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Abstract: The current study investigated “pharmacodynamics and pharmacokinetics interactions” of
losartan with Curcuma longa (CUR) and Lepidium sativum (LS) in hypertensive rats. Hypertension
was induced by oral administration of L-NAME (40 mg/kg) for two weeks. Oral administration
of CUR or LS shows some substantial antihypertensive activity. The systolic blood pressure (SBP)
of hypertensive rats was decreased by 7.04% and 8.78% 12 h after treatment with CUR and LS,
respectively, as compared to rats treated with L-NAME alone. LS and CUR display the ability to
potentiate the blood pressure-lowering effects of losartan in hypertensive rats. A greater decrease
in SBP, by 11.66% and 13.74%, was observed in hypertensive rats treated with CUR + losartan and
LS + losartan, respectively. Further, both the investigated herbs, CUR and LS, caused an increase
in plasma concentrations of losartan in hypertensive rats. The AUC0-t, AUC0-inf and AUMC0-inf

of losartan were increased by 1.25-fold, 1.28-fold and 1.09-fold in hypertensive rats treated with
CUR + losartan. A significant (p < 0.05) increase in AUC0-t (2.41-fold), AUC0-inf (3.86-fold) and
AUMC0-inf (8.35-fold) of losartan was observed in hypertensive rats treated with LS + losartan. The
present study affirms that interactions between CUR or LS with losartan alter both “pharmacokinetics
and pharmacodynamics” of the drug. Concurrent administration of losartan with either CUR or
LS would require dose adjustment and intermittent blood pressure monitoring for clinical use in
hypertensive patients. Additional investigation is necessary to determine the importance of these
interactions in humans and to elucidate the mechanisms of action behind these interactions.

Keywords: garden cress; herb–drug interaction; hypertension; L-NAME; losartan; pharmacodynamic;
pharmacokinetic; turmeric

1. Introduction

Medicinal herbs have been used for centuries as remedies in nearly all nations [1].
The consumption of medicinal plants to cure various ailments is common, particularly
in developing countries [2–4]. Moreover, in Western countries, medicinal plant products
are increasingly used, on the basis of self-selection, to either substitute for or supplement
modern medicines [5–7]. Hence, the opportunity for herb–drug interactions is increasing as
products are simultaneously administered [8–10]. Various interactions of antihypertensive
drugs with concurrently administered herbs are reported [11–13]. Further, conventional
herbs are being used increasingly by hypertensive patients and interactions of these herbs
with antihypertensive medicines are now receiving notable attention [14–18].

Some studies have explored the use of herbal medicines for the management of hyper-
tension and interactions with antihypertensive agents [8,19,20]. Several medicinal herbs
cause alterations in blood pressure, and concurrent administration of herbs with modern an-
tihypertensive drugs might modulate the effects of the drug [21,22]. Such interactions could
result in hypertensive emergencies and other serious cardiovascular complications [17,23].
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Thus, further studies are needed on the impacts of widely used herbs that could cause alter-
ation in blood pressure and their “pharmacokinetics and pharmacodynamics interactions”
with antihypertensive medications. Losartan is a frequently prescribed antihypertensive
drug; a 50 mg tablet of losartan has a reported bioavailability of 32.6% [24]. Losartan works
by inhibiting the angiotensin II receptor. It inhibits angiotensin II-induced physiological
effects by binding competitively and selectively to the AT1 receptor. The drug also inhibits
angiotensin II-induced vasoconstriction and aldosterone activity, thus lowering blood
pressure [25,26]. It is likely that this low oral bioavailability is the result of inadequate
absorption and inconsistent first-pass metabolism [27]. An estimated 14% of the losartan
dose is metabolized into E 3174 after it is administered orally [28]. E 3174 is 10 to 40 times
more potent than losartan itself; this metabolite is largely responsible for the pharmaco-
logical activity of losartan [29]. Losartan is metabolized predominantly by CYP3A4 and
CYP2C9 [30–32]. Studies conducted in vitro with human liver microsomes have shown
that at 10 µmol/L concentration, sulfaphenazole (inhibitor of CYP2C9) and ketoconazole
(inhibitor of CYP3A4) inhibited the losartan metabolism to E 3174 by 81% and 12%, re-
spectively [33,34]. Hence, modulation of the activity of these CYP enzymes by concurrent
administration of herbs would alter the pharmacokinetics of losartan [35,36]. The present
study examined two commonly used Asian herbal remedies viz. LS, (also known as garden
cress) and CUR (also known as turmeric) for their impact on the “pharmacokinetics and
pharmacodynamics” of losartan in hypertensive Wistar rats.

