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Abstract: Kai-Xin-San (KXS) is a classic formula for the treatment of Alzheimer’s disease (AD). KXS
has been widely used to treat emotional diseases; however, its active components remain unknown.
There have been some reports about the efficacy and metabolic analysis of KXS, which are mainly
based on studying normal animals. The current work first established an AD rat model by injecting
D-galactose into the abdominal cavity and injecting Aβ25–35 into the hippocampus on both sides,
followed by intragastric administration of KXS for a consecutive week; then, the analytical method
for ethanol extraction from the serum of normal and model rats was developed using UPLC-LTQ-
Orbitrap-MS; finally, the transitional components in the blood were systematically compared and
analyzed by multivariate statistical analysis. A total of 36 components of KXS were identified in
the rat serum of the normal group, including 24 prototype components (including ginsenosides,
triterpenoid acids of Poria cocos, polygala saponins, polygala xanthones and polygala ester) and
13 metabolites (including desugar, hydration and oxidation products of ginsenosides, triterpenoid
acid hydroxylation, deoxygenation, demethylation, desaturation, and glycine-conjugated products of
Poria cocos). Twenty KXS-relevant components were detected in the rat serum of the model group,
including 11 prototypes and 9 metabolites. The normal group and the model group shared 12 common
components, including 9 prototypes and 3 metabolites. The intestinal microecological balance of
the model rats probably was destroyed, affecting the absorption/metabolism of saponins by the
body, which resulted in fewer transitional components in the model group. This study reflected the
drug-body interaction from an objective and accurate perspective, offering references and insights for
elucidating the basis of active components and mechanism of action of KXS for treating AD.

Keywords: Kai-Xin-San; serum pharmacochemistry; AD-model rat; ultra-high performance liquid
chromatography-linear ion trap-Orbitrap mass spectrometry (UPLC-LTQ-Orbitrap MS); multivariate
statistical analysis; prototype component; metabolites

1. Introduction

Kai-Xin-San was first recorded in “Volume 14 Small intestine of Essential Recipes for
Emergent Use Worth A Thousand Gold”, which consists of the following 4 drugs: ginseng
radix et rhizoma, polygalae radix, poria and acori tatarinowii rhizoma. The sweet and
warm ginseng radix et rhizoma is the monarch, nourishing Chi, inducing resuscitation
and benefiting the intellect; it is assisted by poria that is mildly sweet, with calming
and relaxing properties. The addition of mildly bitter Polygalae radix can relieve fright,
benefit the intellect and dispel depression. The mildly spicy acori tatarinowii rhizome can
unclog apertures and guide other components to ascend. Based on the above-mentioned
characteristics, physicians invented many similar formulas by modulating the ratio or
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adding more drugs; such examples are Ding-zhi bolus, Bu-xin decoction, and Sang-piao-
shao powder [1]. With the variation of the ratios of 4 component drugs, their indications
focus on different aspects, which mostly are emotion-related diseases. Recent studies have
showed that KXS is efficacious for the treatment and prevention of psychotic disorders
such as senile dementia and depression [2,3].

At present, most KXS studies focus on its pharmacodynamics, and there have been
in vivo metabolic studies on it and its component drugs. Using UPLC-Q-TOF/MS, Liu
identified 6 prototype components and 7 relevant metabolites in rats after the oral admin-
istration of polygalae radix [4]. Using ESI-MS, Ling identified 1 prototype component in
rat serum after the oral administration of poria [5]. Similarly, Zhang identified 26 proto-
type components using UPLC-Q-TOF/MS in the biological sample of rats after the oral
administration of the aqueous extract of KXS [6]. In the follow-up study, they identified
69 KXS-relevant components in rat serum among the in vivo transitional components [7].
The problem is that these studies are all based on normal animals; as there have been reports
that the absorption and metabolism of the same drug in normal animals are significantly
different from those in animals in a pathological state, studying the animals in a pathologi-
cal state is more accurate considering the real drug-body mechanism of action [8,9]. In this
sense, it is necessary to discuss the characteristics of absorption and metabolism of KXS
under the AD condition, if the martial basis of the active components is to be evaluated
accurately.

Combining the classic research approaches of pharmacochemistry and the modern
means of chromatography and mass spectrometry, serum pharmacochemistry of traditional
Chinese medicine (TCM) explores the active components that really work in vivo, which
offers support for the quality-control study of TCM. Given the complex components in
TCM, manually analyzing the peaks on a spectrogram will inevitably lead to neglect. Taking
multivariate statistics in metabonomics for reference, the transitional components in blood
could be characterized rapidly and comprehensively by extracting the ions in pre-treated
spectrograms and setting up parameters.

UPLC-LTQ-Orbitrap-MS (ultra-high performance liquid chromatography-linear ion
trap-Orbitrap mass spectrometry) is a technique that has many advantages such as high
resolution, high mass-accuracy, and wide dynamic range, allowing it to be a powerful
research tool for the study of complex TCM components. With the development of modern
LC-MS techniques and high efficiency of data-processing platforms, the idea of combining
serum pharmacochemistry of TCM can achieve better recognition and allow tracking of
the converting process of active TCM components in vivo [10,11]. Following this idea,
the current study initially replicated the AD rat model, and verified whether the model
was a success via behavioristics and histomorphology; then, using the combination of
UPLC-LTQ-Orbitrap-MS, serum pharmacochemistry and multivariate statistical analysis,
the transitional components in normal rats and AD-model rats with the oral administration
of KXS were systematically compared. The findings in this work could be of help for the
study of the material basis of KXS for treating AD. The whole study process is summarized
in Figure 1.
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2. Results
2.1. Assessment of the AD Rat Model
2.1.1. General Behavioral Observations

During the modeling, the hair of normal rats had a uniform color and was glossy. The
model rats consumed less food and water. The normal rats put on weight at a natural rate,
whereas the model rats hardly showed any change in their weight. The normal rats were
relatively active, whereas the model rats were inert, inactive and indifferent.

