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Abstract: Pancreatic cancer is a very deadly disease with a 5-year survival rate, making it one of the
leading causes of cancer-related deaths globally. Focal adhesion kinase 1 (FAK1) is a ubiquitously
expressed protein in pancreatic cancer. FAK, a tyrosine kinase that is overexpressed in cancer cells,
is crucial for the development of tumors into malignant phenotypes. FAK functions in response to
extracellular signals by triggering transmembrane receptor signaling, which enhances focal adhesion
turnover, cell adhesion, cell migration, and gene expression. The ligand-based drug design approach
was used to identify potential compounds against the target protein, which included molecular
docking: ADME (absorption, distribution, metabolism, and excretion), toxicity, molecular dynamics
(MD) simulation, and molecular mechanics generalized born surface area (MM-GBSA). Following
the retrieval of twenty hits, four compounds were selected for further evaluation based on a molec-
ular docking approach. Three newly discovered compounds, including PubChem CID24601203,
CID1893370, and CID16355541, with binding scores of −10.4, −10.1, and −9.7 kcal/mol, respectively,
may serve as lead compounds for the treatment of pancreatic cancer associated with FAK1. The
ADME (absorption, distribution, metabolism, and excretion) and toxicity analyses demonstrated
that the compounds were effective and nontoxic. However, further wet laboratory investigations are
required to evaluate the activity of the drugs against the cancer.

Keywords: pancreatic cancer; FAK1 protein; ligand-based pharmacophore drug design; purchasable
compounds; molecular docking; ADMET; MD simulation; MM-GBSA

1. Introduction

Pancreatic cancer is a disease that occurs when cells divide uncontrollably and spread
into nearby tissues. Currently, it is considered to be the seventh leading cause of cancer-
related deaths in the world [1]. However, PANC presents five highly alarming features
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in addition to a very poor prognosis [2]. The mortality rate of PANC is almost equal to
its incidence rate since 458,918 new cases and 432,242 deaths were recorded in 2018 for
the disease [1]. Consequently, the overall 5-year survival rate for PANC is approximately
6%, making it the most lethal cancer of them all. Furthermore, it is characterized by drug-
resistance development, making it difficult to treat. The genetic component of PANC is
also very complex because the genes responsible for PANC predisposition are not well-
understood [3]. However, several genes have been implicated in PANC development
and progression [4]. As a result, the drugs currently used to treat PANC are limited in
their effectiveness since they primarily act as adjuvants and have specific mechanisms of
action [5]. Considering these aspects, new and more effective anti-PANC chemotherapeutics
are urgently needed. New compounds that are capable of functioning as multi-target
medicines and inhibiting several PANC-related proteins alongside should be identified [6].

Moreover, focal adhesion kinase 1 (FAK1) is a ubiquitously expressed protein in pan-
creatic cancer; nevertheless, its expression in hematopoietic cell lineages is limited [7].
FAK is commonly overexpressed and activated in a variety of cancers and plays an im-
portant role as a targetable kinase in cancer therapy [8]. There are three main domains
within FAK: the N-terminal band; ezrin, radixin, moesin homology (FERM), central ki-
nase, and C-terminal focal adhesion targeting (FAT) [9]. It was once thought that FAK
was mainly localized to the cytosol and plasma membrane since it is a key mediator of
integrin signaling through its association with focal adhesion proteins, such as talin and
paxillin [10]. However, the functions of FAK can be categorized into two main categories:
cytosolic and nuclear [11]. FAK functions in response to extracellular signals by triggering
transmembrane receptor signaling, which enhances focal adhesion turnover, cell adhesion,
cell migration, and gene expression, and lead to cancer cell proliferation, survival and
chemoresistance [12]. Furthermore, in advanced level of cancers, FAK is activated and/or
overexpressed, promoting cancer progression and metastasis. FAK’s cytosolic signaling
activities in cancer cells are highly dependent on its activity [13]. The overexpression of
FAK resulting from gene amplification or mRNA upregulation in advanced human cancers
is often associated with FAK activation, contributing to poor prognosis [7]. A new layer
of complexity has been added to FAK signaling through the discovery of nuclear FAK
regulation of gene expression. One of the first kinase-independent scaffolding functions
of FAK in the nucleus was discovered to be its ability to stabilize a p53-MDM2 [14]. It has
been demonstrated that FAK regulate each other to generate aggressive tumors in several
studies [15].

Computer-aided drug design (CADD) is a very useful tool for various therapeutic tech-
nique to minimize the time for identification, characterization and structure-optimization [16].
It can also be useful for the rational design of prodrugs that are typically designed to increase
the specificity or bioavailability of the original drug molecules [17]. However, the ligand-
based approach to drug development involves studying molecules that interact with biological
targets of interest to develop pharmacologically active compounds. The ideal compounds
against a specific target can be selected based on a molecular-docking-based scoring function,
and interaction can be documented through the analysis of the different docking poses [18].
The purpose of this study was to further our understanding of the interactions involved
in the inhibition of the various proteins listed in the Protein Data Bank (PDB) by using the
molecular docking approach [19]. The ADMET properties of compounds, which indicate their
efficacy and toxicity, can be easily predicted using computer-aided methods, where molecular
dynamic simulation confirms a drug candidate’s stability for the targeted protein. Molecular
mechanics with generalized born and surface area solvation (MM/GBSA) confirmed the
estimation of free energy from the protein–ligand interaction. Furthermore, a ligand-based
design method may be useful when 3D structures are not available for experiments. Never-
theless, due to the lack of an experimental structure, the known ligand molecules that bind
to the drug target are studied to understand their structure and physicochemical properties,
with a correlation to their pharmacological activity. Therefore, ligand-based methods may
utilize natural products or substrate analogs that interact with the target molecule, resulting in
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desired pharmacological effects through the CADD approaches, including molecular docking,
ADMET, MD simulation and MM-GBSA methods.