LS is an edible annual herb in the family Cruciferae, cropped in “India, Europe, and
the United States” as well as “Arabian countries” [37–39].

A large portion of LS grows in West Asia and Egypt. Glucosinolates are the primary
constituents of LS. In addition to volatile oils, the leaves and seeds of this plant are rich
in minerals, amino acids and fatty acids [37,39]. There is 33–54% carbohydrates in seeds,
25% protein, 14–24% lipids and 8% crude fibre in seeds [40,41]. LS has been reported for
treatment of several disorders [42–44]. Traditional herbal healers often suggest the herb
for patients with high blood pressure, high blood glucose levels and renal disease [44–46].
Previously, Al-Jenoobi et al. investigated the effect of herbs, including LS, on the pharma-
cokinetics of theophylline in beagle dogs. The AUC0-inf of theophylline increased (37%)
when co-administered with LS [37].

In addition, simultaneous administration of LS changes sildenafil pharmacokinetics.
Treatment of beagle dogs with LS leads to a substantial decrease in the Cmax and AUC
of sildenafil. Hence, LS administration might reduce the bioavailability of sildenafil and
lessen its therapeutic effects [47]. Additionally, treatment of beagle dogs with LS caused a
reduction in phenytoin clearance accompanied by an increase in the Cmax and t1/2 of the
drug [48]. A similar result was observed for the Cmax, and t1/2 of carbamazepine when
co-administered with LS in rabbits [49].

“Curcuma longa L. commonly known as turmeric, (Zingiberaceae)” is known not only
as a South-East Asian spice but also as a medicinal herb [50]. There are a number of coun-
tries that have used the rhizome of this plant as a safe remedy against a variety of ailments
including sinusitis, coughs, wound healing, inflammation and skin problems [51–54]. The
main components of turmeric are “bisdemethoxycurcumin (6%), demethoxycurcumin
(17%) and curcumin (77%)” [50].

In previous study, concomitant oral administration of curcumin, the active constituent
of CUR, and gliclazide in rats and rabbits showed that oral administration of curcumin
potentiates the blood glucose-lowering action of gliclazide in normal and diabetic rats and
in rabbits. No pharmacokinetic alteration in gliclazide was observed in animals pre-treated
with curcumin [55]. In a different study, pre-treatment of rats with curcumin led to an
increase in the Cmax (3.5-fold) and AUC (1.7-fold) of losartan in rats [56]. Furthermore, the
treatment of rats with curcumin and celiprolol produced an increase of 1.9 times in Cmax
and of 1.3 times in AUC [57].

Currently, few reports relate to “pharmacodynamic and pharmacokinetic interactions”
of commonly used herbs, such as CUR and LS, with losartan. The present study addressed
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the hypothesis that pre-treatment of rats with CUR and LS will impact in vivo activity of
losartan in L-NAME-induced hypertensive rats.

2. Materials and Methods

CUR was purchased from “Gul M. Memon spice factory, Jeddah, Saudi Arabia”.
“L-NAME (N-nitro l-arginine methyl ester)” was procured from “Carbosynth limited, Berk-
shire, UK”. “Sortiva 50 mg (losartan potassium) was purchased from SPIMACO, Al-Qassim,
Saudi Arabia”. LS was purchased from “Production of 7 Spices Trading establishment,
Riyadh, Saudi Arabia”.