2.1.2. Morris Water Maze Test

As Figure 2 demonstrates, in the orienting-navigation test, AD rats had evident
prolonged escape latency (p < 0.05) on the 3rd and 4th days and significant prolonged
escape latency (p < 0.01) on the 5th day. In the space-exploring test, the swimming speed
of AD rats and the platform crossover number were significantly lower than those of
the normal rats (p < 0.05), while the target dwell time was significantly shorter than that
of the normal rats (p < 0.01). The tracks of model rats were evidently prolonged in the
space-exploring test (showed in Figure 2F); the tracks of the normal rats were closer to the
platform. The above results of behavioral experiments indicated that the learning ability of
rats decreased after modeling, suggesting the AD modeling was a success.
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Figure 2. The Morris water maze test to evaluate spatial learning and memory ability. (A) escape
latency in the water maze test; (B) swimming speed in the water maze within 60 s; (C) dwell time in
quadrants of the platform within 60 s; (D) times of crossing the platform within 60 s; (E) swimming
tracks on the 5th day of the navigation test; (F) swimming tracks in the space-exploring test. Note:
compared with the normal group * p < 0.05, ** p < 0.01.

2.1.3. Histomorphology of the Hippocampus

The pathological section of the rat hippocampus is shown in Figure 3. The hippocam-
pal neurons of normal rats were densely distributed in an orderly fashion; the morphology
of cells was normal, with nuclei in the center and clear nuclear membranes. In contrast,
the hippocampal neurons of model rats were relatively sparse; some neurons were rup-
tured, Nissl bodies decreased in number, nuclei shrunk and were concentrated, and the
boundaries of cells were vague.

2.2. Acquisition of Chromatograms of Biological Samples

The ethanol extract of KXS and serum samples of the blank normal group (CK), KXS-
treated normal group (CG), blank model group (MK), and KXS-treated model group (MG)
were quantitatively analyzed under the conditions listed in Sections 4.2.7 and 4.2.8. The
total ion chromatograms (TIC) in positive and negative modes are shown in Figure 4. As it
can be observed in Figure 4(A1,B1), KXS-relevant components achieved good separation
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within 80 min, and 160 principal components were identified based on our previous
work [12,13]; the relevant MS information has been summarized in Table S1, which could
be helpful for the identification of the components in serum. Comparing the TICs in both
positive and negative modes (Figure 4A vs. Figure 4B), it could conclude that TIC in
negative mode had a better response, which was then selected for the further MS analysis.
Significant differences were observed in the intensity and number of peaks on the serum
chromatograms of the normal group vs the model group and those before vs after dosing;
however, the components with low levels or response would readily be missed if their
identification was based on the MS information of these differential peaks. In addition, the
response of endogenous components was stronger than that of KXS-relevant components,
interfering with the identification of transitional components; hence, the in vivo prototype
components and metabolites of KXS were recognized and identified with the assistance of
multivariate statistical analysis (PCA and OPLS-DA).
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2.3. Multivariate Statistical Analysis

Peak-identification, peak-matching and normalization of the original data were pro-
cessed using the software SIEVE (edition 2.1); then, these data were imported into software
SIMCA (edition 14.1). PCA is capable of reducing the dimensions of data, checking up
whether there are differences among different groups on a scatter plot; then, the fragment
ions with VIP > 1.5, p < 0.05 and FC > 2 were screened out using OPLS-DA to explore
the differential components. The PCA results of serum of the four groups are presented
in Figure 5A: first, the normal group (CK: blank normal group; CG: KXS-treated normal
group) and the model group (MK: blank model group; MG: KXS-treated model group) were
gathering on both sides of the Y-axis; second, the differences before and after administration
were evident, which can be seen that they were gathering on both sides of the X-axis. This
phenomenon showed that the four groups could be well distinguished in the current model.
In Figure 5B,C of the loading plot of OPLS-DA, the samples before and after administration
were divided into two groups, suggesting that there were differential components in the
serum before and after administration. Similar results can be seen in the supplementary
materials Figure S1. With the above parameters, the in vivo differential components were
screened out and 2796 fragment ions were acquired for the normal groups and 1577 frag-
ment ions for the model groups. Table S2 exemplifies the filtered ions and their identified
parameters.
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2.4. Analysis and Identification of KXS Components in the Blood

The above differential ions described in Section 2.3 need further combing, confirmation
and verification. The in vivo prototype components and metabolites were identified by
using Compound Discoverer 3.2 based on accurate mass, retention time, fragment ion,
literature, as well as reference standards and an in-house database (Table S3). A total of
24 prototype components were identified in the rat serum of the KXS-treated normal group,
11 in the KXS-treated model group, and 9 were common components (summarized in
Table 1). Thirteen metabolites were identified in the rat serum of the KXS-treated normal
group, 9 in the KXS-treated model group, and 3 were common components (summarized
in Table 2).
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Table 1. Analysis and identification of prototype components in the rat serum of the KXS-treated normal group and model group.

