
shifts in the NMR spectra. The relatively significant correlation coefficients for 1HNMR
between 0.991 and 0.990, as well as the relatively small values of MAE, suggest that the
computed geometries of examined compounds are in good correlation with the experimen-
tally obtained structures [30–32]. When it comes to the cis isomer, correlation coefficients
of 0.973 and 0.969 are a lot lower than for the trans isomer, which indicates that trans
isomer is dominant, as predicted by Boltzmann distribution. As can be expected, simulated
IR spectra for cis and trans isoforms are fairly similar, which can be seen in Figure 3. In
addition, correlation coefficients were determined taking into account all the important
peaks from the experimental data given in Section 3.1.2. More detailed information about
the experimental and theoretical IR spectra is given in Table S6.
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2.3. In Vitro Cytotoxicity

Parameters describing the cytotoxic activity of the investigated compounds, namely
corresponding IC50 values, are presented in Table 1. Table 1 also includes the IC50 values
for cisplatin as a positive control [33]. According to the obtained results, FemX cells were
the most sensitive to the cytotoxic effect of the tested compounds. Moreover, the highest
cytotoxic activity was exerted by the compound C1, followed by C2, on all tested cell lines.
However, a closer examination of the results revealed that compounds C1 and C2 have
very similar and consistent cytotoxic potential fairly similar to cisplatin. In comparison to
cisplatin, C1 and C2 demonstrated better cytotoxic activity against A549 and Panc-1 cell
lines, while cytotoxic activity against FemX was equivalent to cisplatin.

Table 1. IC50 values of the tested compounds and cisplatin.

IC50, µM * FemX A549 Panc-1 HeLa

L1 21.43 ± 1.59 78.83 ± 11.48 28.17 ± 7.40 >500
L2 27.56 ± 5.54 404.90 ± 6.94 72.71 ± 11.80 >500
C1 6.97 ± 0.36 10.7 ± 0.71 7.67 ± 0.74 5.68 ± 0.69
C2 7.67 ± 0.09 11.06 ± 0.41 10.43 ± 0.34 4.25 ± 0.85

Cis-Pt 6.16 ± 0.31 12.74 ± 1.26 16.44 ± 1.56 4.00 ± 0.47
* Concentrations of examined compounds inducing 50% decrease in cells’ survival rate (expressed as IC50 values).
Results are presented as the mean value ± SD of the two independent experiments.

However, compounds L1 and L2 have less consistency and higher IC50 values, indicat-
ing lower cytotoxic activity than their corresponding Pd(II) complexes. Furthermore, when
compared to cisplatin, ligands show significantly lower anticancer potential. Having this
in mind, further analysis will be limited only to C1 and C2.
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When the results of previous studies were compared, it was found that compounds
with the -OH group showed significantly better cytotoxic potential than their analogues
with chlorine substituents [21,28]. Furthermore, in regard to the results of the mentioned
studies [21,28], the overall cytotoxic activity of C1 and C2 investigated in this paper was
found to be rather good. However, since different cell lines were used when previous
investigations were performed, direct comparison of IC50 values is most relevant when cell
lines for pancreatic carcinoma (Panc-1 and MiaPaCa-2 [21]) are considered, since they are
the most similar cell lines used. According to the results obtained in the previous research,
the inhibitory activity of Pd(II) complexes with hydroxyl groups as substituents [21] was
slightly higher (C1:IC50 = 3.0 and C2:IC50 = 6.0) than those with added methoxy groups
(IC50 values 7.7 and 10.4, respectively) (Figure S9). The explanation for the disparity in IC50
values could lay in the fact that different cell lines of pancreatic carcinoma were used, and
such comparison cannot give definitive conclusions.

2.4. Cell Cycle Analysis

The compounds that showed the highest cytotoxic potential were further analyzed for
the effect on HeLa cell cycle distribution, and the results are presented in Figures 4 and 5.
Analysis showed that compound C1 caused the highest increase in the proportion of HeLa
cells in the SubG1 phase of the cell cycle when applied at the IC50 concentrations for 24 h
(20.93 ± 4.96%, compared with control 4.55 ± 0.65%). Additionally, compound C2 showed
a significant increase in the percentage of HeLa cells within the SubG1 phase of the cell cycle
(14.83 ± 3.07%). An increase in the percentage of cells in the SubG1 phase was followed
by a decrease in the number of cells in the G1 phase. These results indicate that, in vitro,
compounds C1 and C2 exerted a significant proapoptotic effect on HeLa cancer cells.
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24 h after treatment.