2.1. Induction of Hypertension in Rats

The L-NAME, at a dose of 40 mg/kg p.o., was administered to rats daily for
two weeks for the induction of hypertension. Rats (250 ± 20 g) which showed systolic
blood pressure (SBP) less than 150 mm Hg were excluded from the study [58,59]. The
in vivo experiments were carried out on Wistar rats after the study was approved by the
“Research Ethics Committee, King Saud University with approval number KSU-SE-18-27”.

2.2. Pharmacodynamics of Losartan in Hypertensive Rats Treated with CUR and LS

Rats were trained, once per day up to five days, to accommodate a restrainer so
they remained calm during measurement of SBP [60–62]. The SBP was monitored with a
“tail-cuff system (Visitech, BP-2000 series II, Apex, NC, USA)”.

Wistar rats were divided into three groups (Group A to C) with five animals in
each group. Each group provided two sets of results: with and without losartan. In
Group A, animals received L-NAME for two weeks. On day 14, SBP of each animal was
monitored at 0, 1, 2, 4, 8 and 12 h (L-NAME alone). On day 15, animals were orally admin-
istered losartan (10 mg/kg, as single dose), and SBP was monitored 0, 1, 2, 4, 8 and 12 h
(L-NAME + losartan) [63,64].

Similarly, Group B rats were treated with L-NAME + CUR (200 mg/kg/day) [65,66] for
two weeks, and on day 14, SBP was monitored at 0, 1, 2, 4, 8 and 12 h (L-NAME + CUR). On
day 15, animals were administered losartan (10 mg/kg, oral single dose) and SBP of each
rat was monitored at 0, 1, 2, 4, 8 and 12 h (L-NAME + CUR + losartan). Group C rats were
treated in the in the same manner as Group B animals, except that LS
(300 mg/kg/day) was used instead of CUR [67–69].

2.3. Pharmacokinetics of Losartan in Hypertensive Rats Treated with CUR and LS

After a suitable washout period (three days) of Group A, B and C animals, losartan
(10 mg/kg) was again administered as single oral dose, and blood samples were taken out
from the animals at 0, 0.5, 1, 2, 4, 8 and 12 h. Plasma samples were analysed by UPLC-
MS/MS [70]. During washout, Group A animals received L-NAME alone, and Group B
and C animals were administered L-NAME + CUR and L-NAME + LS, respectively.

2.4. Statistical Analysis

Differences in means were analysed by one-way ANOVA followed by Tukey test using
GraphPad Instant 3.06 (GraphPad Software, Inc, San Diego, CA, USA). * and # p < 0.05
were considered significant.

3. Results and Discussion
3.1. Changes in Losartan Pharmacodynamics in Hypertensive Rats Treated with CUR and LS

Medicinal herbs can induce or inhibit the drug-metabolizing enzymes, the modulating
“pharmacokinetics and pharmacodynamics” drug substrates. CUR and LS can produce
herb–drug interaction when administered concurrently with conventional drugs [66,71].
The current investigation aimed to measure the influence of CUR and LS on the blood
pressure-lowering action and on the pharmacokinetic profile of losartan in L-NAME-
induced hypertensive rats. Hypertension was induced with L-NAME, which is economical
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and widely used for this purpose in animal models. The study used hypertensive rats to
mimic the human condition under which interactions might occur. In the current study,
important alterations were noted in “pharmacodynamics and pharmacokinetics” of losartan
with both the investigated herbs.