No. Compound tR/min Formula Measured
Mass (m/z)

Mass
Error/ppm Ion Addition Fragment Ions (m/z) * Origin Group Reference

P1 Polygalaxanthone
VI 10.69 C23H26O12 493.1372 4.2 [M−H]− 317.0646, 302.0414, 175.0241 b CG [14]

P2 Polygalaxanthone
III 10.88 C25H28O15 567.1408 9.3 [M−H]− 399.0780, 345.0665, 315.0555,

272.0366 b CG [6,15]

P3 Ginsenoside Rg1 17.42 C42H72O14 845.4913 2.3 [M−H+HCOO]− 799.4779, 637.4269, 619.4165,
475.3755 a CG [12,13]

P4 Ginsenoside Re 17.45 C48H82O18 991.5531 5.9 [M−H+HCOO]− 945.5341 a CG [12,13]

P5 Polygala saponin
XXIX 20.34 C64H102O33 1397.616 −5.0 [M−H]− 1367.5997, 1173.5590, 1143.5489,

717.2394, 455.3132, 425.3030 b CG [14]

P6 Desacyl senega
saponin B 21.04 C59H94O29 1265.5863 4.4 [M−H]− 1235.5588, 907.4617, 455.3132,

425.3029 b CG/MG [16]

P7 Tenuifoliose O 21.93 C61H76O35 1367.4114 1.4 [M−H]−
1337.5914, 1187.5401, 1143.5506,
1113.5404, 1011.5094, 455.3137,
425.3033

b CG [15]

P8 Polygala saponin
XXII 22.23 C58H92O28 1235.5753 4.1 [M−H]− 1205.5500, 1011.5091, 555.1890,

469.1530, 455.3136, 425.3033 b CG [16]

P9 Polygala saponin
XXVIII 22.95 C53H84O24 1103.5313 3.0 [M−H]− 1073.5091, 455.3137, 425.3034 b CG [15]

P10 Ginsenoside Rb1 31.77 C54H92O23 1153.6052 4.5 [M−H+HCOO]− 945.5345, 783.4833, 621.4320,
459.3811 a CG/MG [12,13]

P11 Ginsenoside Ro 32.6 C48H76O19 955.4943 3.6 [M−H]− 835.4423, 793.4320, 731.4323,
613.3702, 569.3808, 523.3756 a CG [12,13]

P12 Ginsenoside Rc 33.23 C53H90O22 1123.5935 3.6 [M−H+HCOO]− 945.5341, 783.4829, 765.4727,
621.4317, 459.3808 a CG/MG [12,13]

P13 Ginsenoside Ra1 33.51 C58H98O26 1255.6407 7.1 [M−H+HCOO]− 1077.5756, 945.5345, 915.5244,
783.4832, 621.4321 a CG/MG [6,16]

P14 Ginsenoside Rb2 34.93 C53H90O22 1123.5936 3.7 [M−H+HCOO]−
1079.5835, 945.5360, 915.5260,
783.4845, 765.4742, 621.4330,
459.3816

a CG/MG [12,13]

P15 Ginsenoside Rd 39.24 C48H82O18 991.5518 4.6 [M−H+HCOO]− 945.5352 a CG/MG [12,13]

P16
16α-

hydroxytrametenolic
acid

66.39 C30H48O4 471.3501 4.6 [M−H]− 450.9847, 425.3457, 409.3143,
407.3351, 339.2720, 337.2563 c CG [5,17]

P17 Poricoic acid B 66.81 C30H44O5 483.3135 4.1 [M−H]− 465.3050, 411.2939, 409.2783,
367.3037, 255.2351 c CG/MG [5,17]
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Table 1. Cont.

No. Compound tR/min Formula Measured
Mass (m/z)

Mass
Error/ppm Ion Addition Fragment Ions (m/z) * Origin Group Reference

P18 Dehydrotumulosic
acid 67.49 C31H48O4 483.3503 4.9 [M−H]− 465.3412, 437.3461, 421.2759,

405.3196, 337.2564, 255.2350 c CG [5,17]

P19 Tumulosic acid 67.95 C31H50O4 485.3642 1.2 [M−H]− 437.3463, 423.3305, 389.2730,
337.2565, 275.204 c CG/MG [5,17]

P20 Poricoic acid A 68.13 C31H46O5 497.33 5.6 [M−H]−
479.3206, 453.3411, 435.3304,
425.3094, 423.2938, 409.2780,
381.3194

c CG/MG [5,17]

P21 Polyporenic acid C 69.33 C31H46O4 481.3296 −5.6 [M−H]− 481.3286, 463.3392, 437.2925,
419.2925, 403.2977 c CG [5,17]

P22 Poricoic acid
Bisomer 69.4 C30H44O5 483.3151 7.4 [M−H]− 465.3056, 439.3259, 421.3151,

381.2835, 353.2518, 255.2351 c MG [5,17]

P23
3-

epidehydrotumulosic
acid

69.7 C31H48O4 483.3501 4.5 [M−H]− 421.3147, 391.2287, 255.2350 c CG [5,17]

P24
3β-hydroxylanosta-

8,24-dien-21-oic
acid

70.04 C30H48O3 455.3549 4.1 [M−H]− 455.17578, 434.9843, 372.2604,
338.2551, 297.2419, 279.2315 c CG [5,17]

P25 Poricoic acid A
isomer 73.98 C31H46O5 497.3305 6.6 [M−H]− 455.3542, 437.3437, 401.2708 c CG [5,17]

P26
25-hydroxy-3-
epitumulosic

acid
74.02 C31H50O4 485.361 −5.3 [M−H]− 485.2794, 469.2485, 423.3243,

337.2518 c MG \

*: a, ginseng; b, polygalae radix; c, poria.



Pharmaceuticals 2023, 16, 30 8 of 20

Table 2. Analysis and identification of metabolites in the rat serum of the KXS-treated normal group and model group.

