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Abstract: New S-alkyl phthalimide 5a–f and S-benzyl 6a–d analogs of 5-(2-phenylquinolin-4-yl)-
1,3,4-oxadiazole-2-thiol (4) were prepared by reacting 4 with N-bromoalkylphthalimide and CF3-
substituted benzyl bromides in excellent yields. Spectroscopic techniques were employed to elucidate
the structures of the synthesized molecules. The inhibition activity of newly synthesized molecules
toward MAO-A, MAO-B, and AChE enzymes, was also assessed. All these compounds showed
activity in the submicromolar range against all enzymes. Compounds 5a and 5f were found to be the
most potent compounds against MAO-A (IC50 = 0.91 ± 0.15 nM) and MAO-B (IC50 = 0.84 ± 0.06 nM),
while compound 5c showed the most efficient acetylcholinesterase inhibition (IC50 = 1.02± 0.65 µM).
Docking predictions disclosed the docking poses of the synthesized molecules with all enzymes
and demonstrated the outstanding potency of compounds 5a, 5f, and 5c (docking scores = −11.6,
−15.3, and −14.0 kcal/mol against MAO-A, MAO-B, and AChE, respectively). These newly syn-
thesized analogs act as up-and-coming candidates for the creation of safer curative use against
Alzheimer’s illness.

Keywords: oxadiazole-quinoline hybrids; Alzheimer’s illness; monoamine oxidase; AChE; molecular
modeling

1. Introduction

Alzheimer’s disease (AD) is a complex neurological disturbance associated with
memory loss and language skills, as well as behavioral and psychological changes [1].
According to the Alzheimer’s Association report, about 0.47 billion people globally suffer
from AD, and the number of patients will exceed 1.50 billion in 2050 [2]. AD is a multi-
factorial pathological condition with several causes. Among these, the deposition of
beta-amyloid fibers, the death of neural cells, and high levels of monoamine oxidase (MAO)
and acetylcholinesterase (AChE) enzymes occur [3,4].
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The MAO enzyme presents in the exterior membrane of mitochondria [5] and me-
tabolizes a variety of dietary amines besides neurotransmitters [6]. There are two known
variants of the MAO enzyme, MAO-A and MAO-B, which have 70% similarity in pro-
tein structure and can be found in different parts of the body, liver, and brain [7]. MAO-B
catalyzes beta-phenylethylamine and benzylamine, while MAO-A preferably catalyzes sero-
tonin, noradrenaline, and adrenaline [5]. The inhibition of these enzymes plays a key role
in AD [8,9]. In addition to MAOs, the AChE enzyme is a target for AD management [10,11].
The inhibition of these neural enzymes (AChE and MAOs) possess neuroprotective effects
and decreases oxidative stress [12], leading to an increased level of neurotransmitters in the
pre-synaptic cleft [13]. A diversity of dual-inhibiting molecules has developed by merging
the moieties for MAOs and AChE in one compound [14]. Different research groups have
identified various chemical classes bearing benzylamine [15,16], coumarin [17], oxazole,
triazole [18], indole [19], quinolinone [20], isoindoline [21], and oxadiazole [22], as potent
inhibitors of the targeted enzymes. Among those classes, quinoline has gained much
attention as a privileged scaffold for multi-targeting enzymes (MAOs and AChE).

1,3,4-Oxadiazole moiety is a heterocyclic skeleton with single O, two N, and two C
atoms with compromised aromaticity and enhanced diene character [23]. Compounds
belonging to this class of heterocycles have expressed a tumultuous therapeutic potential
as antimicrobial [24–27], antiepileptic [28–32], anticancer [33–36], hypoglycemic [37–40],
antiviral [41–46], and anti-inflammatory [47–51] agents. Meanwhile, the chemistry and
biological potential of 1,3,4-oxadiazoles have been thoroughly reviewed recently [52–57].
The 1,3,4-oxadiazole moiety has become an established pharmacophore with wide avail-
ability in commercial drugs [55], including raltegravir (anti-HIV) [58], furamizole (an-
timicrobial) [59], nesapidil (vasodilator) [60], and zibotentan (anticancer) [61]. Similarly,
LC-150444 is a 1,3,4-oxadiazole-bearing potential drug in the preclinical testing stage for
the inhibition of dipeptidyl peptidase IV (DPP IV) enzyme [39]. The chemical structures of
these 1,3,4-oxadiazole-bearing chemical entities are depicted in Figure 1.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 2 of 22 
 

 

amyloid fibers, the death of neural cells, and high levels of monoamine oxidase (MAO) 

and acetylcholinesterase (AChE) enzymes occur [3,4]. 