2. Results
2.1. Ligand-Based Pharmacophore Modeling and Virtual Screening
Pharmacophore Model Generation

Focal adhesion kinase 1 (FAK1) is a non-receptor tyrosine kinase with key roles in the
regulation of cell adhesion migration, proliferation and survival. In cancer, FAK is a major
driver of invasion and metastasis, and its upregulation is associated with poor patient
prognosis. Over-expression of the protein is responsible for developing pancreatic cancers.
Therefore, purchasable compounds identical to the previously originated antagonist can be
developed as a drug instead of a chemically synthesized compound. Twenty (20) chemically
synthesis active antagonist of FAK1 (Table 1) were collected through ChEMBL and advanced
literature search, which were docked with FAK1 protein. The best binding score found
for the antagonist CHEMBL3657364 (PubChem CID: 58522531) was − 9.0 kcal/mol; the
binding energy of other 9 molecules is shown in Table 1. Additionally, the interaction
between FAK1 protein and antagonist is provided in Table S1.

Drug design requires the determination of a protein 3D structure, and nowadays the
most validated structure can be obtained from several protein data banks or by homology
modeling. A crystal structure of FAK1 (PDB: 3BZ3) in a complex with a compound was
determined, and a ligand-based pharmacophore model of the enzymatic cavity was de-
veloped. The experimentally determined affinity of the selected ligand for FAK1 protein
was validated by X-ray diffraction with an IC50 value. As a result of binding the inhibitor
to FAK1, the overall expression can be regulated. The improper binding of inhibitors can
sometimes result in poor efficacy against any given protein. In order for active series of
inhibitors to be determined, they must have sufficient interaction to produce significantly
more biological activity compared with the existing inhibitor series. The ligand-based
pharmacophore model was used to generate key chemical features using Ligand Scout4.3
essential molecular design software. The ten-ligand based model was established, and
model 1 was chosen based on the best score (0.9180) (Table S2).

The different chemical features were determined, and the total number was 10. Among
them, two hydrophobics, three aromatic ring bonds, five H bond acceptors, two H bond
donors, and a few exclusion volume features were presented as a protein–ligand complex
interaction (Figure 1). To maintain the optimal ligand-based pharmacophore features, some
features were omitted during the time of pharmacophore model generation.
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Figure 1. The 3D structure-based ligand-based model of FAK1 protein. (A) Ligand-based pharma-
cophore features (Model 1) were generated after complex interaction. (B) Two yellow spherical shapes
indicating hydrophobic interaction, one blue star shape depicting the positive ionizable with tolerance,
five red colors spherical shapes indicating H bond acceptor, two hydrogen bond donors represented by
green spherical, or arrow shape are identified within the protein–ligand complex interaction.
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Table 1. List of 10 known active antagonists of FAK1 protein and their binding affinity toward the
protein generated through molecular docking method.

PubChem ID IC50 (nM) Chemical Name Chemical Formula Chemical Structure Binding Affinity

58522531 6 BDBM134122 C27H25F4N5O5

1 
 

  1 
 

      2 

 
 

3 
 
 

4     

 
 
 
 

−9.0

58522578 1 BDBM134151 C27H25F4N5O5

1 
 

  1 
 

      2 

 
 
 

 

−8.7

58522559 1 BDBM134145 C28H30ClFN6O4

1 
 

  1 
 

      2 

 
 

3 
 
 

4     

 
 
 
 

−8.4

58522525 1 BDBM134129 C27H27Cl2FN6O4

1 
 

  1 
 

      2 

 
 

3 
 
 

4     

 
 
 
 

−8.0

58522543 6 BDBM134017 C28H27ClF3N5O4

 

2 

5  

 
 
 

6  

 
 

7 

 
 
 

8 
 
 
 
 

−8.0

58522647 1 BDBM134167 C29H33ClN6O5

 

2 

5  

 
 
 

6  

 
 

7 

 
 
 

8 
 
 
 
 

−7.9

58522593 4 BDBM134002 C27H25F4N5O5

 

2 

5  

 
 
 

6  

 
 

7 

 
 
 

8 
 
 
 
 

−7.7

58522523 4 BDBM134035 C30H31F5N6O4

 

2 

5  

 
 
 

6  

 
 

7 

 
 
 

8 
 
 
 
 

−7.6

58522553 1 BDBM134115 C28H29F3N6O5

 

3 

9 

 
 
 
 

 

−7.5

58522562 1 BDBM134134 C29H31F3N6O4

 

3 

9 

 
 
 
 

 

−7.5

2.2. Pharmacophore Model Validation

A validated pharmacophore analysis is necessary for ensuring the quality of the
molecular model and determining the authenticity of the pharmacophore analysis. A
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structure-based pharmacophore model generated in this study was tested before database
screening to determine if the models are capable of discriminating between active com-
pounds and decoys. Validation of the pharmacophore model was carried out using
20 known antagonists of FAK1 (Table S1), and corresponding 1010 decoy compounds
(Supplementary File S1) obtained from the enhanced Database of Useful Decoys (DUDe).
As a first step to validate the model, the active test set with inhibitor constant IC50 values
was merged with the decoy compounds, and an initial screening was conducted. An
analysis of the receiver operating characteristic curve (ROC) measured the performance of
the classification model, such as the AUC and EF values of the compounds. AUC provides
a summary of the model’s performance and is used to express the degree of separability
using ROC graphs. ROC graphs express the performance of classification models. Models
with a higher AUC value should be more predictable. As the AUC value ranges from 0
to 1, the model with 100% accuracy has a value of 1. In the validation process, the early
enrichment factor (EF1%) was 51.5 with an excellent AUC (area under the ROC curve)
value in the 0.1% threshold, which was 100.00, which proved that our model has ability to
distinguish true actives from decoy compounds (Figure 2).
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Figure 2. Receiver operating characteristic (ROC) curve generated based on the recognize ability of
the active to decoy compounds of the structure-based pharmacophore model. The pharmacophore
model was validated using a set of 20 FAK1 active and 1010 decoy compounds.