No. Compound tR/min Formula Measured
Mass (m/z)

Mass
Error/ppm Ion Addition Fragment Ions (m/z) * Origin Group Reference

M1
Hydrated

ginsenoside Rb1
(+2H2O)

31.73 C54H96O25 1143.6194 2.3 [M−H]− 1107.5870, 945.5357, 783.4841,
621.4331 a CG [7]

M2 Oxidated
ginsenoside Rb1

32.57 C54H92O24 1123.5849 −4.9 [M−H]− 1098.5273, 1075.5377, 648.0545,
478.92459 a CG [7]

M3 Ginsenoside F2 55.98 C42H72O13 829.4915 −4.1 [M−H+HCOO]− 783.4844, 621.4329, 459.3815 a CG/MG [18]

M4 Dehydrotumulosic
acid hydroxylation 59.54 C31H48O5 499.3472 8.8 [M−H]− 481.3288, 455.3499, 437.3394,

421.3083, 371.2567 c CG [19]

M5
Tumulosic acid
hydroxylation +

desaturation
59.87 C31H48O5 499.3395 −6.6 [M−H]− 481.3290, 453.3345, 437.3395,

421.3084, 371.2568, 313.2155 c CG \

M6 Tumulosic acid
hydroxylation 61.08 C31H50O5 501.3605 3.9 [M−H]−

483.3526, 453.3416, 439.3624,
423.3309, 373.2783, 339.2361,
275.2043

c CG [19]

M7 Dehydrotumulosic
acid hydroxylation 63.14 C31H48O5 499.3392 −7.2 [M−H]−

481.3292, 453.3343, 437.3032,
421.3085, 353.2465, 329.2104,
286.1924

c CG [19]

M8 Hydrated Pachymic
acid 63.22 C33H54O6 527.3709 −6.0 [M−H-H2O]− 528.3739, 481.3656, 465.3344,

413.2672 c MG \

M9
Poricoic acid G
dehydration +

glycine conjugation
63.43 C32H47NO5 524.3392 2.0 [M−H]− 464.3157 c MG \

M10 Dehydrotumulosic
acid demethylation 66.01 C30H46O4 469.3302 −4.4 [M−H]−

470.3327, 451.3188, 423.3241,
409.3085, 391.2983, 337.2517,
311.2000

c CG \

M11
16α-

hydroxytrametenolic
acid hydroxylation

66.06 C30H48O5 487.3406 −4.5 [M−H]−
469.3288, 439.3186, 425.3031,
397.3085, 355.2619, 287.2001,
207.1744

c CG [19]

M12 Dehydrotumulosic
acid desaturation 66.65 C31H46O4 481.3383 1.2 [M−H]− 481.3455, 463.3396, 437.3393,

391.2593, 335.2360, 271.1690 c CG [19]

M13 Poricoic acid B
Glycine conjugation 66.94 C32H47NO6 540.336 5.5 [M−H]− 480.3139, 409.2397 c CG [19]

M14 Tumulosic acid
demethylation 67.29 C30H48O4 471.3515 7.6 [M−H]−

453.3416, 423.3309, 409.3151,
389.3576, 375.2575, 357.2467,
323.2410, 261.1883

c CG/MG \
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Table 2. Cont.

No. Compound tR/min Formula Measured
Mass (m/z)

Mass
Error/ppm Ion Addition Fragment Ions (m/z) * Origin Group Reference

M15

Poricoic acid G
dehydration

+deoxygenation +
desaturation +

glycine conjugation

73.06 C32H49NO3 494.3659 4.0 [M−H]− 433.3127, 295.3033, 196.0400 c MG \

M16
Poricoic acid G

oxidation + glycine
conjugation

73.66 C32H49NO7 540.328 −9.2 [M−H−H2O]− 481.2543, 255.2320 c MG \

M17 Oxidated pachymic
acid 73.67 C33H52O6 525.3548 −7.0 [M−H−H2O]− 526.3585, 481.3656, 465.3344,

449.3034, 432.3006, 355.2257 c MG \

M18 Dehydrotumulosic
acetylation 73.67 C33H50O5 525.3548 −7.0 [M−H]− 526.3585, 481.3656, 465.3344,

432.3006, 355.2257 c MG \

M19 Poricoic acid G
deoxidation(−2O) 73.72 C30H46O3 453.3351 −5.0 [M−H]− 435.3237, 371.2565, 337.2515,

323.2360, 295.2261 c CG/MG \

*: a, ginseng; c, poria.
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2.5. Identification of the Prototype Components

A total of 24 prototype components were identified in the serum of the normal group
after the administration of KXS, including eight ginsenosides, four polygala saponins,
two polygala xanthones, one polygala ester and nine poria triterpenes. Eleven prototype
components were identified in the serum of the model group, including five ginsenosides,
one polygala saponin and five poria components.

Component P2: a quasi-molecular ion [M−H]− peak was produced in the nega-
tive mode at m/z 567.1377, which was speculated to be C25H28O15; the parent ion lost
C3H6O3,C4H8O4 and a glycosyl moiety, producing [M−H−C5H9O4−C3H6O3]− at m/z
345, [M−H−C5H9O4−C4H8O4]− at m/z 315 and [M−H−C5H9O4−C6H11O5]− at m/z
272. This result was consistent with the results of a previous study [13]; it was thus identi-
fied as polygala xanthone III. The relevant MS/MS spectrum and fragmenting pathways
are presented in Figure 6.
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Component P10: a quasi-molecular ion [M+HCOOH−H]− peak was produced in
the negative mode at m/z 1123.5936, which was speculated to be C53H90O22; the par-
ent ion lost a pentose moiety forming [M−H−Ara]− at m/z 945, lost a glucosyl moi-
ety forming [M−H−Glc]− at m/z 915, lost a glycosyl moiety and a pentose moiety
forming [M−H−Ara−Glc]− at m/z 783, which further lost a glycosyl moiety form-
ing [M−H−Ara−2Glc]− at m/z 621, and which lost another glycosyl moiety forming
[M−H−Ara−3Glc]− at m/z 459. This result was consistent with those obtained in previ-
ous studies [14,15]; it was therefore identified as ginsenoside Rb2. The relevant MS/MS
spectrum and fragmenting pathways are presented in Figure 7.
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Component P20: a quasi-molecular ion [M−H]− peak was produced in the nega-
tive mode at m/z 497.33, which was speculated to be C31H46O5; the parent ion formed
[M−H−H2O]− at m/z 479 and [M−H−CO2]− at m/z 453 following dehydration and de-
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carboxylation; the parent ion formed [M−H−C2H5COOH]− at m/z 423 following a series
of dehydration and decarboxylation reactions. This result was consistent those obtained in
previous reports [20]; it was therefore identified as poricoic acid A. The relevant MS/MS
spectrum and fragmenting pathways are presented in Figure 8.
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2.6. Identification of Metabolites