In normal rats, the SBP was 110.60 ± 3.32 mmHg (mean of 0 h to 12 h); an obvious rise
in the SBP of rats (p < 0.05) was noted following the administration of L-NAME. Hyper-
tension was effectively stimulated in all three groups of animals. Animals administered
L-NAME alone exhibited an SBP of more than 150 mm Hg over the duration of the study.
One hour after L-NAME administration, a 6.13% increment in SBP was observed, and SBP
reached a maximum value of 181.40 mm Hg at 4 h (Figures 1 and 2). A slight increase
in SBP was noted with time, reaching 173.20 mg Hg at 12 h. Experimental animals that
received L-NAME + losartan demonstrated a gradual decreased in SBP. Maximum SBP
decreased from 166 mm Hg at 0 h to 139 mm Hg (p < 0.05) at 2 h after losartan admin-
istration. The SBP of rats increased steadily after 4 h following losartan administration;
however, it remained as high as 155 mm Hg at 12 h. Treatment of experimental animals
with L-NAME + CUR induced a gradual decline in the SBP of hypertensive rats through
12 h after CUR treatment. The maximum effect (p < 0.05) was seen at 4 h after CUR ad-
ministration: SBP was measured at 164.80 mm Hg at 0 h, and at 155.20 mm Hg at 4 h, a
5.83% decrease. SBP decreased (at 4 h) by 14.44% compared to rats in the group treated
with L-NAME alone (Figure 1). Four hours after CUR administration, a minor increase in
SBP was observed, reaching 161 ± 1.581 mg Hg at 12 h. At 12 h, a 7.04% reduction in SBP
in L-NAME + CUR-administered rats was noted when compared with the SBP reading at
12 h of rats administered L-NAME alone.

Figure 1. Changes in SBP in hypertensive rats receiving CUR. (A) Mean SBP after 12 h. (B) Time
course of SBP (n = 5, mean ± SEM). CUR, Curcuma longa; L-NAME, “N-nitro l-arginine methyl ester”;
SBP, systolic blood pressure. * p < 0.05 as compared to group treated with L-NAME alone.

Animals administered L-NAME + CUR + losartan exhibited a sharp decline in SBP
(p < 0.05, 136.20 ± 1.118 mm Hg) at 4 h after losartan administration. The decrease was
17.75% in comparison to the SBP of rats at 0 h, 165.60 ± 1.88 mm Hg. Beyond 2 h, the SBP
of animals mildly raised, and then reached to 153.00 ± 1.22 mm Hg at 12 h. At 12 h, SBP
was 11.66% less (p < 0.05) than SBP in animals in the group treated with L-NAME alone.
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Figure 2. Changes in SBP in hypertensive rats receiving LS. (A) Mean SBP after 12 h. (B) Time course
of SBP (n = 5, mean ± SEM). L-NAME, “N-nitro l-arginine methyl ester”; LS, Lepidium sativum; SBP,
systolic blood pressure. * p < 0.05 as compared to group treated with L-NAME alone.

Likewise, animals treated with L-NAME + LS exhibited decreased SBP compared to
rats in the L-NAME group. A significant decrease of 7.59% (p < 0.05) in the SBP of rats ad-
ministered L-NAME + LS was observed at 4 h after administration of LS (Figure 2). Beyond
4 h, the SBP of rats progressively increased by 4.64% and reached 158.00 ± 1.64 mm Hg
at 12 h. At 12 h, there was a decrease in SBP by 8.78% (p < 0.05) in rats treated with
L-NAME + LS as compared with the 12 h reading of animals in the group treated with
L-NAME alone.

In rats treated with L-NAME + LS + losartan, a drop of 20.69% in SBP was measured
at 2 h after losartan administration. The SBP was noted to be 129.60 ± 2.01 mm Hg. From
2 h, the SBP of rats increased with time by 15.28%, and reached 149.40 ± 2.76 mm Hg after
12 h. This latter value was still 13.74% less (p < 0.05) than the SBP in rats in the group
administered L-NAME alone. It was found that the everyday treatment of experimental rats
with CUR and LS for two weeks enhances losartan effects on SBP. The findings of another
study revealed that hypertensive animals treated with turmeric extract exhibited notable
improvement in all the complications associated with hypertension investigated in this
study. This improvement could be attributed to increased levels of nitric oxide and reduced
arterial stiffness. The authors concluded that turmeric appears to play an active role in
modulating vascular tone [72]. In another study, it was reported that the turmeric extract
substantially lowered the blood pressure in Wistar rats. Animals treated with turmeric
extracts (acute dose—5 g/kg) survived during the course of study. Further, the authors
concluded that their study provides evidence that turmeric and its components exhibited
a dose-dependent blood pressure-lowering effect, and that there is almost no toxicity as-
sociated with turmeric extract. Further, the primary active component of turmeric can
mitigate oxidative stress by suppressing superoxide formation and enhancing glutathione.
In addition, it elevated O2 generation and “endothelial nitric oxide synthase” levels in the
arteries of hypertensive rats [73]. In another study, it was reported that the primary active
component of turmeric (curcuma) suppresses angiotensin II receptor type 1 (AT1R) levels
in A10 cells by modulating specificity protein 1/AT1R DNA binding, thereby decreasing
AT1R-mediated vasoconstriction and, therefore, preventing the occurrence of blood pres-
sure elevation in an angiotensin II-induced hypertensive experimental model [74]. In an
antecedent investigation, Maghrani et al. showed that the treatment of “spontaneously
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hypertensive rats” with aqueous LS extract resulted in a substantial elevation in chloride,
potassium and sodium excretion in the urine. The authors reported that regular intake
of aqueous LS extract for a period of three weeks demonstrated diuretic as well as blood
pressure-lowering effects [75]. Hence, based on the above observations, the substantial
changes in the pharmacodynamic response of losartan with investigated herbs could be
due to the improvement in the bioavailability of losartan, resulting in potentiation of the
action of losartan in the presence of herbs.