2.5. Fluorescence Microscopy

After 24 h of exposure to the IC50 concentrations of compounds C1 and C2, the
morphology of the HeLa cells was examined under a fluorescence microscope in order to
verify the proapoptotic effect of the two tested compounds after cell cycle analysis (Figure 6).
Because the majority of HeLa cells were found to be detached from coverslips following
treatment, the supernatants were analyzed. The cells in the control well plates were still
attached to the coverslips, with normal morphology and intact cell membranes, stained
green. Both of the tested compounds caused a significant percentage of cells to exhibit the
classic symptoms of apoptosis, including rounding, membrane blebbing, and condensed
or fragmented nuclei. Moreover, on the photomicrographs, orange-red stained cells with
damaged cell membranes were observed showing signs of late apoptosis (apoptotic bodies)
and secondary necrosis.
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stained HeLa cells 24 h after treatment with compounds C1 and C2 (detached cells from culture
supernatant). Arrows are showing cells with typical signs of apoptosis (rounding, membrane
blebbing, and condensed or fragmented nuclei).

2.6. In Vitro Scratch Assay

The effects of the two investigated compounds on the migration of endothelial
EA.hy926 cells were assessed using an in vitro scratch assay (Figures 7 and 8). Both
compounds exerted significant antimigratory activities compared to the control (p < 0.0001).
Compound C2 showed slightly better antimigratory activity (percentage of gap reduc-
tion was 6.14 ± 5.77), than C1 (14.78 ± 7.64), but the values of gap reduction were not
significantly different.
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2.7. Tube Formation Assay

Investigated Pd(II) complexes were examined for their in vitro antiangiogenic abilities
by the utilization of the endothelial cell tube formation assay. Untreated control EA.hy926
cells formed large vessel-like structures and complex meshes. However, when EA.hy926
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cells were treated with non-toxic IC20 concentrations of both compounds C1 and C2, after
24 h the cells appeared rounded and in clusters (Figure 9).
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2.8. Molecular Docking Study

Potential anticancer agents can manifest their cytotoxic effect following a variety of
distinct mechanistic pathways [21,31,34,35]. According to the results obtained from the
SwissTargetPrediction webserver, the investigated Pd(II)-coumarin complexes are found to
be possible inhibitors of EGFR and BCL-2. It is worth noting that similar compounds have
been reported as potential inhibitors of RTK [19,35].

The inhibition of EGFR and RTK as part of the signal transduction pathway (STP)
represents one of the newest and most promising approaches, when it comes to the de-
velopment of new anticancer agents. It should be noted that EGFR is a protein that also
belongs to the RTK enzyme family. However, because of its distinct structure, which is
distinguished by asymmetric dimerization, it will be considered independently [34–39].

Another viable target for anticancer drug development is BCL-2, which is a crucial
protein regulator of apoptosis. It is highly expressed in a variety of hematological malig-
nancies and offers defense against cell death brought on by oncogenic and environmental
stressors [40].
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To test the inhibitory activity of L1, L2, C1, and C2 towards selected proteins, molecular
docking simulations were performed, and the obtained results are presented in Table 2.
Standards were used in order to compare the obtained results with compounds that are
already in use. For the EGFR, N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)quinazolin-
4-amine, also known under the commercial name Tarceva [41], was used as a standard.
It is a chemotherapy drug that is used to treat non-small cell lung cancer or pancreatic
cancer in a metastatic state. As a standard RTK inhibitor, 4-(2,4-dichloro-5-methoxyanilino)-
6-methoxy-7-[3-(4-methylpiperazin-1-yl)propoxy]quinoline-3-carbonitrile, also known as
Bosutinib, was used [42], while the BCL-2 inhibitor was an FDA-approved drug known as
Navitoclax [43].

Table 2. Thermodynamic parameters obtained from molecular docking simulation for L1, L2, C1, C2,
and standards with EGFR, RTK, and BCL-2.

Ligand/Complex

Protein EGFR RTK BCL-2

∆Gbind ki (µM) ∆Gbind ki (µM) ∆Gbind ki (µM)

L1 −5.80 56.05 −8.80 0.35 −7.94 1.51

L2 −6.26 25.79 −8.39 0.70 −8.39 0.71

C1-trans −6.47 18.09 −10.22 0.03 −8.56 0.53

C2-trans −6.61 14.28 −9.40 0.13 −6.87 9.21

Standards −4.93 240.00 −8.20 0.98 −8.69 0.43

According to the results presented in Table 2, it is possible to see that the investigated
complexes potentially inhibit all three of the investigated protein targets, which indicates
multiple mechanistic pathways through which they can exhibit the cytotoxic effect. It
is important to emphasize that, when it comes to C1 and C2, trans forms are taken into
account, because simulations and experimental work showed that the trans forms of the
investigated compounds are slightly more stable, and thus thermodynamically favored
and prevalent.