2.3. Dataset Generation for Pharmacophore-Base Screening

The generation of a database is one of the most important steps in the screening pro-
cess for finding the best lead molecule. The ZINC database is a collection of commercially
available chemical compounds that provides information about the molecule’s molecular
weight, chemical structure, physical and chemical properties against biologically active
macromolecules. It contains over 230 million purchasable compounds in 3D format on a
freely accessible website. A purchasable compound database library provides informa-
tion about various compounds from different vendors, such as Ambinter. ZINCPharmer
was used to generate the database for pharmacophore-based virtual screening using pre-
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viously generated pharmacophore models. The ZINC database consists of millions of
drug-like, purchasable products and FDA-approved drugs. It was initially searched for
hits in the database on ZINC purchasable products and ZINC natural derivatives. A
maximum of 0.5 Å RMSD was used as input parameters for ZINCPharmer, and a total of
235,000 compounds were retrieved for further screening. The database of hit compounds
from ZINCPharmer was downloaded and saved for further screening.

2.4. Pharmacophore-Based Virtual Screening

A pharmacophore interaction feature derived from protein–ligand interactions was
applied to 230,000 natural compounds. In the screening process, relative pharmacophore
was used as a scoring function, including all query features as screening modes and
omitting a maximum of four (4) features. To increase the pharmacophore fit score, some
features were omitted during the screening process, as it is difficult to match all query
features. A higher score indicates that the compound will have better activity against the
targeted macromolecules when adapted to the desired environment. A total of twenty-
three hits were generated with fit scores ranging from 88.20 to 125.02 that matched all
pharmacophore features. It is usually the geometric fit of features to the pharmacophore
model based on a 3D structure that is shown as a pharmacophore fit value. The most highly
suited molecule to the validated pharmacophore model should exhibit activity against the
FAK1 target protein. Compounds that were listed as hits were retrieved and saved for
further evaluation.

2.5. Binding Site Identification and Receptor Grid Generation

The combined binding position of the active site (AS) was determined by identifying
the AS of the FAK1 using the CASTpi server. A protein’s active pocket was analyzed to
identify the binding site residue. Active site pocket analysis showed binding site locations at
residues ARG550, ASN557, SER558, ASP564, LEU567, GLY563, LEU553, MET499, GLU500,
ALA452, LEU501, GLN438 and ARG426. These positions are shown as cylinder shapes
in various colors, including with red, green, pink, blue, green, and so on (Figure 3). The
server-identified binding sites were used to generate a receptor grid during the molecular
docking simulation procedure. The binding sites identified by the server were utilized to
generate a receptor grid during the molecular docking simulation process with grid box
dimensions of X = 98.39, Y = 102.46 and Z = 69.21 in angstrom (Å).
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2.6. Molecular Docking

The binding affinity of the hit compounds to the target FAK1 protein using molecu-
lar docking, a crucial stage in drug development, was evaluated. PyRx tools Autodock
Vina were used to dock specific compounds with FAK1 in order to assess their binding
affinity, which meets the pharmacophore model’s assumptions. A total of four compounds,
Pubchem CID24601203, CID1893370, CID16355541 and CID16467343 with binding affinities
−10.4 kcal/mol, −10.1 kcal/mol, −9.7 kcal/mol, and −9.5 kcal/mol (Table 2), were found to
have better binding affinity than the FAK1 antagonist Pubchem CID58522531 (−9 kcal/mol),
which was used in the main pharmacophore model generation. There are differences in
the binding affinity for all hit substances in Table S2. Interestingly, compounds with higher
docking scores were suggested as having better binding affinity to the target protein.

Table 2. Docking score with FAK1 protein, docking score and molecular weight of the top four
selected compounds.

Pubchem ID Compound Name Molecular Formula Molecular Weight Chemical Structure Docking Score

24601203 ZINC13230575 C21H19N9OS 445.5
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2.7. Interpretation of Protein-Ligands Interactions

The non-bonded interactions between the ligand molecules and the FAK1 protein
are shown in Figure 4. The compound CID24601203 and protein complex was stabilized
by three hydrogen bonds at ASN551, LEU567, and GLU506, four alkyl bonds at LEU553,
LEU567, VAL484, and MET499, two pi-sigma bonds at ILE428 and LEU553, one carbon
hydrogen bond at ARG550, and one pi-alkyl bond at ALA452 (Table 3).
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Figure 4. The non-bonded interaction of the CID24601203 and main protease from FAK1 at certain
simulation times. Herein, (A) representing the 3D protein-ligand interaction and (B) representing 2D
interaction of the protein with the ligand.

The compound CID1893370 and FAK1 protein complex formed six conventional hy-
drogen bond bonds at ARG550, ASP564, LEU567, ASN551, LEU567, and ARG569 position.
The Pi-Sigma Pi-Alkyl bonds at the positions of GLN432, LEU567 and ARG550, respectively
(Figure 5; Table 3).
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Figure 5. The non-bonded interaction of the CID1893370 and main protease from FAK1 at certain
simulation times. Herein, (A) representing the 3D protein-ligand interaction and (B) representing 2D
interaction of the protein with the ligand.

The compound CID16355541 and FAK1 protein complex created five conventional
hydrogen bonds at ASP564, ILE428, GLN438, THR503 and CYS502, one carbon hydrogen
bond at LEU504, one Pi-Cation bond at ARG426, four Pi-Sigma bonds at ILE428, LEU553,
LEU567, and LEU567, two alkyl bonds at ALA452 and MET499 and one Pi-Alkyl bond
at LEU553. Binding to the active sites may lead to the possible inhibition of the target
molecule (Figure 6; Table 3).
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Table 3. List of bonding interactions between selected four compounds with FAK1 protein.