The MAO enzyme presents in the exterior membrane of mitochondria [5] and metab-

olizes a variety of dietary amines besides neurotransmitters [6]. There are two known var-

iants of the MAO enzyme, MAO-A and MAO-B, which have 70% similarity in protein 

structure and can be found in different parts of the body, liver, and brain [7]. MAO-B 

catalyzes beta-phenylethylamine and benzylamine, while MAO-A preferably catalyzes 

serotonin, noradrenaline, and adrenaline [5]. The inhibition of these enzymes plays a key 

role in AD [8,9]. In addition to MAOs, the AChE enzyme is a target for AD management 

[10,11]. The inhibition of these neural enzymes (AChE and MAOs) possess neuroprotec-

tive effects and decreases oxidative stress [12], leading to an increased level of neurotrans-

mitters in the pre-synaptic cleft [13]. A diversity of dual-inhibiting molecules has devel-

oped by merging the moieties for MAOs and AChE in one compound [14]. Different re-

search groups have identified various chemical classes bearing benzylamine [15,16], cou-

marin [17], oxazole, triazole [18], indole [19], quinolinone [20], isoindoline [21], and oxadi-

azole [22], as potent inhibitors of the targeted enzymes. Among those classes, quinoline 

has gained much attention as a privileged scaffold for multi-targeting enzymes (MAOs 

and AChE). 

1,3,4-Oxadiazole moiety is a heterocyclic skeleton with single O, two N, and two C 

atoms with compromised aromaticity and enhanced diene character [23]. Compounds be-

longing to this class of heterocycles have expressed a tumultuous therapeutic potential as 

antimicrobial [24–27], antiepileptic [28–32], anticancer [33–36], hypoglycemic [37–40], an-

tiviral [41–46], and anti-inflammatory [47–51] agents. Meanwhile, the chemistry and bio-

logical potential of 1,3,4-oxadiazoles have been thoroughly reviewed recently [52–57]. The 

1,3,4-oxadiazole moiety has become an established pharmacophore with wide availability 

in commercial drugs [55], including raltegravir (anti-HIV) [58], furamizole (antimicrobial) 

[59], nesapidil (vasodilator) [60], and zibotentan (anticancer) [61]. Similarly, LC-150444 is 

a 1,3,4-oxadiazole-bearing potential drug in the preclinical testing stage for the inhibition 

of dipeptidyl peptidase IV (DPP IV) enzyme [39]. The chemical structures of these 1,3,4-

oxadiazole-bearing chemical entities are depicted in Figure 1. 

 

Figure 1. 1,3,4-Oxadiazole as a pharmacophore in commercial and preclinical stage drugs. Figure 1. 1,3,4-Oxadiazole as a pharmacophore in commercial and preclinical stage drugs.

Quinoline, a fused structure of benzene and pyridine at two adjacent carbon atoms,
is known to possess diverse biological and pharmaceutical potential. Naturally occurring
quinoline-containing compounds and synthetic derivatives of quinoline have shown enor-
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mous potential to be used as medicine or lead compounds for drug development [62].
Naturally occurring quinine found in the bark of the cinchona plant and synthetic deriva-
tives possessing a quinoline skeleton have been fruitfully employed for the treatment
of malaria [63]. Galipealongiflora tree bark contains molecules with quinolines skeleton
that are used as antileishmanial agents [64]. Cryptolepineis (an indoloquinoline alka-
loid), dynemicin A, and streptonigrin, are naturally occurring antitumor antibiotics [65,66].
Synthetically accessed quinoline derivatives have shown antileishmanial [67,68], DNA
binding agents [68], anticancer [69–72], antimycobacterial [73–75], antimicrobacterial [76],
anticonvulsant [77], anti-inflammatory [78,79], and cardiovascular activities [80,81].

Towards discovering new compounds for MAO and AChE enzymes inhibition, herein
we are reporting the synthesis, structure elucidation, molecular modeling, and enzyme
inhibition of novel S-alkyl phthalimide- and S-benzyl-oxadiazole-quinoline hybrids.