It is interesting to notice that ligands L1 and L2 show similar inhibitory potential
towards EGFR as C1 and C2. Similar binding energies obtained by molecular docking
simulations are to be expected since both investigated complexes as well as ligand L1 occupy
the same binding pocket and interact with the same amino acid residues (Figure S10). Only
ligand L2 is found in the same active site as the standard, which indicates that only L2 can
have comparable inhibitory potency towards EGFR. This is not in good correlation with
experimentally obtained results, which indicates that EGFR inhibition is not a probable
mechanism of the anticancer activity of the obtained Pd(II) coumarin complexes.

Another viable target for investigated compounds, according to the SwissADME web-
server, BCL-2 is found on the outer membrane of mitochondria, where it promotes cellular
survival and inhibits the effects of proapoptotic proteins. The BCL-2 family of proapoptotic
proteins normally work on the mitochondrial membrane to induce permeabilization and
the release of cytochrome C and ROS, which are crucial signals in the apoptosis cascade.
The investigated compounds were found to inhibit BCL-2, which prevents it from fulfilling
its original function, thus initiating, and inducing, apoptosis in the cancer cell. It was found
that L2 and C1 show inhibitory potential similar to Navitoclax, while L1 and C2 show
lower inhibitory potential when it comes to BCL-2 inhibition. The difference in binding
energies between C1 and other investigated compounds is that C1 takes a slightly different
conformation inside of the binding site, which allows it additional interactions with amino
acids: HIS3, ALA4, and ARG6 (Figure S11). However, having in mind a correlation with the
experimentally determined IC50 values and the inhibitory constants and binding energies
obtained in molecular docking simulations of investigated compounds with BCL-2, we
can conclude that inhibition of BCL-2 is also not a probable mechanistic pathway of the
anticancer activity of the investigated compounds.
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According to the results presented in Table 2, the lowest binding energies are found
when it comes to the inhibition of RTK with C1 and C2. Furthermore, it should be empha-
sized that the best correlation of the results obtained by molecular docking simulations
with experimental data is shown when it comes to the inhibition of RTK. These two facts
indicate that the most probable mechanism of anticancer activity of C1 and C2, out of the
three, is the inhibition of RTK, which is in accordance with the results obtained for similar
compounds in our previous work [20–22].

It is interesting to notice that the ratio of the inhibitory constants for L1 and L2 is 2:1,
which is nearly identical to the ratio of the IC50 values for the Panc-1 cell line. Moreover,
the binding energies in Table 2 show that L1 and L2 have a moderate potential to inhibit
RTK in comparison with the standard. However, experimental data indicate a slightly
lower difference in the activity of L1 and L2 in comparison to C1 and C2, which may be
a consequence of their low bioavailability or other pharmacokinetic characteristics of L1
and L2, which will be a subject of further investigations. It should be noted that inhibitory
constants and IC50 for C1, C2, L1, and L2 also follow similar trends, when compared to
one another, regarding the results obtained for the Panc-1 cell line. Furthermore, the data
indicate that C1 shows a slightly better antagonistic effect than C2 towards the tested cell
lines, demonstrating a good correlation between the experimental data and results obtained
through molecular docking simulations.

In order to better explain the obtained results, a deeper look needs to be made into
interactions that the investigated compounds form with RTK. AutoGridFR predicted that
all the investigated compounds will show the lowest binding energies while occupying
the Src homology 2 (SH2) domain, which in RTKs is characterized by tyrosine amino acid
residues such as TYR463. The SH2 domain is found in many proteins involved in tyrosine
kinase signaling cascades and their function is to bind tyrosine-phosphorylated sequences
in specific protein targets. Moreover, the function of the SH2 domain is required for the
tyrosine kinase to play a role in T-cell receptor signal transduction. SH2-domain-mediated
interactions are an important step in receptor tyrosine kinase transmembrane signaling.
Phosphatyrosine (pY) is recognized by SH2 domains in the context of certain sequence
motifs in receptor phosphorylation sites. The inhibition of the SH2 domain of different
proteins was previously reported as a promising drug design strategy against cancer,
autoimmune diseases, and other diseases [44–50].

As can be seen from Figure 10, all the investigated compounds were found to occupy
the SH2 domain of RTK, defined by the following amino acids: TYR463, LEU557, LEU465,
PRO556, LEU525, etc. The investigated compounds interact with a significant number of
the same amino acid residues as Bosutinib, which is of importance since Bosutinib is a
proven Src tyrosine kinase inhibitor [42].