PubChem CID Residue Distance Category Type

CID 24601203

ASN551 2.77 Hydrogen Bond Conventional Hydrogen Bond

LEU567 2.39 Hydrogen Bond Conventional Hydrogen Bond

GLU506 2.09 Hydrogen Bond Conventional Hydrogen Bond

ARG550 3.37 Hydrophobic Carbon Hydrogen Bond

ILE428 3.49 Hydrophobic Pi-Sigma

LEU553 3.89 Hydrophobic Pi-Sigma

LEU553 4.83 Hydrophobic Alkyl

LEU567 4.29 Hydrophobic Alkyl

VAL484 3.74 Hydrophobic Alkyl

MET499 3.99 Hydrophobic Alkyl

ALA452 4.39 Hydrophobic Pi-Alkyl

CID 1893370

ARG550 2.05798 Hydrogen Bond Conventional Hydrogen Bond

ASP564 2.63012 Hydrogen Bond Conventional Hydrogen Bond

LEU567 1.869 Hydrogen Bond Conventional Hydrogen Bond

ASN551 2.73854 Hydrogen Bond Conventional Hydrogen Bond

LEU567 2.60894 Hydrogen Bond Conventional Hydrogen Bond

ARG569 2.23097 Hydrogen Bond Conventional Hydrogen Bond

GLN432 3.74021 Hydrophobic Pi-Sigma

LEU567 4.93986 Hydrophobic Pi-Alkyl

ARG550 4.22051 Hydrophobic Pi-Alkyl

CID 16355541

ASP564 2.16221 Hydrogen Bond Conventional Hydrogen Bond

ILE428 2.76461 Hydrogen Bond Conventional Hydrogen Bond

GLN438 2.68776 Hydrogen Bond Conventional Hydrogen Bond

THR503 2.77995 Hydrogen Bond Conventional Hydrogen Bond

CYS502 2.79357 Hydrogen Bond Conventional Hydrogen Bond

LEU504 3.68955 Hydrogen Bond Carbon Hydrogen Bond

ARG426 3.99237 Electrostatic Pi-Cation

ILE428 3.62494 Hydrophobic Pi-Sigma

LEU553 3.33756 Hydrophobic Pi-Sigma

LEU567 3.706 Hydrophobic Pi-Sigma

LEU567 3.90901 Hydrophobic Pi-Sigma

ALA452 3.91212 Hydrophobic Alkyl

MET499 4.54299 Hydrophobic Alkyl

LEU553 4.57388 Hydrophobic Pi-Alkyl

CID 16467343

LEU567 2.09727 Hydrogen Bond Conventional Hydrogen Bond

ARG550 3.52399 Hydrogen Bond Carbon Hydrogen Bond

ARG550 3.75615 Hydrogen Bond Carbon Hydrogen Bond

GLU506 3.51249 Hydrogen Bond Carbon Hydrogen Bond

ARG508 4.05546 Electrostatic Pi-Cation

GLU506 3.29313 Electrostatic Pi-Anion

LEU553 3.67551 Hydrophobic Pi-Sigma

LEU567 3.72557 Hydrophobic Pi-Sigma

The compound CID16467343 and FAK1 protein complex formed three conventional
hydrogen bond bonds at LEU567, and three carbon hydrogen bonds at ARG550, ARG550
and GLU506 position. The Pi-Cation, Pi-Anion and Pi-Sigma bond the positions of ARG508,
GLU506, LEU553, and LEU567, respectively (Figure 7; Table 3).
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simulation times. Herein, (A) representing the 3D protein-ligand interaction and (B) representing 2D
interaction of the protein with the ligand.

2.8. Absorption, Distribution, Metabolism and Excretion (ADME) and Toxicity Test Analysis
2.8.1. ADME Properties Analysis

The analysis of pharmakon (drug) and kinetikos (movement), combinedly known as
pharmacokinetics (PK) properties analysis, is a crucial step in the process of developing
new drugs. However, it focuses primarily on the ADME properties and incorporates
physiochemical traits, such as lipophilicity, water solubility, pharmacokinetics, medication
likeness, and medicinal chemistry. It also offers a potential hypothesis for choosing the best
drug candidates. Pharmacophore analysis can reveal a compound’s xenobiotic regulation
characteristics prior to entering it into the preclinical testing. The pharmacophore prop-
erties of the three drug-like compounds were ascertained using the SwissADME server.
Lipophilicity is a property of drug-like compounds that allows them to dissolve in fats, oils,
and nonpolar solvents. A compound’s lipophilicity means it can easily diffuse through
the cell membrane; hence, oral preparation is not appropriate. Additionally, an injectable
dosage form may be an effective method to achieve the rapid onset of action since gastroin-
testinal absorption is low. The table illustrates that the result of three compounds, such as
CID2460123, CID1893370 and CID16355541, fitted more as a druggable compound except
one compound, CID16467343. The medicinal chemistry data also show a similar result.
Finally, pharmacophore properties indicate that the three compounds can be effective and
druggable in the study (Table 4).
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Table 4. List of pharmacokinetic properties (physico-chemical, lipophilicity, water solubility, drug
likeness, and medicinal chemistry) of the selected four compounds.