3.2. Changes in Losartan Pharmacokinetics in Hypertensive Rats Treated with CUR and LS

The plasma concentration versus time profiles of losartan with or without concomitant
exposure to CUR and LS in L-NAME-induced hypertensive rats are provided in Figure 3.

Figure 3. Pharmacokinetic profile of losartan in hypertensive rats treated with CUR and LS (n = 5,
mean ± SEM). CUR, Curcuma longa; L-NAME, “N-nitro l-arginine methyl ester”; LS, Lepidium sativum.
* p < 0.05 as compared to L-NAME + losartan, # p < 0.05 as compared to L-NAME + CUR+ losartan.

A considerable increase in losartan Cmax in animals treated with L-NAME + CUR + losartan
and with L-NAME + LS + losartan was observed (Figure 4A). The Cmax of losartan in
animals treated with L-NAME + CUR + losartan and L-NAME + LS + losartan raised by
18.45% and 125.16%, respectively, in contrast to animals that received L-NAME + losartan,
though these changes were not statistically significant (Figure 4A).

The Tmax of losartan in rats treated with L-NAME + CUR + losartan and with
L-NAME + LS + losartan were 0.70 ± 0.12 h and 1.00 ± 0.27 h, respectively (Figure 4B);
while rats treated with L-NAME + losartan exhibited Tmax of 1.40 ± 0.36 h (Figure 4B).

A 1.25-fold increase in the AUC0-t of losartan plasma concentration was demonstrated
in rats administered L-NAME + CUR + losartan in comparison to the control group animals
(L-NAME + losartan); however, this change was not statistically significant (Figure 4C). On
the other hand, the AUC0-t of losartan in rats treated with L-NAME + LS + losartan was im-
proved by 2.41-fold (p < 0.05) when compared with rats administered L-NAME + losartan
(Figure 4C).
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Figure 4. Pharmacokinetic parameters (A) Cmax, (B) Tmax, (C) AUC0-t, (D) AUC0-inf and
(E) AUMC0-inf of losartan alone and in presence of CUR and LS following an oral administra-
tion in hypertensive rats (n = 5. mean ± SEM). L-NAME, “N-nitro l-arginine methyl ester”; CUR,
Curcuma longa; LS, Lepidium sativum. * p < 0.05 as compared to L-NAME + losartan, # p < 0.05 as
compared to L-NAME + CUR+ losartan.