A more streamlined representation of the most important interactions from Figure 10
is given in Table S7. As can be seen from Table S7, L1 and L2 do not form hydrogen bonds
or electrostatic interactions with TYR residue, while C1, C2, and Bosutinib do. This is of
special importance because tyrosine amino acid residues are responsible for the activity of
the SH2 domain. In addition to the conventional hydrogen bonds with TYR463, C1 and
C2 form strong electrostatic interactions with the same amino acid residues. Even though
C2 forms one additional non-conventional hydrogen bond with TYR463, electrostatic
interaction as well as the hydrogen bond formed with C1 is significantly shorter, which
is reflected in binding energy, and consequently the activity of investigated compounds.
Alongside hydrogen bonds and electrostatic interactions, ligands, as well as Bosutinib,
form 6–7 hydrophobic interactions, while C1 and C2 form 12–15 hydrophobic interactions,
all of which add to the final binding energies and stability of protein-substrate systems.
Since these interactions are longer than 3.5Å, and to keep the simplicity of the presented
results, the mentioned hydrophobic interactions are not presented in Table S7.
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3. Materials and Methods

3-hydroxy-4-methoxy-aminophenol, 4-hydroxy-3-methoxy-aminophenol, 4-hydroxycoumarin,
acetic acid, phosphoryl chloride, methanol, ethanol, toluene, acetone, and potassium
tetrachloridopaladate(II) were purchased from Sigma Aldrich in Germany. A Vario EL III C,
H, and N Elemental Analyzer was used to conduct the elemental analyses for the elements
C, H, and N. A Perkin-Elmer Spectrum One FT-IR spectrometer was used to record infrared
spectra (KBr) (4000–400 cm–1).

The NMR spectra were recorded on a Bruker AV600 spectrometer with a 5 mm probe
head at the Rud̄er Bošković Institute (Zagreb, Croatia). 1H and 13C APT NMR spectra
were acquired at 600.130 and 150.903 MHz, respectively. Chemical shifts (δ / ppm) for
the 1H and 13C spectra were referred to as the DMSO-d6 signals (1H: δ = 2.50 ppm; 13C:
δ = 39.51 ppm), which were purchased from Euriso-Top, France. The assignments of 1H
and 13C signals in the NMR spectra of compounds were confirmed by cross peaks obtained
in the 2D spectra of 1H-13C Heteronuclear Multiple Bond Correlation (HMBC).

Silica gel (Silica gel 60, layer 0.20 mm, Alugram Sil G, Mashery-Nagel, Germany) was
used for the analytical TLC, and a UV lamp (VL-4.LC, 365/254, Vilber Lourmat, France)
was used for the visualization of TLC plates.

3.1. Chemical Studies
3.1.1. Rationale for Choosing Ligand

Since palladium(II) complexes with coumarin hybrids with chlorine substituents [28]
showed weaker activity towards cancer cell lines, chlorine was replaced by an OH group [21],
which resulted in significantly better biological activity. A number of studies have shown
that extracellular pH in tumors tends to be lower than that in normal tissue, and acidic pH
promotes the invasive and metastatic potential of cancer cells [8,14]. In order to decrease
the acidity of the compound, we introduced a methoxy group into the aromatic ring as an
electron-donating group (EDW) in the ortho position relative to -OH. It is well known that
EDWs reduce acidity because they push higher electron density towards a neighboring
atom. Therefore, we expected that these compounds would show better activity than those
previously investigated.
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3.1.2. General Procedure for Synthesis and Spectral Data of Palladium(II) Complexes

The synthesis of the bidentate coumarin ligands L1 and L2 has been previously
reported [28,51]. To obtain their corresponding palladium(II) complexes C1 and C2, a
methanolic solution of bidentate coumarin ligands (0.15 mmol) and an aqueous solution of
potassium tetrachloropalladate(II) (0.15 mmol) were used. Solutions of ligands and palla-
dium(II) salts were mixed with constant stirring on a magnetic stirrer at room temperature
for 5 h. After precipitation, filtration, and air drying, the new palladium(II) complexes were
obtained in moderately good yields (Scheme 1). The stability of the investigated complexes
was confirmed by recording UV-Vis spectra in different timeframes, at 0 h, 24 h, and 48 h.
Due to the good solubility of the investigated compounds in methanol, it was used as a
solvent in which stability assessment experiments were performed (Figures S1 and S2).