Properties Parameters CID24601203 CID1893370 CID16355541 CID16467343

MW (g/mol) 445.5 g/mol 485.5 g/mol 439.6 g/mol 477.9 g/mol

Heavy atoms 32 35 30 34

Arom. heavy atoms 25 26 21 23

Rotatable bonds 4 6 6 10

H-bond acceptors 6 7 6 5

H-bond donors 7 3 2 2

Molar Refractivity 123.29 133.42 122.35 131.77

Lipophilicity Log Po/w 3.71 5.62 4.16 4.46

Water solubility Log S (ESOL) −5.15 −5.79 −5.68 −6.61

Pharmacokinetics GI absorption Low Low Low High

Drug likeness Lipinski, Violation No No No No

Medi. chemistry Synth. accessibility 3.49 3.68 3.68 3.47

2.8.2. Toxicity Analysis

In-silico toxicity measurement is a crucial procedure before clinical trials are begun for the
selection of better lead compounds. Computer-based toxicity measurements have become pop-
ular due to their accuracy, rapidity, and accessibility, which enable them to provide information
about any synthetic or natural compound. To identify the toxicity and adverse effects of the
four selected compounds, we used both the free TEST tool and the ProTox II server. Several toxi-
cological parameters were evaluated by the various software packages, including acute toxicity,
hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity, and immunotoxicity, and a median
lethal dose (LD50) in mg/kg was calculated based on weight. According to the ProTox-II server
compound, Pubchem CID24601203, CID1893370, CID16355541 and CID16467343 belonged to
class 4, and the LD50 range was also compiled (Table 5).

Table 5. List of toxicity properties (organ toxicity, toxicity endpoints, Tox21-Nuclear receptor signaling
pathways, Tox21-Stress response pathway, Fathead minnow LC50 (96 h), developmental toxicity, oral
rat LD50, bioaccumulation factor) of the selected four compounds.

Endpoint Target CID 24601203 CID 1893370 CID 16355541 CID 16467343

Organ toxicity Hepatotoxicity Inactive Inactive Inactive Inactive

Toxicity endpoints

Carcinogenicity Inactive Inactive Inactive Inactive

Immunotoxicity Active Light active Light active Inactive

Mutagenicity Inactive Inactive Inactive Inactive

Cytotoxicity Inactive Inactive Inactive Inactive

Toxicity class 4 4 4 4

Tox21-Nuclear receptor
signaling pathways

Androgen receptor
(AR) Inactive Inactive Active Inactive

Aryl hydrocarbon
receptor (AhR) Inactive Inactive Active Inactive

Tox21-Stress response
pathway

Heat shock factor
response element Inactive Inactive Active Inactive

Fathead minnow LC50 (96 h) (mg/L) 0.49 3.12 × 10−2 0.41 1.37 × 10−2

48-h Daphnia magna LC50 −Log10(mol/L) 4.54 4.6 4.33 2.68

Developmental toxicity value 0.75 0.83 0.75 0.51

Oral rat LD50 mg/kg 600.89 1181.5 543.77 1102.13

Bioaccumulation factor Log10 N/A 1.3 0.66 1.44
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2.9. MD Simulation

MD simulation evaluation molecular dynamics (MD) simulations were used to ex-
amine and evaluate the binding stability of protein-ligand complexes. Throughout the
orientation time, the MD simulation recorded data focusing on intermolecular interaction.
The stability of the protein–ligand complexes was determined using a 100 ns MD simu-
lation. The root mean square deviation (RMSD), root mean square fluctuation (RMSF),
intramolecular hydrogen bonding (Intra HB), and protein–ligand interaction analyses are
used to present the MD simulation results (P–L contact).

2.9.1. RMSD Analysis

The RMSD is used to quantify the average change in position of a chosen set of atoms
relative to a reference atom. The RMSD analysis is used to describe the system equilibration
in terms of stability and reliability. The smaller range of RMSD and constant fluctuation
throughout the simulation imply that the protein backbone is stable. On the other hand,
a larger RMSD and/or significant variation from the native structure suggest that the
protein–ligand combination is more unstable. The mean or average value change between
a specific frame and a reference frame with a range order of 1–3 Å is entirely permissible,
where a value larger than the required range indicates that the protein has undergone a
significant conformational shift. The MD simulation with a time step of 100 ns was used to
provide the RMSD that was calculated from RMSD (Figure 8).
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Figure 8. The RMSD values extracted for the Cα atoms of the three selected compounds in complex
with the FAK1 protein (red) for the compounds (A) CID: 24601203 (blue), (B) CID: 1893370 (purple),
(C) CID: 16355541 (yellow) and, (D) all the RMSD for all compounds and the protein together.

2.9.2. RMSF Analysis

The largest change in the case of the Apo protein was recorded between residue
positions 30 and 40 aa, with a fluctuation of 3.81. CID:24601203 appeared to have the
smallest average RMSF range between 0.5 and 1.1, as well as the lowest fluctuation between
150 and 158 aa when compared to the Apo protein structure (Figure 9A). However, the
RMSF graph revealed that the FAK1 protein in association with CID: 1893370 (1.02 to 1.6)
and CID: 16355541 (0.5–2.3) had average low and significant values when compared to
the reference apo structure, as shown in Figure 9D. As previously stated, a low RMSF
value suggests higher protein stability, and the RMSF values found in this study for each
protein–ligand system were lower than those discovered for Apo protein.
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Figure 9. The RMSF values extracted for the Cα atoms of the five selected compounds in complex
with the FAK1 protein (red) in complex with the compounds (A) CID: 24601203 (blue), (B) CID:
1893370 (purple), (C) CID: 16355541 (yellow) and (D) shows the RMSF for all compounds and the
protein together.

2.9.3. Protein–Ligand Contacts

The bonding relationship between the compounds and the target protein is crucial
in terms of stability and PK characteristics. For example, molecular hydrogen bonding
influences drug selectivity, adsorption, and metabolism. As a result, a simulation interac-
tion diagram was used to study the protein complex with the selected ligands and their
intermolecular interactions (SID). Figure 10 depicts the interactions that occur for more
than 30.0% of the simulation duration between the natural compound (CID: 24601203, CID:
1893370, and CID: 16355541) atoms and the FAK1 protein residues and are characterized by
hydrogen, hydrophobic, ionic, and water bridge linkages. Figure 10 also includes a stacked
bar chart representation of the protein–ligand interactions discovered during the 100 ns
simulation run. An interaction fraction value (IFV) can be used to describe the interaction
between the protein and the ligands. For example, an IFV value of 0.7 indicates that the
specific interaction is maintained for 70% of the simulation duration. Because some protein
residues may make several interactions of the same subtype with the ligand, values greater
than 1.0 (>100%) are feasible. The ARG side chain, for example, has four H-bond donors
that can form four hydrogen bond interactions with a single H-bond acceptor.Pharmaceuticals 2022, 15, x FOR PEER REVIEW 16 of 23 

 

 

 

Figure 10. Schematic representation of interactions of selected ligand atoms with FAK1protein res-

idues shown for interactions that occur more than 30.0% of the simulation time between the protein 

and the compounds (A) CID: 24601203, (B) CID: 1893370, and (C) CID: 16355541 in the selected 

trajectory (0.00 through 100.00 ns). 