Thirteen metabolites were identified in the serum of the normal group after the admin-
istration of KXS. The metabolic pathways included desugaring, hydroxylation, oxidation,
hydration, deoxidation, demethylation, desaturation, glycine conjugation and their com-
posite reactions. Nine metabolites were identified in the serum of the model group. The
metabolic pathways included desugaring, hydration, oxidation, deoxidation, demethy-
lation, desaturation, glycine conjugation, dehydration, acetylation and their composite
reactions.

Component M1: a quasi-molecular ion [M−H]− peak was produced in the negative
mode at m/z 1143.6194, which was speculated to be C54H92O23; there were fragment ions at
m/z 1107, m/z 945, m/z 783 and m/z 621 on the MS/MS spectrum, which were consistent
with characteristic fragment ions of ginsenoside Rb1, and the mass difference was only
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36 Da. Thus, component M1 was probably the metabolite of ginsenoside Rb1 after two
hydration reactions. The metabolic pathway of ginsenoside Rb1 is presented in Figure 9.
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Figure 9. Possible metabolic pathways of ginsenoside Rb1 in rats in vivo.

Component M6: a quasi-molecular ion [M−H]− peak was produced in the negative
mode at m/z 501.3605, which was speculated to be C31H50O5; there were fragment ions at
m/z 453 and m/z 439 on the MS/MS spectrum, which had a mass difference of 16 Da with
fragment ions of tumulosic acid at m/z 437 and m/z 423. Thus, component M6 probably
was the hydroxylated product of tumulosic acid. Similarly, component M4, M7 and M11
could be tentatively identified.

Component M14: a quasi-molecular ion [M−H]− peak was produced in the negative
mode at m/z 471.3515, which was speculated to be C30H48O4; there were fragment ions
at m/z 423 and m/z 409 on the MS/MS spectrum, which had a mass difference of 14 Da
with fragment ions of tumulosic acid at m/z 437 and m/z 423. Thus, component M14
probably was the demethylated product of tumulosic acid. Similarly, component M10 could
be tentatively identified. According to m/z 389 of [M−H−C6H10]−, it was suggested that
there be no demethylation in the parent nucleus; it was therefore presumed that its side
chain lost a molecule of the methyl moiety. The metabolic pathways of tumulosic acid are
presented in Figure 10.
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Figure 10. Possible metabolic pathways of tumulosic acid in rats in vivo.

Component M19: a quasi-molecular ion [M−H]− peak was produced in the negative
mode at m/z 453.3351, which was speculated to be C30H46O3; fragment ions at m/z 409
and m/z 391 on the MS/MS spectrum had a mass difference of 32 Da with fragment ions
of poricoic acid G at m/z 441 and m/z 423, which probably consisted of two oxygen atoms;
thus, component M19 probably was the deoxidized metabolite of poricoic acid G.
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3. Discussion

AD is a chronic degenerative neurological disease, the clinical symptoms of which
are memory loss, concentration loss, and dementia; the pathological manifestations are
neuron loss, β-Amyloid protein precipitation, and entanglement of the nerve fibers caused
by hyperphosphorylation of the tau protein [21]. The current well-accepted pathogenesis
is β-Amyloid protein precipitation. A study found out that the AD rat model induced
by the injection of Aβ25–35 into the hippocampal CA1 region on both sides was relatively
stable within 8 weeks, and the procedure was repeatable and simple [22]. Therefore, the
AD model in this work was induced by injecting D-galactose into the abdominal cavity for
4 weeks and subsequently injecting Aβ25–35 into the hippocampus on both sides.

To detect more transitional components in vivo, the present study carefully examined
the timing of blood collection, which were 0.5, 1, 1.5, 2, 3, and 4 h after the administra-
tion in the preliminary experiment. The findings indicated that the TICs of 0.5 and 1 h
after administration had more peaks, suggesting more components were detected. For
the processing method of serum, methanol precipitation, acetonitrile precipitation and
methanol-acetonitrile (1:1) precipitation were investigated. Results indicated that the TIC
of serum processed by methanol-acetonitrile (1:1) precipitation had a better peak shape
with relatively fewer interferences and a higher response. Thus, the serum obtained at
0.5 and 1 h after administration and methanol-acetonitrile (1:1) precipitation were finally
chosen.