Bis(3-(1-((4–hydroxy-3-methoxyphenyl)amino)ethylidene) chromane-2,4–dione palladium(II))
complex (C1). Yellow powder. Yield: 0.037 g (69.81%). Anal. Calc. for C36H28O10N2Pd
(Mr = 754.08) %: C, 57.71; H, 4.06; N, 3.64. Found: C, 58.14; H, 3.95; N, 3.88. IR (KBr)
ν cm−1: 3425 (OH); 2938 (=CH); 2843 (CH); 1690 (C=O); 1603 (C=N); 1557, 1483, and
1425 (C=C); 1036 (C–O); 536 (Pd–O); 452 (Pd–N). 1H NMR (DMSO-d6, 600.130 MHz):
δH 9.17 (1H, br s, OH), 7.60 (1H, t, J = 7.53 Hz, H-7), 7.22 (1H, d, J = 8.11 Hz, H-8), 7.06
(1H, t, J = 7.53 Hz, H-6), 6.99 (1H, s, H-2′ ′), 6.89–6.81 (2H, m, H-5′ ′ and H-6′ ′), 6.79 (1H,
d, J = 7.53 Hz, H 5), 3.74 (3H, s, OCH3), 2.18 (3H, s, H-2′) ppm. 13C NMR (DMSO-d6,
150.903 MHz): δC 171.7 (C-4), 169.0 (C-1′), 161.4 (C-2), 152.1 (C-9), 147.9 (C-3′ ′), 145.3 (C-
4′ ′), 138.1 (C-1′ ′), 133.7 (C-7), 125.8 (C-5), 123.1 (C-6), 117.3 (C-10), 116.8 (C-8), 115.6 (C-5′ ′),
115.3 (C-6′ ′), 109.4 (C-2′ ′), 105.0 (C-3), 55.9 (OCH3), 24.0 (C-2′) ppm.

Bis(3-(1-((3–hydroxy-4-methoxyphenyl)amino)ethylidene) chromane-2,4–dione palladium(II))
complex (C2). Yellow powder. Yield: 0.035 g (66.03%). Anal. Calc. for C36H28O10N2Pd
(Mr = 754.08)%; C, 57.71; H, 4.06; N, 3.64. Found: C, 58.09; H, 3.82; N, 3.78. IR (KBr) ν cm−1:
3437 (OH); 3010 (=CH); 2930, 2835 (CH); 1693 (C=O); 1601 (C=N); 1557, 1482, and 1419
(C=C); 1038 (C–O); 581 (Pd–O); 465 (Pd–N). 1H NMR (DMSO-d6, 600.130 MHz): δH 9.32
(1H, br s, OH), 7.59 (1H, td, J = 8.51, 1.51 Hz, H-7), 7.22 (1H, d, J = 8.33 Hz, H-8), 7.07 (1H,
t, J = 7.85 Hz, H-6), 7.00 (1H, d, J = 8.57 Hz, H-5′ ′), 6.85–6.80 (2H, m, H-5 and H-2′ ′), 6.78
(1H, dd, J = 8.33, 2.14 Hz, H-6′ ′), 3.79 (3H, s, OCH3), 2.17 (3H, s, H-2′) ppm. 13C NMR
(DMSO-d6, 150.903 MHz): δC 171.7 (C 4), 168.8 (C-1′), 161.3 (C-2), 152.1 (C-9), 147.0 (C 3′ ′),
146.4 (C-4′ ′), 139.5 (C-1′ ′), 133.6 (C-7), 126.0 (C-5), 123.1 (C-6), 117.2 (C-10), 115.5 (C-8), 115.0
(C-6′ ′), 112.2 (C-5′ ′), 112.1 (C-2′ ′), 104.9 (C-3), 55.78 (OCH3), 24.0 (C-2′) ppm.

3.1.3. DFT Calculations

All calculations were carried out using the Gaussian16 program package, which
augmented the Density Functional Theory (DFT) methods [52]. Structural geometries of
investigated Pd(II)-coumarin complexes were obtained implementing the B3LYP-D3BJ
method with the 6-311+G(d,p) basis set for C, N, O, and H, and LANLD2Z basis set for
Pd(II) ions [53–56]. Optimization without any geometrical restraints produced the most
stable structures of the examined compounds, and no imaginary frequencies were obtained,
confirming that given conformations are found on the energy minima of the potential
energy surface. The Gauge Independent Atomic Orbital (GIAO) method was utilized in
order to simulate the 1H and 13CNMR spectra of the examined complexes [56,57]. The
CPCM solvation model was used to investigate the probable solvent effects of DMSO [58].
To obtain values for the chemical shifts of the hydrogen and carbon atoms, values obtained
for TMS, obtained under the same conditions as for C1 and C2, were subtracted from the
corresponding values of the examined compounds. C1 and C2 complexes can exist in
two states: cis and trans. It is well known that the Boltzmann distribution expresses the
probability of a system being in each state as a function of its energy. The relative energy
of the two conformers can thus be utilized to predict their distribution. The following
equation is used for this purpose:

Ncis
Ntrans

= e−(Ecis−Etrans)/kT
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where Ncis, Ntrans, Ecis, Etrans, k, and T denote the number of particles in each state, the
energy of both conformations, the Boltzmann constant, and temperature. Using the Boltz-
mann distribution to evaluate the ratio of two isomers was found to be effective in our
previous work [28].

3.2. Biological Studies
3.2.1. In Vitro Cytotoxicity

Cancer cell lines used in this study: human cervical adenocarcinoma (HeLa), melanoma
cell line (FemX), human pancreatic adenocarcinoma (Panc-1), and lung epithelial carcinoma
(A549) were maintained in complete RPMI-1640 medium. A somatic human umbilical
vein endothelial cell line (EA.hy926) and pancreatic ductal adenocarcinoma (Panc-1) were
grown in a DMEM medium. The cell lines were obtained from the American Type Culture
Collection (USA). Cell lines A549, FemX, Panc-1, and EA.hy926 were seeded into 96-well
microtiter plates. Seeding densities for each cell line were 5000 cells per well, except for the
FemX cell line, with a seeding density of 3000 cells per well. Stock solutions of compounds
(10 mM) were dissolved in dimethylsulfoxide (DMSO). The next day, cells were treated with
serial dilutions of compounds ranging from 12.5 to 200 µM [59]. The final concentrations
of DMSO applied to the cells were non-toxic and lower than 0.5%. Experiments were
conducted in triplicate and repeated two times. An MTT cell survival assay was used to
evaluate the effects of the compounds on cell survival after 72 h of treatment (for A549,
FemX, and Panc-1) and 24 h treatment (for EA.hy926), described in detail [59]. IC50 was
defined as the concentration of the compound that inhibited cell survival by 50% compared
with the control.

3.2.2. Cell Cycle Analysis

HeLa cells were seeded into 6-well plates (200,000 cells per well). After 24 h, they
were incubated with the IC50 concentrations of investigated compounds for 24 h. The
values of the IC50 concentrations applied were determined in advance and amount to 30.44
and 24.55 µM for C1 and C2, respectively. After incubation, the cells were trypsinized,
collected, and fixed in 70% ethanol on ice and stored at −20 ◦C for 7 days [59]. Then, the
cells were washed with PBS and incubated with RNaseA (100 µg/mL) for 30 min at 37 ◦C.
After incubation with propidium iodide (40 µg/mL) for 10 min, cells were analyzed by a
FACSCalibur flow cytometer (BD Biosciences Franklin Lakes, NJ, USA) using CELLQuest
software. The results were obtained from two independent experiments and presented
with standard deviations.

3.2.3. Fluorescence Microscopy

Cancer HeLa cells were seeded into 6-well plates on the coverslips (50,000 cells per
well). Compounds at IC50 concentrations were added to the cells after 24 h of adhesion.
Cells were stained with a mixture of two dyes (3 µg/mL acridine orange and 10 µg/mL
ethidium bromide in phosphate-buffered saline (PBS)) 24 h after the addition of the investi-
gated compounds. Photomicrographs were taken under a fluorescence microscope, a Carl
Zeiss PALM MicroBeam with AxioObserver.Z1 using AxioCamMRm (filters Alexa 488 and
568), as already described [59].

3.2.4. In Vitro Scratch Assay

EA.hy926 cells were seeded into a 24-well plate (70,000 cells per well) in the complete
DMEM medium. Confluent cell monolayers were formed after 24 h and scraped with a
p200 pipette tip to create a straight central scratch line, as described earlier [59]. After
washing with nutrient, medium cells were incubated with subtoxic concentrations (IC20)
of investigated compounds for 24 h and the nutrient medium was added to the control
wells. The IC20 concentrations of the compounds used are C1-2.75 µM and C2-3.50 µM.
Photomicrographs were captured directly after making the wound and then 24 h later under
the inverted phase-contrast microscope. The surface area of each wound was calculated
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using the open-source program ImageJ [60], at 0 h and after 24 h. Then, the percentages of
the wound reduction for each well after 24 h were calculated. Results are shown as average
values of three independent experiments and presented with standard deviations.