2.9.4. MM-GBSA Analysis  

The MM-GBSA approach helps to determine the binding free energy of a molecule 

to the target protein. The binding free energy of the selected molecules to the target protein 

were evaluated based on the MD simulation trajectory and are represented in Figure 11. The 

MM-GBSA of the complex structure was computed for every single frame generated for 

the 100 ns MD simulation trajectory. The analysis of the complex structure identified 

higher net negative binding free energy values of −45.8499 ± 6.03, −58.1706 ± 11.35, 

−57.0858 ± 9.89, and −92.4586 ± 4.86 kcal/mol for the three selected molecules (A) CID: 

24601203, (B) CID: 1893370, and (C) CID: 16355541 and control, respectively, with the tar-

get protein (Figure 11). 

Figure 10. Schematic representation of interactions of selected ligand atoms with FAK1protein
residues shown for interactions that occur more than 30.0% of the simulation time between the
protein and the compounds (A) CID: 24601203, (B) CID: 1893370, and (C) CID: 16355541 in the
selected trajectory (0.00 through 100.00 ns).
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2.9.4. MM-GBSA Analysis

The MM-GBSA approach helps to determine the binding free energy of a molecule to
the target protein. The binding free energy of the selected molecules to the target protein
were evaluated based on the MD simulation trajectory and are represented in Figure 11.
The MM-GBSA of the complex structure was computed for every single frame generated for
the 100 ns MD simulation trajectory. The analysis of the complex structure identified higher
net negative binding free energy values of −45.8499 ± 6.03, −58.1706 ± 11.35, −57.0858
± 9.89, and −92.4586 ± 4.86 kcal/mol for the three selected molecules (A) CID: 24601203,
(B) CID: 1893370, and (C) CID: 16355541 and control, respectively, with the target protein
(Figure 11).
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and (D) control.

3. Discussion

Pancreatic adenocarcinoma is a deadly illness that is expected to become the second
biggest cause of cancer mortality globally [1]. The treatment of pancreatic adenocarcinoma
is developing, with the advent of new surgical procedures and pharmacological therapies
such as laparoscopic techniques and neoadjuvant chemoradiotherapy; however, this has
resulted in only minor improvements in patient outcomes [20]. Given these considerations,
new and more effective anti-PANC chemotherapeutics are urgently required. Therefore, we
utilized a ligand-based drug design (LBDD) for the identification of purchasable substrate
analogs that interact with the target molecule resulting in desired pharmacological effects
against PANC. The main objective of LBDD methods is to identify known ligands for a
target and establish a structure–activity relationship (SAR) between their physiochemical
characteristics and drugs activities. This information can be used to improve existing
medications or to help create new medications with increased activity.

Computer-aided drug design (CADD) ushers in a new era of medicine by making
processes more cost-effective, saving time, and reducing labor costs. This makes drug
discovery more feasible. To discover drug candidates with the best biological effectiveness,
procedures such as virtual screening, molecular docking, and ADMET are utilized. Under-
standing the illness’s mechanism, finding the disease-associated protein, and devising a
ligand-binding method for the protein may all contribute to a reduction in disease sever-
ity. CADD helps identify particular target molecules based on their behavior and mode
of ligand binding. Molecular docking, on the other hand, identifies the most prevalent
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binding modes between a ligand and a protein. Small molecule candidates may therefore
be identified as potential therapeutic agents for a certain disease.

In this study, ligand-based pharmacophore drug design process was utilized includes
pharmacophore modeling and validation; pharmacophore based virtual screening, virtual
hits profiling and lead identification. The comprehensive drug design approach was used to
screen purchasable compounds library for their ability to treat pancreatic cancer. The four
best compounds have been chosen from the compound’s library with the greatest binding
affinity based on their molecular docking score. The highest bonding was documented
to compounds Pubchem CID24601203, CID1893370, CID16355541 and CID16467343 with
binding scores of −10.4 kcal/mol, −10.1 kcal/mol, −9.7 kcal/mol, and −9.5 kcal/mol,
respectively. It is a very good value and show the characteristic feature of the purchasable
compound to be treated as a drug. The drug-like qualities of the selected compounds
were proven using Lipinski’s rule of five (RO5) [21]. Analyses of ADME approaches
were used to study the metabolite kinetics in small molecular candidates. The best GI
absorption of the chosen compounds without blood–brain barrier (BBB) permeation was
found through pharmacokinetic analysis. The candidate molecule has a consensus log Po/w
value of 5, which denotes that it is lipophilic and can thus cross lipid membranes found
inside the body. The chosen compounds were found to have good drug-like properties
according to Lipinski’s rule of five (LR5), which evaluates the drug-like properties of
selected compounds to determine whether they are orally bioavailable for humans. Four
substances were evaluated for their pharmacokinetic (PK) characteristics, and each was
determined to be of substantial value. The study predicted the possible binding to toxicity
targets using a collection of protein–ligand-based pharmacophores. Toxicity targets are
protein targets which are associated with adverse drug reactions and toxic effects. Several
toxicological parameters were evaluated by the various software packages, including acute
toxicity, hepatotoxicity, cytotoxicity, carcinogenicity, mutagenicity, and immunotoxicity,
and a median lethal dose (LD50) in mg/kg was calculated based on weight. The findings
revealed that the four chosen compounds were non-toxic or low toxic, belonging to toxicity
class 4, and that their LD50 values were within the range.