2. Results and Discussion
2.1. Chemistry

S-alkyl phthalimide- and S-benzyl-oxadiazole-quinoline hybrids (5a–f and 6a–d) were
synthesized following an optimized reported procedure [82–84]. The synthesis was initiated
by the esterification of 2-phenylquinoline-4-carboxylic acid (1) in methanol using a catalytic
amount of sulfuric acid, giving methyl 2-phenylquinoline-4-carboxylate (2). Compound
2 was hydrozinolyzed in methanol with hydrazine hydrate at reflux, pursued by cycliza-
tion utilizing potassium hydroxide in methanol at reflux and then acidification at room
temperature to obtain 5-(2-phenylquinolin-4-yl)-1,3,4-oxadiazole-2-thiol (4). The synthetic
protocol is bifurcated here. On one side, 5-(2-phenylquinolin-4-yl)-1,3,4-oxadiazole-2-thiol
(4) reacted with bromoalkyl substituted phthalimides to provide quinoline-oxadiazole-
phthalimide hybrids 5a–f, and on the other side, compound 4 reacted with substituted
benzyl bromides to provide 6a–d in excellent yields (Scheme 1).
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Scheme 1. Synthesis of S-alkyl phthalimide- and S-benzyl- oxadiazole-quinoline hybrids (5a–f and
6a–d).

The target molecules 5a–f and 6a–d were purified by recrystallization, and the struc-
tures of novel molecules were authenticated with the help of complementary analytical
tools, including 13C-NMR, 1H-NMR, and FT-IR spectroscopic techniques (Figure S1). Com-
pound 5a’s 1H-NMR analysis revealed typical peaks in the aromatic and aliphatic areas.
The singlet for the two protons at δ = 5.54 ppm represented methylene proton (S-CH2-N)
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surrounded by sulfur and nitrogen atoms. In compounds 5b–f, a triplet for the methy-
lene protons of the S-CH2 group was found between δ = 3.45 and δ = 3.26 ppm, whereas
the methylene protons of N-CH2 were found between δ = 3.77 and δ = 3.56 ppm. The
methylene groups between N-CH2 and S-CH2 of compounds 5c–f ranged from δ = 2.19 to
δ = 1.32 ppm.

The protons present in the benzylic S-CH2 group of compounds 6a–d were observed as
a singlet that ranged from δ = 4.69 to δ = 4.85 ppm. The singlet for one proton on the adjacent
carbon atoms of the quinoline ring was observed between δ = 8.65 and δ = 8.06 ppm. All
the protons present in the aromatic rings of the quinoline and phthalimide in compounds
5a–f were found in the range of δ 9.05–7.13 ppm, whereas aromatic protons present in the
aromatic ring of quinoline and S-benzyl in compounds 6a–d were observed in the range of
δ 9.05–7.35 ppm.

Similarly, 13C NMR of compounds 5a–f and 6a–d showed peaks for relevant carbon
atoms at appropriate positions. Carbon atoms present in the carbonyl group of phthalimide
moiety in compounds 5a–f were observed above δ 164 ppm. The carbon atoms OCN and
SCN of the 1,3,4-oxadiazole in compounds 5a–f and 6a–d ring were observed between δ

164 and δ 155 ppm. All the carbon atoms present in the aromatic rings were found in the
range of δ 149–118 ppm. The bridging carbon atom (SCN) present in 5a was observed at
δ 39.13 ppm. The two bridging carbon atoms (SCCN) present between S and N atoms in
compound 5b were observed at δ 37.13 and 30.14 ppm. The carbon atoms linked to the N
atom were found in the range of δ 38–35 ppm. The carbon atoms linked to S atom were
found in the range of δ 32–30 ppm. Other carbon atoms of the alkyl chain between N and
S atoms in 5c–f were observed below δ 30 ppm. The benzylic carbon of compounds 6a–d
was observed between δ 35.98 and δ 33.51 ppm.

2.2. Inhibitory Activity and SAR

In the synthesized compounds, the oxadiazole ring was substituted with quinoline
on the left side. Besides, the oxadiazole ring was replaced with an isoindoline on the
right side. The position of different functional groups on the basic pharmacophore ((2-
phenylquinolin-4-yl)-1,3,4-oxadiazol-2-yl)) ring was studied to get specific information
about the identification and selectivity of compounds to inhibit MAOs and AChE enzymes.
Two series of compounds (5a–f and 6a–d) showed activity in low µM to nM ranges on
the inhibition of MAOs and AChE enzymes (Table 1). Clorgyline and deprenyl were
utilized as reference ligands for MAO-A and MAO-B, respectively. At the same time,
donepezil was utilized as a positive AChE control. Compounds 5a and 5f showed activity in
submicromolar ranges against MAO-A and MAO-B (IC50 = 0.91 ± 0.15 and 0.84 ± 0.06 µM,
respectively). For AChE enzyme inhibition, compound 5c demonstrated the most active
compound (IC50 = 1.02 ± 0.65 µM).