Further, a significant (p < 0.05) increase in the AUC0-inf of losartan was noted in rats
treated with L-NAME + LS + losartan, while the increase in the AUC0-inf in rats treated with
L-NAME + CUR + losartan was not statistically significant (Figure 4D). The AUMC0-inf of losar-
tan was also increased by 1.09-fold in rats that were administered L-NAME + CUR + losartan;
meanwhile, a significant (p < 0.05) 8.35-fold increment in the AUMC0-inf of losartan was noted in
rats administered L-NAME + LS + losartan (Figure 4E). The t1/2 was extended by 1.04-fold and
2.21-fold in rats treated with L-NAME + CUR + losartan and with L-NAME + LS + losartan,
respectively (Figure 5A). Inversely, the Ke of losartan was decreased by 43.22% and 53.16%
(Figure 5B). The MRT of losartan was extended by 2.09-fold in animals treated with
L-NAME + LS + losartan, while the MRT in groups treated with L-NAME + losartan and
those treated with L-NAME + LS + losartan were comparable (Figure 5C). Meanwhile, the
CL/F of losartan was decreased by 28.85% and 77.37% when animals were treated with
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L-NAME + CUR + losartan and with L-NAME + LS + losartan, respectively (Figure 5D).
Both CUR and LS altered the pharmacokinetic parameters of losartan in rats; however,
only the AUC0-t, AUC0-inf, AUMC0-inf and MRT in rats treated with LS showed statistically
significant changes. Other parameters did not show statistically significant changes with
either herb, possibly due to high variation in pharmacokinetic data.

Figure 5. Pharmacokinetic parameters (A) t1/2, (B) Ke, (C) MRT and (D) CL/F of losartan alone and
in presence of CUR and LS following an oral administration in hypertensive rats (n = 5. mean ± SEM).
L-NAME, “N-nitro l-arginine methyl ester”; CUR, Curcuma longa; LS, Lepidium sativum. * p < 0.05 as
compared to L-NAME + losartan.

Previously, mostly studies have only demonstrated the blood pressure-lowering effect
of investigated herbs. Only a few researches have been carried out related to the “phar-
macodynamic and pharmacokinetic interactions” of commonly used herbs, such as CUR
and LS, with losartan. Both herbs are very commonly ingested, particularly in developing
countries, to cure various ailments, including hypertension. The current study indicates
that both CUR and LS can alter both “pharmacodynamics and pharmacokinetics” of orally
administered losartan in hypertensive rats. Oral administration of CUR or LS alone shows
some significant antihypertensive activity. In addition, CUR and LS display the ability to
potentiate the blood pressure-lowering effects of losartan in hypertensive rats. Further,
both the investigated herbs, CUR and LS, caused an increase in plasma concentrations of
losartan in hypertensive rats. A 1.25-fold and 2.41-fold increase in AUC0-t of losartan was
observed in hypertensive rats treated with L-NAME + CUR + losartan and with L-NAME
+ LS + losartan, as compared to the animals in a group treated with L-NAME + losartan.
Hence, the efficacy of losartan could increase following the intentional or unintentional
concomitant use of losartan and either herb. This could result in hypertensive emergencies
and other serious cardiovascular complications. The dose of losartan might need to be
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adjusted when such use occurs. Despite this, additional studies are recommended in order
to verify the clinical significance of these findings. We recommend additional in vivo
research in animal models, studying other herbal plants that may affect blood pressure, in
order to examine these herbs’ interactions with antihypertensive agents.

4. Conclusions

The present study was designed to examine “pharmacokinetic and pharmacodynamic
interactions” of losartan concurrently administered with two common herbs, Curcuma
longa and Lepidium sativum, in hypertensive rats. Hypertension was effectively induced in
Wistar rats after oral administration of L-NAME. Administration of CUR and LS dropped
the SBP of hypertensive rats by 7.04% and 8.78% at 12 h relative to hypertensive rats. A
more pronounced decline in SBP, by 11.66% and 13.74%, was noted in hypertensive rats
administered with CUR + losartan and LS + losartan, respectively. The AUC0-t of losartan
was improved by 1.25 times and 2.41 times in hypertensive rats treated with CUR + losartan
and with LS + losartan, respectively. The study affirms that interaction of these herbs with
losartan affects both the “pharmacokinetics and pharmacodynamics” of the drug. Hence,
administration of either herb with losartan may require dose adjustment and monitoring
of blood pressure at regular intervals. Additional investigation is needed to determine
the probabilities of such herb–drug interactions in patients, and to define the mechanism
of action.
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