The transitional KXS components in vivo detected in the present study were mainly
ginsenosides, triterpenoid acids of poria, polygala saponins, polygala xanthones and poly-
gala ester, all of which were reported to be neuroprotective [23,24]. The metabolic pathways
included phase I metabolism (hydroxylation, methylation, desaturation, oxidation, desug-
aring, dehydration, deoxidation and hydration), phase II metabolism (glycine conjugation,
acetylation conjugation) and their composite reactions (Table 2, Figures 8 and 9). The major
transitional components of KXS in vivo were from ginseng radix et rhizome and polygalae
radix [7]; in the current study, it was found out that the major transitional components
of KXS in vivo were from poria, and their metabolic pathways were more diverse. This
difference may be a result of different extracting methods or metabolic differences in rats.
The relatively fewer metabolites of ginsenosides and polygala saponins were probably
a hallmark of metabolism of saponins, namely, the ginsenosides and polygala saponins
were readily hydrolyzed and desugared by relevant intestinal flora and enzymes, which
then were absorbed into the blood in the form of aglycones. We also discovered that
the contents of several aglycones were low in KXS; however, it was detectable in serum
samples. Ginsenoside F2 was a desugaring metabolite of ginsenoside Rb2 [19]; given that
the abundance of ginsenoside Rb2 in serum was relatively strong, it was reasonable to
arrive at a preliminary conclusion that ginsenoside F2 was a metabolite of ginsenoside Rb2.

In the current study, nine common prototype components were detected in the rat
serum of the normal and model groups after the intragastric administration of the KXS
extract, including ginsenoside Rb1, Rc, Ra1, Rb2 and Rd, desacyl senega saponin B, poricoic
acid A, poricoic acid B and tumulosic acid. The above nine components all have quite
strong anti-AD activity as the major anti-AD components in KXS [15,25]. Furthermore, it
was found out that the transitional components in the serum of normal rats were more
abundant than those in the serum of model rats (See Table 2: 37 components for normal
rats and 20 components for model rats). This finding is probably because the body has a
weaker ability to absorb drugs and has decreased metabolic capacity under the pathological
condition, leading to fewer components absorbed into the blood and a slower metabolic
rate, so that some components are not detected in the serum samples. The absorption
of drug components was significantly lower in model rats than in normal rats [26,27].
Zhou found out that the activity and genetic expression of human hepatic cytochrome
P450 involved in Phase I metabolism and the activity of enzymes involved in Phase II
metabolism underwent changes under the pathological conditions, leading to slowing
down or speeding up of the drug elimination [26]. The processes of drug absorption,
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metabolism, distribution and excretion, namely ADME, are different between the normal
and pathological states, which results in varying TCM components detected in different
biological samples. Phase I and II metabolic reactions of drugs in the liver and other organs
might be associated with chemical signals sent by endogenous components in different
bodies, which further affects the metabolic transformation of drugs. Moreover, effective
materials are used for the treatment of a particular disease; thus, a drug may have different
effective materials for different diseases. This explains why studies using normal animals
may fail to evaluate the efficacy of a drug comprehensively and precisely. Comparing the
drug metabolism under the normal state and the AD pathological state, the current study
was able to evaluate the effective material basis of KXS more appropriately.

Saponins are important active components of KXS; they tend to undergo phase I
metabolism such as desugaring in the gastrointestinal tract, which is mostly associated with
intestinal flora [28,29]. For instance, ginsenosides are rarely metabolized in the liver, but
rather degrade by intestinal microbiota, producing more powerful metabolites [30]. Wang’s
team [4] speculated that the components in polygala exert their activities through the
metabolic transformation of the body. Guo [27] discovered that ginsenoside F1, ginsenoside
Rh2, ginsenoside compound K, protopanaxatriol and other saponin metabolites can be
detected in the serum of normal rats, but not in the serum of pseudo-sterilized rats. After
modeling, the intestinal microecology of AD rats may have undergone some changes; for
example, the composition and abundance of intestinal flora have changed, which further
affects the degradation and absorption of some saponins, resulting in low levels and fewer
kinds of these saponins. This led to the decrease in the levels of the component in the blood,
which is consistent with our results, namely, higher levels of saponins were detected in the
serum of normal rats than in the serum of model rats. Cao et al. [31] discussed effective
material basis of KXS against depression based on the HPA axis (hypothalamic–pituitary–
adrenal), suggesting that KXS may exert anti-AD action through the gut–brain axis. The
conclusions of the above-mentioned studies [27–31] have verified our speculation that the
gut–brain axis plays an important role in KXS working against AD, and our preliminary
studies have also shown positive findings.

4. Materials and Methods
4.1. Materials

The following instruments were used in this study: Ultimate 3000 UHPLC (Thermo
Fish, Waltham, MA, USA); LTQ-Orbitrap MS (including Xcalibur 2.1 workstation, Thermo
Fish, Waltham, MA, USA); AE-240 electrical balance (Sartorius, Gottingen, German);
SJIA5FE freezer dryer (Ningbo Shuangjia Instrument Co., Ltd., Ningbo, China); 118B
high-speed grinder (Yongli Pharmaceutical Machinery Co., Ltd., Lishui, Zhejiang, China);
supersonic cleaner (Kunshan Ultrasonic Instrument Co., Ltd., Kunshan, China); RE-52A
rotary evaporator (Yarong Biochemical Instrument Co., Ltd., Shanghai, China); TGL-16.5M
high-speed centrifuge (Shanghai Lu Xiangyi Centrifuge Instrument Co., Ltd., Shanghai,
China); MTN-2800D nitrogen sample concentrator (Tianjin Automatic Science Instrument
Co., Ltd., Tianjin, China); XH-B vortex mixer (Jiangsu Kangjian Medical Apparatus Co.,
Ltd., Taizhou, Jiangsu, China); automatic brain stereotaxic apparatus (RWD Life Science
Co., Ltd., Shenzhen, China); TJ-1A micro-injection pump (Baoding Longer Precision Pump
Co., Ltd, Buckinghan, Britain); miniature hand-held cranial drill (RWD Life Science Co.,
Ltd., Shenzhen, China); and Morris water maze (Noldus Information Technology Co., Ltd.
Gelderland, The Netherlands).