As the length of the carbon chain increases between the oxadiazole ring and isoindo-
line, activity toward MAO-A decreases as 5b, 5c, 5d, 5e, and 5f with values of 1.81 ± 0.38,
3.31 ± 0.80, 3.18 ± 1.23, 4.14 ± 0.35, and 4.88 ± 1.75 µM, respectively. In addition, when
the isoindoline ring was replaced by a phenyl ring with different substitution CF3 at the
ortho, para, and meta positions (6c, 6b, and 6a), the activity toward MAO-A increased by
6.81 ± 2.65, 1.51 ± 0.52, and 1.02 ± 0.92 µM, respectively.

By increasing the length of the carbon chain, activity toward MAO-B decreases as
5a, 5b, 5c, 5d, and 5e with values of 1.59 ± 1.66, 2.61 ± 2.48, 3.39 ± 0.42, 3.76 ± 1.04,
and 3.84 ± 0.91 µM, respectively. While in the case of long carbon chain 5f, inhibition
toward MAO-B was 0.84 ± 0.06 µM. Besides, when the isoindoline ring is replaced
by a phenyl ring with different CF3 substitution at the ortho, para, and meta position
(6a–c), the activity toward MAO-B increases with values of 5.59 ± 3.22, 3.71 ± 2.88, and
2.71 ± 0.88 µM, respectively.
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Table 1. IC50 values of synthesized compounds towards MAO-A, MAO-B, and AChE enzymes.

No Compound
IC50 (µM)

MAO-A MAO-B AChE

1 5a 0.91 ± 0.15 1.59 ± 1.66 1.40 ± 0.45
2 5b 1.81 ± 0.38 2.61 ± 2.48 2.55 ± 0.96
3 5c 3.31 ± 0.80 3.39 ± 0.42 1.02 ± 0.65
4 5d 3.18 ± 1.23 3.76 ± 1.04 2.38 ± 0.92
5 5e 4.14 ± 0.35 3.84 ± 0.91 1.29 ± 0.75
6 5f 4.88 ± 1.75 0.84 ± 0.06 3.32 ± 0.45
7 6a 1.51 ± 0.52 3.71 ± 2.88 3.23 ± 0.95
8 6b 1.02 ± 0.92 2.71 ± 0.88 3.54 ± 1.05
9 6c 6.81 ± 2.65 5.59 ± 3.22 4.38 ± 1.45

10 6d 4.16 ± 1.71 2.90 ± 1.85 4.98 ± 1.85
11 Clorgyline b 0.0045 ± 0.0003 61.35 ± 1.13
12 Deprenyl b 67.25 ± 1.02 0.0196 ± 0.001
13 Donepezil b 0.032 ± 0.003 a

a All data are expressed as the average ± SEM of determinations made in triplicate. b Standard inhibitors.

Toward AChE inhibition, as the length of the carbon chain increases, the inhibition
activity decreases as 5a, 5c, 5e, 5b, 5d, and 5f with IC50 values of 1.40 ± 0.45, 1.02 ± 0.65,
1.29 ± 0.75, 2.55 ± 0.96, 2.38 ± 0.92, and 3.32 ± 0.45 µM, respectively. While, by the
replacing of the isoindoline ring by a phenyl ring with different substitution CF3 at the
ortho, meta, and para position (6c, 6b, and 6a, respectively), the activity toward AChE
increases 4.38± 1.45, 3.54 ± 1.05, and 3.23 ± 0.95 µM, respectively.

The correlation of newly synthesized (2-phenylquinolin-4-yl)-1,3,4-oxadiazol isoindoline-1,3-
dione) with previously known MAO and AChE inhibitors was investigated. It seemed that
the synthesized compounds showed higher inhibition activity toward targeted enzymes
compared to the reported ones (Figure 2) [85,86]. Moreover, the synthesized compounds
showed dual and multi-targeted inhibition.
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2.3. Kinetic Studies

To determine the method of targeting MAO-A, MAO-B, and AChE enzymes, kinetic
experiments for the most potent molecules (5a, 5f, and 5c) were carried out (Figure 3). Dif-
ferent test chemicals and substrate concentrations were utilized in the kinetic experiments.
Lineweaver-Burk plots were employed to determine the kind of inhibition, and they were
used to track how the inhibitor affected Km and Vmax by plotting the reciprocal reaction rate
against the reciprocal substrate concentrations. As depicted in Figure 3, the investigated
molecules displayed a pure competitive type of inhibition as the Vmax of enzymes was
unaffected by differing doses of the test compounds while the Km increased.
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Figure 3. The double reciprocal plot of (a) MAO-A, (b) MAO-B, and (c) AChE activity in the presence
and absence of different concentrations of the most promising compounds (5a, 5f, and 5c).