4. Materials and Methods
4.1. Ligand-Based Pharmacophore Modeling and Virtual Screening
4.1.1. Ligand-Based Pharmacophore Modeling

An extensive literature search along with a review of all ChEMBL target annotations
(based on high-confidence activity data) led to the generation of active antagonists of focal
adhesion kinase 1 protein (FAK1). To generate ligand-based pharmacophore models, the
20 active antagonists (Table 1) derived from ChEMBL (https://www.ebi.ac.uk/chembl/
(accessed on 7 May 2020)) and literature search were docked by PyRx AutoDock Vina using
the scoring functions for the FAK1 protein (PDB ID: 3BZ3). The best compound with highest
binding affinity (kcal/mol) was selected for ligand-based pharmacophore modeling. The best
scoring compound, in complex with FAK1, was used to interact with purchasable compounds
and retrieve hits. A ligand-based pharmacophore model was generated using LigandScout 4.3
advance software. The advanced software makes the interaction between inhibitors and critical
amino acids in the target proteins. In addition to interpreting ligand–receptor interactions,
the software takes into account different pharmacophore features, including hydrogen bond
donor and acceptor regions, hydrophilic and hydrophobic regions, and hydrogen bond
acceptors [22]. A stepwise algorithm was used to detect the number of aromatic rings,
the state of hybridization, the pattern of binding, as well as the distance between receptor
molecules. The ligand scout was used to identify better and optimal compound structures
by removing hydrophilic properties from the protein and adding or removing features to the
active site necessary to maintain sterically circumference.

https://www.ebi.ac.uk/chembl/
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4.1.2. Pharmacophore Model Validation

A pharmacophore validated by a protein-ligand interaction generally helps to deter-
mine whether a compound is active or inactive. The ligand-based pharmacophore model
generated from the protein-ligand complex was tested by screening a set of 20 known active
substances and correspondence with 1010 decoy compounds obtained from the DUD-E
database of decoys. In LigandScout 4.3, the “create screening database” option was used to
convert DUD-E to .ldb format before screening [23]. The GH score and early enrichment
factor (EF) were used to assess the quality of the ligand-based model.

4.1.3. Dataset Generation for Pharmacophore-Base Screening

Based on the pharmacophore model, the structurally novel and active molecules can be
identified by the completion of virtual screening. Chemical databases such as Zinc database
(https://zinc.docking.org/, accessed on 7 May 2020) can be used to identify possible lead
compounds [24]. Compounds from the database can be searched using the structural
information, name of the compound, or chemical smile ID. Analyses were conducted of
the physical and chemical properties, such as 2D and 3D structure calculations, boiling
point and melting point. A compound’s molecular weight, crystal structure, and biological
application can also be determined [25]. In the case of a desired compound, the compound
having the most similar features was given top priority. The compound had to match the
required pharmacopeial features and interact with our target protein. The potential hits
were selected by matching their maximum features to the query pharmacophore. Initially,
the project screened a ZINC purchasable product library using the ZINCPharmer program
(http://zincpharmer.csb.pitt.edu/pharmer.html, accessed on 7 May 2020) server for target
XIAP based on pharmacophore features.

4.1.4. Pharmacophore-Based Virtual Screening

ZINCPharmer generated a database that was screened against the validated ligand-
based pharmacophores. The new version of LigandScout 4.3 helps create and obtain a
3D model of protein–ligand interactions as well as the ability to change compounds into
the specific file format (iDB). These compounds were passed directly into the database
list for quick virtual screening based on pharmacophore features [26]. Several system
features were omitted by selecting relative pharmacophore fits as a method of securitizing.
A pharmacophore fit score was used to organize compounds that fit the pharmacophore,
and they were then subjected to further validation [27].

4.2. Molecular Docking Based Virtual Screening

In computational biology, protein preparation refers to the conversion of macromolec-
ular structures into a form that is more suitable for computation. In the process of docking
crystal structures of proteins, it is necessary to prepare the structures for other purposes
not included in the X-ray crystal structure refinement process, such as adjusting hydrogen
bonds, removing atomic collisions, and performing other operations. This study used the
protein data bank to obtain the desired 3D structure of FAK1 protein (PDB ID: 3BZ3). The
structure was determined experimentally and validated using the X-ray diffraction method
with a resolution of 2.20 Å and R-value free score of 0.234 which is significantly less than
the standard value of 0.16. The X-ray crystallography structure of our desire protein was
prepared by removing water, metal ions and cofactors, adding polar hydrogen bonds, merg-
ing non-polar hydrogen bonds, and calculating gasteiger charges using AutoDockTools
(ADT) [28]. The energy and bond angles of selected hit compounds were optimized by
default using the universal force field (UFF) for each of the ligands.

4.2.1. Active Site Identification and Grid Generation

To treat a particular disease, the ligand or drug molecule has to bind to a specific site on
protein. The improper attachment of the ligand may result in several side effects in the body
as well as a higher possibility of toxicities. The binding affinities of zinc compounds depend

https://zinc.docking.org/
http://zincpharmer.csb.pitt.edu/pharmer.html
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on several features, including H bond donors, hydrophobic or hydrophilic interactions,
ionization, and chelation. The binding site of our desired protein was found using BIOVA
Discovery Studio Visualizer Tool 16.1.0. Furthermore, PrankWeb (https://prankweb.cz/
(accessed on 27 October 2022)) server was used to analyze the probable binding sites of
the desired protein structure. An algorithm based on machine learning was used by the
server to predict ligand binding sites from protein structure. The PyRx software was used
to generate the receptor grid after selecting the active site of the protein [29].