Ginseng samples were purchased in Jian County, Jilin Province, which were authenti-
cated as the dry root of Panax ginseng C.A. Mey. by Professor Zhi Liu from Jilin Agricultural
University. Polygalae radix samples were purchased in Longhua Town, Yicheng County,
Linfen, Shanxi Province. Poria samples were purchased in Gantang Town, Jingzhou County,
Huanghua, Hunan Province. Acori tatarinowii rhizome samples were purchased from Shiji
Pharmacy in Nanchang, Jiangxi Province. The above samples were authenticated as dry
root of Polygala tenuifolia Willd, dry sclerotium of Poria cocos (Schw.) Wolf and dry rhizome
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of Acorus tatarinowii Schott by associate Professor Du Xiaolang from Jiangxi University of
Chinese Medicine. All the samples were in accordance with pharmacopoeia standards, and
voucher samples were deposited at the Key Lab of Modern Preparations of Traditional
Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, China.

Methanol, acetonitrile and formic acid were of chromatographic grade; all the other
reagents were of analytical grade. Purified water was purchased from Wahaha Drinking
water Co., Ltd. (Hangzhou, China).

SPF-grade male SD rats (200 ± 20 g) with license No. SCXK (Xiang) 2019–0004 were
purchased from Hunan STA Laboratory Animal Co., Ltd (Changsha, China). The rats were
kept at room temperature of 24–24–26 ◦C, with relative humidity of 45–60% with 12 h of
night-day alteration (7:00–19:00) and free access to food and water. The rats were allowed
to acclimate to our animal facility for 7 d before the animal experiments were performed,
which were approved by the Ethics Committee of Jiangxi University of Chinese Medicine
(Approval number JZSYDWLL-20201115).

4.2. Method
4.2.1. Preparation of 70% Ethanol Extract of KXS

A total of 120 g of ginseng sample, 120 g of poria, 80 g of polygalae radix and 80 g
of acori tatarinowii rhizome samples were weighted; ginseng, poria and polygalae radix
samples were passed through a No. 5 sieve (defined per the Chinese pharmacopoeia) and
the acori tatarinowii rhizome sample was passed through a No. 2 sieve (defined per the
Chinese pharmacopoeia). All sample powders were mixed well, then added to 8-fold
70% ethanol and soaked overnight. The sample solution was extracted under reflux for
3 h, followed by filtration while hot. The residue was extracted with 6-fold 70% ethanol
under reflux for 1 h, followed by filtration while hot. The above filtrates were combined
and concentrated at 65 ◦C until there was no ethanol dripping from the condenser [32].
The ethanol extract was freeze-dried, and 89.6 g of dry powder was obtained with a yield
of 22.4%. This powder was mixed well, then packed and kept in a desiccator at room
temperature for later use.

4.2.2. Sample Solution

In total, 0.5 g of KXS powder was dissolved in 1 mL of 70% methanol. It was then
vortexed for 15 min, followed by 30 min of ultrasonication. At last, the solution was
centrifuged at 12,000 rpm for 10 min. The supernatant was acquired for MS analysis.

4.2.3. AD Rat Model

The AD rat model was established according to the literature [22]: SD rats were
divided into blank and model groups in random. The model rats were intraperitoneally
injected with 50 mg·kg−1 of D-galactose, and blank rats were injected with equivalent
normal saline for 4 consecutive weeks. Intracranial stereotaxic injections were performed
on the 5th week: dry powder of Aβ25–35 was dissolved in normal saline and incubated in an
incubator at 37 ◦C for 72 h for fibrosis. Totally, 1 mg·L−1 of oligomeric Aβ25–35 was obtained.
Blank and model rats were anesthetized via intraperitoneal injection of 40 mg·kg−1 of 2%
sodium pentobarbital solution; then, the rats were fixed on the stereotaxic apparatus with
their heads steady after the hair in the brain region was removed using depilatory cream.
Following sterilization of the scalp surface, it was cut open using a surgical knife along the
cranial median line, separating the skin layers and dura maters until the skull was exposed.
The drilling point was located at 3.0 mm behind the bregma and 2.0 mm beside the center
line. A total of 4 µL of Aβ25–35 was vertically injected into 2.6 mm underneath the dura
mater in both the hippocampal regions via a microsyringe. Blank rats were injected with
equivalent normal saline. The injection rate was 0.8 µL·min−1. The needles stayed put for
5 min after the injection. Both holes were sealed with dental cement and then stitched. A
total of 180,000 units of penicillin per rat was injected intramuscularly for 3 consecutive
days.
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4.2.4. Indicator Detection
Observation of General Behavior

The changes in appearance, diet, and mental state of the rats were observed and
evaluated during the experiments.

Morris Water Maze Test

The Morris water maze test was performed 1 week after the surgery [22]. The first
stage was the orienting-navigation test. On day 1, the platform was fixed 1.5 cm under
water in quadrant II. The rat was placed slowly into the water facing the pool wall, and
allowed to find the platform freely within 60 s (time recorded); if the rat failed the test
within 60 s, it was guided to the platform and allowed to stay for 20 s. The water maze test
was done within 1 d, and the same test was repeated for 5 d. The second stage was the
space-exploring test. The platform was removed on day 6, and the time that the rat spent in
the target quadrant was within 60 s; the number of platform crossings and the swimming
speed were recorded following the above operation.

Observation of Pathological Changes in the Hippocampal CA1 Region with Nissl Staining

Myocardial perfusion was performed with normal saline after the rat was sacrificed
using anesthesia. Brain tissue was then collected and fixated in 4% polyformaldehyde
solution, and the paraffin sections were deparaffinized and rehydrated. The sections were
stained in toluidine blue staining solution for 1–2 min and washed with little water. The
background was separated using 0.5% glacial acetic acid in a continuously separating and
washing manner. The separating degree was controlled under the microscope. The sections
were dried at 65 ◦C in an oven for over 4 h. They were put in clean xylene I for about 2 min,
then in xylene II for 15 min. At last, the sections were mounted using neutral balsam and
observed under an optical microscope at 400×magnification for pathological changes in
the hippocampus.