2.4. Docking Studies

To investigate the docking pose of the most promising molecules with the binding
pocket of the targeted enzymes, molecular docking predictions were executed. The as-
sessment of the AutoDock4.2.6 software with the utilized settings was first carried out in
accordance with the accessible experimental data. The co-crystallized ligands –namely,
harmine, safinamide, and donepezil– with the MAO-A, MAO-B, and AChE were re-docked
and compared to the experimentally resolved structures (PDB codes: 2Z5X, 2V5Z, and 4EY7,
respectively) (Figure 4). As depicted in Figure 4, the portended docking poses resembled
the native structures, having 0.23, 0.27, and 0.24 Å RMSD in relation to the co-crystallized
conformations of harmine, safinamide, and donepezil, respectively (Figure 4). Summing
up, the employed docking protocol would be utilized to predict the correct docking pose of
inhibitors with the targeted enzymes.

Utilizing the docking protocol, the binding scores and modes of 5a, 5f, and 5c with
MAO-A, MAO-B, and AChE enzymes, respectively, were anticipated (Figure 5). As il-
lustrated in Figure 5, the investigated compounds demonstrated good inhibition affinity
toward the inspected enzymes, with docking scores of –11.6, –15.3, and –14.0 kcal/mol
with MAO-A, MAO-B, and AChE, respectively. The monitored possibility of inspected
compounds towards MAO-A, MAO-B, and AChE might be ascribed to their capacity to ex-
hibit numerous H-bonds, hydrophobic, vdW, and π-based interactions with the substantial
residues within the binding pockets of these enzymes.
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When the results were compared with the co-crystallized conformations of harmine,
safinamide, and donepezil, many common interactions were observed (Figure 5). The
presence of a quinoline ring formed the π-alkyl interactions with ILE180, LEU337, ILE335,
LEU164, and ILE316 amino acids (Figure 5). Similarly, the 1,3,4-oxadiazol and isoindoline-
,3-dione ring exhibited hydrogen bond, π-π stacked, and π-amide interactions with ASN141,
TYR435, TYR124, TYR405, TYR398, TYR337, and TYR341 (Figure 5).
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2.5. Drug-Like and ADMET Characteristics

The drug-like and ADMET features of the potent molecules were computed and
compared with clorgyline, deprenyl, and donepezil as controls (Table 2). A compound’s
hydrophilicity is indicated by Log P; if the value is negative, the compound is hydrophilic.
All of the compounds in Table 2 are lipophilic. The total number of OH and NH atoms
equals the nHBD, while the total number of N and O atoms resembles the nHBA. As listed
in Table 2, the nHBA and nHBD are in the optimal ranges (nHBD < 5 and nHBA < 10). The
ideal lipophilicity for BBB penetration for medications having CNS activity is a Log D ≤ 2.
A Log D of more than 4 is considered as not suitable for a CNS medication. In vivo intestinal
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medication absorption is demonstrated by CaCo-2 permeability values. The ideal range
of values should be more than −5.15 Log unit. All compounds showed normal values
of CaCo-2 permeability. The higher HIA value, the higher intestinal absorption will be.
All studied molecules pointed out an appropriate HIA value compared to the controls.
Because of their lipophilic nature, all of our compounds can cross BBB. In metabolism and
excretion, all investigated compounds were inhibitors of CYP2C19 (Table 2). A drug’s
bodily clearance rate is categorized as high (>15), moderate (5–15), or low (<5). All the
newly synthesized compounds had a low clearance rate. The AMES toxicity was evaluated.
All compounds manifested low toxicity. Therefore, it can be suggested that all potent
derivatives have a good ADMET profile compared to the controls. Further investigation is
required to improve the toxicity profile of compounds.

Table 2. Drug-like and ADMET characteristics of potent synthesized molecules and controls a.