4.2.2. Molecular Docking

After selecting the active site of the protein, the receptor grid was generated using PyRx
software. The PyRx virtual screening software was used to perform molecular docking on
selected hits from pharmacophore screening. PyRx is a virtual screening software used in
computational biology to identify potential drug candidates [30]. The Lamarckian genetic
algorithm (LGA) is a scoring function included in AutoDock and AutoDock Vina. In this
study, molecular docking interactions were performed using the PyRx tool AutoDock
Vina. BIOVA Discovery Studio Visualizer Tool 16.1.0 was used to retrieve and visualize the
docked compound with better binding affinity (kcal/mol).

4.3. Absorption, Distribution, Metabolism and Excretion (ADME) and Toxicity Test
4.3.1. Absorption, Distribution, Metabolism and Excretion (ADME)

The ADME properties of a molecule are some of the main criteria before its develop-
ment into a drug. For the early stage of prediction, computer-based prediction is essential,
as many drug candidates cannot fit the clinical trial demand [31]. ADME profiles directly
affect physiochemical properties, hydrophobicity, lipophilicity, the gastrointestinal envi-
ronment, and the blood brain barrier before drugs are excreted by the body through urine
and feces. The Swiss-ADME (http://www.swissadme.ch/ (accessed on 27 October 2022))
server was used to evaluate ADME properties, such as solubility, GIT absorption, and
bioavailability [32].

4.3.2. Toxicity Test

Compounds can be evaluated for their safety profile using computational-based meth-
ods for evaluating toxicity. Toxicology profile can be used to evaluate and determine
mutagenicity, carcinogenicity, LD50 value, and immunotoxicity quantitatively and qualita-
tively. A free software tool called TEST (Toxicity Estimation Software Tool) was used in
this study to estimate toxicity of our compounds without requiring any external software.
Furthermore, a toxicity estimator TEST tool was used for selective molecules using quan-
titative structure–activity relationship (QSAR) methods. To determine the toxic effect of
the selected four compounds, ProTox-II (http://tox.charite.de/protox_II (accessed on 27
October 2022)) server was used [33]. There are different toxicological pathways provided by
this website, such as nuclear-receptor-signaling pathways and stress-response pathways.

4.4. Molecular Dynamics (MD) Simulation

To further evaluate the binding mode of our candidate molecules, the best poses ob-
tained from re-docking studies were tested through 100 ns molecular dynamics simulations.
MD simulations were performed under Linux program with the Desmond module in
Schrödinger Release 2020-3 [34]. As a first step, a simple point charge (SPC) water model
with orthorhombic box boundary conditions was used to solve the complex protein–ligand
interaction. There is a buffer box calculation method with the box distances 15 Å (a = 5 Å,
b = 5 Å, and c = 5 Å) on both sides for all the complex’s atoms. In order to neutralize the
system, Na+ and Cl− were added at a salt concentration of 0.15 M. The MD simulation
was conducted at constant pressure (1.01325 bar) and temperature (300 K) with recoding
intervals of 50 ps energy using the OPLS-2005 force field.

https://prankweb.cz/
http://www.swissadme.ch/
http://tox.charite.de/protox_II
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Simulation Trajectory Analysis

The quality of the MD simulation was confirmed, and the simulation event was
examined by using the simulation interaction diagram (SID), which is included in the
Schrödinger program. The RMSD, RMSF, protein–ligand interactions (P-L contacts), and
hydrogen bond interactions identified in the trajectory were used to determine the stability
of the complex structure.

4.5. RMSD Analysis

The RMSD of a protein–ligand complex system calculates the average distance brought
on by the dislocation of a particular atom over a predetermined amount of time and denotes
the stability of the protein. Following the initial alignment of the reference frame backbone
and protein structures, the RMSD of the entire system was estimated over nearly the same
length of time as the MD simulations (in our instance, 100 ns).

4.6. RMSF Analysis

Besides estimating the average observed atomic changes in relation to the number of
atoms, the resulting RMSF information is useful in determining the local conformational
change of a protein linked with ligands.

4.7. MM-GBSA Analysis

The MM-GBSA approach is frequently used to determine the binding free energy of a
chemical compound with a protein or a free ligand. A complicated system’s MM-GBSA can
be calculated using the MD simulation trajectory, which is more precise than the majority
of scoring functions. Therefore, the Prime MM-GBSA module in the Schrödinger Maestro
package was used to apply the MM-GBSA methods in order to calculate the binding free
energy (Gbind) of the selected compounds in the complex with the FAK1 protein.

5. Conclusions

Focal adhesion kinase 1 (FAK1) protein is responsible for the growth-factor signaling,
cell proliferation, cell survival and migration that lead to triggering of pancreatic cancer.
However, no effective drug has been identified to inhibit the FAK1 protein against pancre-
atic cancer. Therefore, this study aimed to find a purchasable and effective compound that
might block the function of protein and impede cancer growth. As a result, the research ap-
plied a broad range of computational methods, including the ligand-based pharmacophore
model, molecular docking, ADMET, MD simulation, and MM-GBSA approaches, and iden-
tified three promising therapeutic candidates such as Pubchem CID24601203, CID1893370,
and CID16355541, with binding scores of −10.4, −10.1, and −9.7 kcal/mol, respectively.
However, these purchasable compounds must be subjected to in vitro and in vivo inves-
tigations to evaluate their effectiveness and safety as anti-FAK1 drugs in humans. It is
both therapeutically and commercially feasible to develop the selected compounds as drug
candidates against FACK1.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph16010120/s1, Figure S1: Ten ligand-based model overview;
Table S1: List of 20 known active antagonist of FAK1 protein and their binding affinity towards the
protein generated through molecular docking method; Table S2: Generated ten ligand-based model
and score. Table S3. List of MM/GBSA component and their energy with standard error value of the
selected three compounds and Control.
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