4.2.5. Drug Administration and Sample Collection

The model and blank rats were fasted but were allowed access to water 12 h before
the experiments. Their own blank serum was collected as the control before drug adminis-
tration. KXS freeze-dried powder was dissolved in 0.5% sodium carboxymethyl cellulose
solution. Rats were intragastrically administered the drug at a dose of 10 g·kg−1 once a
day for 7 consecutive days. At 0.5 h and 1 h after administration on the last day, orbital
sinus blood was collected, which was then combined and centrifuged at 4000 rpm at 4 ◦C
for 10 min. Following that, serum was collected and restored in the −80 ◦C freezer for
later use.

4.2.6. Handling of Serum Samples

A total of 300 µL of serum was added to 1.5 mL of a mixed solution of methanol-
acetonitrile (1:1), which was then mixed using a vortex mixer at 2500 rpm for 15 min. The
solution was sonicated for 10 min, and centrifuged at 10,000 rpm at 4 ◦C for 10 min. The
supernatant was collected and blow-dried using nitrogen gas. The residue was re-dissolved
in 100 µL of methanol, and then it was mixed with a vortex mixer at 2500 rpm for 2 min,
followed by centrifugation at 12,000 for 10 min. The supernatant was collected, 2 µL of
which was used for UPLC-MS analysis.

4.2.7. Chromatographic Conditions

The separation was achieved on a ZORBAX RRHD Eclipse Plus C18 column (2.1 ×
100 mm, 1.8 µm, Agilent Technologies, Inc., Santa Clara, CA, USA) with 0.1% formic acid
in water (A) and acetonitrile (B) as the mobile phases. The gradient elution program was as
follows: 0–14 min, 5–23% B; 14–30 min, 23–31% B; 30–50 min, 31–36% B; 50–56 min, 36–40%
B; 56–62 min, 40–48% B; 62–76 min, 48–100% B; 76–77 min, 100% B; 77–77.1 min, 100% B
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-5% B. the flow rate was 0.3 mL·min−1, the injection volume was 2 µL and the column
temperature was 40 ◦C.

4.2.8. MS Conditions

The electrospray ion source was used as the ion source. Full mass/dd-MS2 scanning
was performed in both the positive and negative modes within the range of m/z 100–2000.
The other parameters were as follows: the resolution was 70,000 (FWHM), the capillary
temperature was 300 ◦C, the sheath gas velocity was 35 L·h−1, the auxiliary gas flow rate
was 10 L·h−1, the spray voltage was 3.6 V and the temperature of the ion transport tube
was 320 ◦C. The fragmentation method used was collision-induced dissociation with a
collision energy of 35 V.

4.2.9. Data Handling and Analysis

The data of serum samples were pre-treated with the software SIEVE as follows:
“Retention Time Start” was set as 0 min; “Retention Time Stop” was set as 80 min; M/Z
range was set as 100–2000; “Frame time width” was set as 2.5 min; “M/Z Width” was
set as 10 ppm; “Maximum Number of Frames” was set as 7000; and “Peak intensity
Threshold” was set as 1000. The processed data were then imported into SIMCA 14.1
(MKS Umetrics, Umea, Sweden) to perform principal component analysis (PCA), in which
the clustering of groups can be observed, and the differences between groups can be
visualized. Subsequently, orthogonal partial least squares-discriminant analysis (OPLS-DA)
and VLOOKUP function were employed to screen out the differential ions with VIP > 1.5,
FC > 2 and p < 0.05 in the normal group and model group before and after dosing. Based
on the previous recognition of chemical components in KXS (Table S1) and the compound
library of KXS (Table S3), 34 metabolic types preset by “FISh Scoring and Background
Removal” module in Compound Discoverer 3.0 were set to perform Phase I metabolism at
the maximum of 3 stages and Phase II metabolism at the maximum of 1 stage in order to
screen metabolites. Finally, these components were identified after integrating data from
the previous KXS database and software Compound Discoverer.

The data of water maze were processed using SPSS 26.0 (SPSS Inc., Chicago, IL, USA);
data of orienting-navigation were analyzed with two-factor repeated measures analysis of
variances (ANOVA), and other data were analyzed using one-factor ANOVA. The results
were represented as χ ± s.

5. Conclusions

The current study successfully developed a stable and reliable rat AD model and an
UPLC-LTQ-Orbitrap-MS method to analyze the prototype components and metabolites of
KXS in rat serum. On this basis, the transitional components and metabolites of KXS in
the serum of the normal and model rats were compared systematically. A total of 37 KXS-
relevant components were identified in the serum of normal rats and 20 in the model rats,
revealing the differences in the absorption/metabolism of rats with different pathological
conditions. It was speculated that the intestinal microecological balance of the model rats
was sabotaged, affecting the body’s absorption/metabolism of saponins, which further
resulted in fewer transitional components in model rats than in normal rats. This study
reflects the disposal of the drug by the body in a more objective manner, which contributes
to the elucidation of material basis and mechanism of action of KXS against AD.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph16010030/s1, Figure S1: Multivariate statistical analysis of
serum metabolic profile in positive ion mode. A, PCA plot of CK, CG, MK and MG groups; B, OPLS-
DA plot of CK and CG groups; C, OPLS-DA plot of MK and MG groups; Table S1: The identified
main components of KXS and their relative information; Table S2: The typical filtered ion, related
parameters and the compound identification; Table S3: The compound library of KXS.
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