3.2.5. Tube Formation Assay

The effects of the compounds on the inhibition of the angiogenesis of human endothe-
lial EA.hy926 cells were analyzed by the endothelial cell tube formation assay [59].

Corning® Matrigel® Basement Membrane Matrix was gradually thawed overnight on
ice, from −20 ◦C, where it was stored, to +4 ◦C. The 24-well plates and pipette tips were
cooled to the same temperature (+4 ◦C). Then, 24-well plates (standing on ice) were coated
with 200 µL of cold Corning® Matrigel® medium. The plates were then incubated for 2 h at
37 ◦C, in a CO2 incubator, in order to form a solid gel. EA.hy926 cells were then seeded
into the wells (40,000 cells per well, suspended in 400 µL of complete DMEM medium).
Only the nutrient medium was added to the control wells, while the others were treated
with subtoxic (IC20) concentrations of investigated compounds. After 20 h of incubation,
cells were observed and photographed under the inverted phase-contrast microscope.

3.2.6. Antimicrobial Activity

The antimicrobial activity of the compounds was tested against 12 bacterial strains
(4 standard strains, 3 clinical isolates, 5 isolates from nature) and 1 yeast species (Table S8).
All clinical isolates were a generous gift from the Institute of Public Health in Kragujevac.
The other microorganisms were provided from the collection of the Microbiology Labo-
ratory of the Faculty of Science, University of Kragujevac (further details are given in the
Supplementary Materials).

3.2.7. Statistical Processing of the Information

All of the results obtained from in vitro studies were statistically processed by usage
of a Student’s t-test. The t-test in statistics represents a method of testing hypotheses
about the mean of a small sample drawn from a normally distributed population when
the population standard deviation is unknown. Further information can be found in the
following paper [61].

3.2.8. Protocol of Molecular Docking Study

To investigate the inhibitory potential and evaluate inhibitory constants and bind-
ing energies, molecular docking studies were performed. In order to predict proteins that
would be inhibition targets for the investigated compounds, the SwissTargetPrediction web-
server, based on algorithms of artificial intelligence, was used [62]. The crystal structures of
the proteins used in the molecular docking study were obtained from RCSB Protein Data
Bank, with PDB IDs: 2KS1, 3GQL, and 1G5M, for epidermal growth factor receptors (EGFR),
tyrosine kinase receptors (RTK), and B-cell lymphoma 2 (BCL-2), respectively [63]. Water
molecules, cofactors, and co-crystalized ligands were deleted, and proteins were prepared
for the simulation by using BIOVIA Discovery Studio 4.0 [64]. Ligands and complexes were
prepared for simulations by geometry optimization using the Gaussian16 software package,
implementing the B3LYP-D3 level of theory with Becke–Johnson empirical dispersion, and
LANL2DZ/6-311+G(d,p), as mentioned in the Section 3.1.3. For performing molecular
docking simulations, the AutoDock4.2 software package was used [65]. The Kollman par-
tial charges and polar hydrogens were added using the AutoDockTools graphical interface.
The flexibility of the ligands/complexes was taken into account, while the protein remained
a rigid structure. For protein-complex flexible docking, the Lamarckian Genetic Algorithm
(LGA) was used. The following parameters were determined for the LGA method: There
were a maximum of 250,000 energy evaluations, 27,000 generations, and mutation and
crossover rates of 0.02 and 0.8, respectively. AutoGridFR was utilized for the search of the
active site and ligand orientation, and AutoDock 4.2.6 was implemented for the molecular
docking energy calculations using Amber Force Field. The interactions between the target
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protein and the investigated compounds were analyzed and illustrated in 3D using BIOVIA
Discovery Studio 4.0 and AutoDockTools.