Compound
Physicochemical Properties

ADMET Properties

Absorption and
Distribution Metab-Olism

(CYP2C19
Inhibitor)

Excretion
(Clearance)

Toxicity
(AMES)

MW nHBA nHBD Log P Lipinski
Rule HIA CaCo-2 BBB

5a 464.1 7 0 5.2 Accepted 0.007 −4.55 0.058 0.889 3.10 0.043

5c 492.1 7 0 5.4 Accepted 0.006 −4.534 0.078 0.862 3.22 0.012

5f 534.2 7 0 6.7 Accepted 0.006 −4.582 0.050 0.819 3.46 0.011

Clorgyline 271.1 2 0 3.7 Accepted −0.001 −4.251 0.992 0.679 11.24 0.017

Deprenyl 187.1 1 0 2.7 Accepted −0.005 −4.915 0.996 0.133 10.46 0.035

Donepezil 379.2 4 0 4.2 Accepted 0.003 −4.793 0.975 0.413 10.63 0.026
a MW: Molecular weight; nHBA: number of hydrogen bond acceptors; nHBD: number of hydrogen bond
donors; Log P: log of the octanol-water partition coefficient; HIA: Human Intestinal Absorption; CaCo-2: CaCo-2
permeability; BBB: Blood Brain Barrier.

2.6. Density Function Theory (DFT) Calculations

Further insight into the features of the investigated compounds was traced using a
plethora of quantum mechanical calculations. In the first place, geometrical optimization
was executed at the B3LYP/6-31G level of theory, and the obtained structures are illustrated
in Figure 6. Afterwards, frequency computations were exerted, outlining that the optimized
structures were true minima with no observable imaginary frequency values. Upon the opti-
mized compounds, single-point energy and Frontier molecular orbitals (FMO) calculations
were performed, and the global reactivity parameters were evaluated. Diagrams of HOMO
and LUMO distributions are displayed in Figure 7. Table 3 enrolls energies of the optimized
compounds (Eopt), the highest occupied molecular orbital (EHOMO), and the lowest unoc-
cupied molecular orbital (ELUMO), along with the energy gap (Egap), global hardness (η),
global softness (σ), polarizability (α), and dipole moment (µ) of the studied compounds.

Table 3. Energies of the optimized compounds (Eopt, in au), the highest occupied molecular orbital
(EHOMO, in eV), and the lowest unoccupied molecular orbital (ELUMO, in eV), along with energy
gap (Egap, in eV). Computed values of global hardness (η), global softness (σ), polarizability (α), and
dipole moment (µ) of the studied compounds.

Compound Eopt
(au)

EHOMO
(eV)

ELUMO
(eV)

∆Egap
(eV)

η
(eV)

σ
(eV−1)

µ
(Debye) α

5a −1842.831 −0.221 −0.112 0.108 0.054 9.206 8.358 347.284
5b −1882.144 −0.221 −0.109 0.112 0.056 8.917 7.599 351.377
5c −1921.445 −0.226 −0.100 0.125 0.063 7.955 6.751 363.499
5d −1960.751 −0.226 −0.098 0.127 0.064 7.846 7.320 370.377
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Table 3. Cont.

Compound Eopt
(au)

EHOMO
(eV)

ELUMO
(eV)

∆Egap
(eV)

η
(eV)

σ
(eV−1)

µ
(Debye) α

5e −2000.055 −0.225 −0.096 0.129 0.065 7.721 6.769 385.049
5f −2039.360 −0.225 −0.095 0.130 0.065 7.651 7.268 393.625
6a −1899.057 −0.227 −0.089 0.137 0.069 7.266 1.194 331.243
6b −1899.057 −0.227 −0.088 0.138 0.069 7.237 2.973 329.504
6c −1899.059 −0.226 −0.088 0.138 0.069 7.245 2.446 323.636
6d −1562.098 −0.223 −0.084 0.138 0.069 7.204 3.093 318.962

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 10 of 22 
 

 

Table 3. Energies of the optimized compounds (Eopt, in au), the highest occupied molecular orbital 

(EHOMO, in eV), and the lowest unoccupied molecular orbital (ELUMO, in eV), along with energy gap 

(Egap, in eV). Computed values of global hardness (ƞ), global softness (σ), polarizability (α), and di-

pole moment (μ) of the studied compounds. 

Com-

pound 

Eopt 

(au) 

EHOMO 

(eV) 

ELUMO 

(eV) 

∆Egap  

(eV) 

η 

(eV) 

σ 

(eV−1) 

μ 

(Debye) 
α 

5a −1842.831 −0.221 −0.112 0.108 0.054 9.206 8.358 347.284 

5b −1882.144 −0.221 −0.109 0.112 0.056 8.917 7.599 351.377 

5c −1921.445 −0.226 −0.100 0.125 0.063 7.955 6.751 363.499 

5d −1960.751 −0.226 −0.098 0.127 0.064 7.846 7.320 370.377 

5e −2000.055 −0.225 −0.096 0.129 0.065 7.721 6.769 385.049 

5f −2039.360 −0.225 −0.095 0.130 0.065 7.651 7.268 393.625 

6a −1899.057 −0.227 −0.089 0.137 0.069 7.266 1.194 331.243 

6b −1899.057 −0.227 −0.088 0.138 0.069 7.237 2.973 329.504 

6c −1899.059 −0.226 −0.088 0.138 0.069 7.245 2.446 323.636 

6d −1562.098 −0.223 −0.084 0.138 0.069 7.204 3.093 318.962 

In the context of FMO theory, the molecule with less and high negative values of 

EHOMO and ELUMO, respectively, had superior nucleophilic nature. For ∆Egap, less positive 

values ensured the noticeable ability of the inspected compound to donate electrons.  

. 

Figure 6. Optimized structures of compounds 5a–f and 6a–d. 

The most reactive compound would be the one that has the smallest energy gap. The 

most kinetically stable compound showed a more favorable energy gap compared to the 

Figure 6. Optimized structures of compounds 5a–f and 6a–d.

In the context of FMO theory, the molecule with less and high negative values of
EHOMO and ELUMO, respectively, had superior nucleophilic nature. For ∆Egap, less positive
values ensured the noticeable ability of the inspected compound to donate electrons.

The most reactive compound would be the one that has the smallest energy gap. The
most kinetically stable compound showed a more favorable energy gap compared to the
others. As evident in Figure 7, HOMO and LUMO distributions were noticed with lower
and higher concentrations, respectively, around the phthalimide group in 5a–f compounds.
While both distributions were found over the 5-(2-phenylquinolin-4-yl)-1,3,4-oxadiazole-2-
thiol (4) in the 6a–d compounds.

According to data listed in Table 3, compound 5a would be highly reactive with
favorable nucleophilic nature. This observation could be ascribed to the least negative
EHOMO (–0.221 eV), highest negative ELUMO (–0.112 eV), and least positive Egap (0.108 eV)
values. In comparison, the reversed affirmations were generally noticed in the case of
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compound 6d, which in turn was addressed as the most kinetically stable compound. The
computed values of the global reactivity parameters ensured the FMO affirmations.
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3. Experimental
3.1. Materials and Apparatus

All commercially obtained chemicals and reagents were employed to accomplish
the targeted synthesis. Solvents of analytical grade were employed as provided. Uncor-
rected melting points were evaluated in open capillaries by a Gallenkamp melting point
instrument (MP-D). Thin-layer chromatography was employed to analyze all the reactions.
It was executed on Merck pre-coated plates (silica gel 60 F254, 0.25 mm), and was used
to visualize the reactions utilizing fluorescence quenching under UV light (254 nm). A
Bruker AV-300 spectrometer was applied to measure the 1H-NMR and 13C-NMR spectra
(300 MHz). ATR was used to record IR spectra on a Shimadzu Fourier Transform Infrared
spectrophotometer model (Attenuated Total Reflectance).
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3.2. General Procedure

A modified multistep synthetic procedure was followed to access 5a–f and 6a–d.
In a typical experimental procedure, 2-phenylquinoline-4-carboxylic acid (1) (30 mmol)

was esterified in 20 mL of methanol using catalytic amounts of sulfuric acid (0.5 mL) at
reflux temperature for 4 h. The mixture was neutralized with 50 mL of saturated NaHCO3
solution and extracted three times with 30 mL of ethyl acetate. The organic phase was
filtered after being dried over anhydrous sodium sulfate. The solvent was then extracted to
get crude methyl 2-phenylquinoline-4-carboxylate in quantitative yield.

Methyl 2-phenylquinoline-4-carboxylate (2) (25 mmol) was dissolved in 30 mL of
CH3OH, and NH2NH2.H2O (80%, 0.06 mol) was inserted dropwise. The reaction mixture
was cooled to room temperature and then poured into ice-cold water after 8 h of refluxing.
We precipitated, filtered, dried, and recrystallized 2-phenylquinoline-4-carbohydrazide (3)
from methanol.