4. Conclusions

In this study, two new palladium(II) complexes with bidentate coumarin-ligands have
been synthesized, structurally characterized, and screened for cytotoxicity. In vitro cyto-
toxicity was tested on five different carcinoma cell lines: human cervical adenocarcinoma
(HeLa), the melanoma cell line (FemX), lung epithelial carcinoma (A549), the somatic hu-
man umbilical vein endothelial cell line (EA.hy926), and pancreatic ductal adenocarcinoma
(Panc-1). HeLa were the most sensitive to the cytotoxic effect of the tested compounds.
The strongest cytotoxic activity on all the tested cell lines, except HeLa, was exerted by
the C1 compound, followed by the C2 compound, while the coumarin ligands L1 and L2
had less potent cytotoxic effects. The compounds that showed the highest cytotoxic effect
were further analyzed for the effect on HeLa cell cycle distribution. These results indicate
that compounds C1 and C2 exerted a proapoptotic effect on HeLa cancer cells in vitro. To
determine the mechanism of cytotoxic activity, molecular docking studies were employed.
Proteins towards which inhibitory activity was investigated were selected according to the
SwissTargetPrediction web server, as well as the available literature. It was found that the
highest inhibitory activity was of C1 towards RTK, which is in excellent correlation to the
experimental results. Moreover, it is worth mentioning that the investigated compounds
show equivalent or superior inhibitory activity towards all three investigated proteins, in
comparison with commercially available therapeutic standards.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph16010049/s1, Figure S1. Stability assessment of C1 in different
timeframes; Figure S2. Stability assessment of C2 in different timeframes; Figure S3. 600 MHz 1H
NMR spectrum of C1 (DMSO-d6, 25 ◦C); Figure S4. 150 MHz 13C NMR spectrum of C1 (DMSO-d6,
25 ◦C); Figure S5. 1H-13C HMBC NMR spectrum of C1. The one-dimensional 600 MHz 1H spectrum
is shown at the top edge, and a 150 MHz 13C NMR spectrum at the left-hand edge (DMSO-d6,
25 ◦C); Figure S6. 600 MHz 1H NMR spectrum of C2 (DMSO-d6, 25 ◦C); Figure S7. 150 MHz 13C
NMR spectrum of C2 (DMSO-d6, 25 ◦C); Figure S8. 1H-13C HMBC NMR spectrum of C2. The
one-dimensional 600 MHz 1H spectrum is shown at the top edge, and a 150 MHz 13C NMR spectrum
at the left-hand edge (DMSO-d6, 25 ◦C); Figure S9. Structures of investigated complexes and IC50
values on pancreatic carcinoma cell lines (from previous work MiaPaCa-2 [21] (left) and from present
investigation Panc-2 (right)); Figure S10. Molecular docking simulations: Interactions of L1, L2,
C1, C2, and STN and EGFR, with H-bond receptor surface map; Figure S11. Molecular docking
simulations: Interactions of L1, L2, C1, C2, and STN and BCL-2, with H-bond receptor surface map;
Table S1. Bond lengths of the C1 and C2 in trans form; Table S2. Bond angles of the investigated
compounds in the trans form; Table S3. Important dihedral angles of the investigated compounds
in the trans form; Table S4. Experimental and calculated (by using the DFT/B3LYP-D3BJ method)
chemical shifts (ppm) in the 1H NMR spectrum in DMSO for investigation compounds. The peak for
the proton of the OH group was not considered due to the use of the implicit solvation model (CPCM);
Table S5. Experimental and calculated (by using the DFT/B3LYP-D3BJ method) chemical shifts (ppm)
in the 13C NMR spectrum in DMSO for investigated compounds; Table S6. Spectral data from the IR
spectrums; Table S7. Interactions (conventional hydrogen bonds-CHB, non-conventional hydrogen
bonds–NCHB, and electrostatic interactions-ESI) obtained from molecular docking simulations of
inhibition of RTK with C1, C2, L1, L2 and STN. Lengths of formed interactions are given in Å; Table S8.
Antimicrobial activity of tested compounds and positive controls. References [28,34,50,66–68] are
cited in supplementary materials.
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NMR, FTIR, UV–Vis), quantum chemical and molecular docking investigation of 3-acetyl-4-hydroxy-2-oxo-2H-chromen-7-yl
acetate. J. Mol. Struct. 2021, 1225, 129256. [CrossRef]
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biopharmaceutical activity and fatty acid content of endemic Fucus virsoides algae from Adriatic Sea. Acta Pol. Pharm. 2019, 76,
833–844. [CrossRef] [PubMed]

60. ImageJ. Available online: https://imagej.nih.gov/ij/ (accessed on 24 September 2022).
61. Bailey, N.T. Statistical Methods in Biology; Cambridge University Press: Cambridge, UK, 1995.
62. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal

chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [CrossRef] [PubMed]
63. Rose, P.W.; Beran, B.; Bi, C.; Bluhm, W.F.; Dimitropoulos, D.; Goodsell, D.S.; Prlic, A.; Quesada, M.; Quinn, G.B.; Westbrook,

J.D.; et al. The RCSB Protein Data Bank: Redesigned web site and web services. Nucleic Acids Res. 2010, 39, D392–D401. [CrossRef]
[PubMed]

64. Jejurikar, B.L.; Rohane, S.H. Drug designing in discovery studio. Asian J. Res. Chem. 2021, 14, 135–138.
65. Rizvi, S.M.D.; Shakil, S.; Haneef, M. A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non-

bioinformaticians. EXCLI J. 2013, 12, 831.
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