A solution of 2-phenylquinoline-4-carbohydrazide (3) (20 mmol) in 10 mL of methanol
and 3 equivalent KOH dissolved in 30 mL of methanol was inserted. After 10 min, carbon
disulfide (30 mmol) was slowly inserted, and the whole reaction mixture was subjected to
reflux for 12 h. The reaction mixture was concentrated, brought to room temperature, and
then added to ice water. With dilute HCl, the pH of the solution was brought down to 2.
Warm water was used to wash the precipitated 5-(2-phenylquinolin-4-yl)-1,3,4-oxadiazole-
2-thiol (4) before it was recrystallized from methanol.

Acetone was used to dissolve 5-(2-phenylquinolin-4-yl)-1,3,4-oxadiazole-2-thiol (4)
(3 mmol), and potassium carbonate (4 mmol) was added. N-bromoalkylphthalimide
(4 mmol) was added to the reaction mixture after it had been agitated at room temperature
for 10 min. The reaction mixture was then mixed once more at room temperature for
6 h. To obtain pure 5a–f, the crude was recrystallized from methanol after the solvent
was removed.

Acetone was utilized to dissolve 5-(2-Phenylquinolin-4-yl)-1,3,4-oxadiazole-2-thiol
(4) (3 mmol), and potassium carbonate (4 mmol) was added. Substituted benzyl bromide
(4mmol) was added to the reaction mixture after it had been agitated at room temperature
for 10 min. The reaction mixture was then mixed once more at room temperature for 6 h.
To get pure 6a–d, the crude was recrystallized from methanol.

3.2.1. 2-((5-(2-Phenylquinolin-4-yl)-1,3,4-oxadiazol-2-ylthio)methyl)isoindoline-1,3-dione (5a)
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Off white solid; yield: 66%, Rf: 0.72 (Chloroform: acetone, 9:1); mp: 178–180 ◦C;
1H-NMR (300 MHz, DMSO-d6): δ (ppm); 9.05 (d, J = 9 Hz, 1H), 8.65 (s, 1H), 8.39 (d, J =
9 Hz, 2H), 8.20 (d, J = 9 Hz, 1H), 7.84 (m, 6H), 7.62 (m, 3H), 5.54 (s, 2H);13C NMR (75
MHz, DMSO-d6); 166.98, 164.88, 163.09, 156.34, 148.74, 138.12, 135.40, 131.87, 131.24, 130.69,
130.53, 129.49, 128.95, 128.55, 127.26, 123.95, 122.36, 118.91 39.13; FT-IR υ (cm−1): 3006 (C-H,
SP2), 2930 (C-H, SP3), 1717 (C = O), 1614, 1595 (C = N); HR/MS (EI): m/z calculated for
C26H16N4O3S: 464.0943; found 464.0947.
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3.2.2. 2-(2-(5-(2-Phenylquinolin-4-yl)-1,3,4-oxadiazol-2-ylthio)ethyl)isoindoline-1,3-dione (5b)
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Off white solid; yield: 80%, Rf: 0.77 (Chloroform: acetone, 9:1); mp: 154–158 °C; 1H-

NMR (300 MHz, DMSO-d6): δ (ppm); 8.98 (d, J = 9 Hz, 1H), 8.51(s, 1H), 8.31 (d, J = Hz, 2H), 

8.18 (d, J = 9 Hz, 1H), 7.81 (m, 6H), 7.55 (d, J = 6 HZ, 3H), 3.77 (t, J = 15 Hz, 2H), 3.45 (t, J = 

12 Hz, 2H), 2.19 (t, J = 12 Hz, 2H); 13C NMR (75 MHz, DMSO-d6); 168.56, 165.50, 164.07, 

146.28, 148.75, 138.10, 134.76, 132.19, 131.18, 130.60, 130.49, 129.44, 128.83, 128.64, 127.78, 

126.02, 123.44, 122.38, 118.66, 36.64, 30.14, 28.; FT-IR υ (cm−1): 3047 (C-H, SP2), 2943 (C-H, 

SP3), 1702 (C = O), 1599, 1536 (C = N); HR/MS (EI): m/z calculated for C29H22N4O3S: 

492.5484; found 492.5487. 

3.2.4. 2-(4-(5-(2-. Phenylquinolin-4-yl)-1,3,4-oxadiazol-2-ylthio)butyl)isoindoline-1,3-di-

one (5d) 

O

NN

N

O

O

S
N

 

White solid; yield: 86%, Rf: 0.76 (Chloroform: acetone, 9:1); mp: 121–125 °C; 1H-NMR 

(300 MHz, DMSO-d6): δ (ppm); 8.97 (d, J = 9 Hz, 1H), 8.48 (s, 1H), 8.30 (d, J = 6 Hz, 2H), 

8.17 (d, J = 9 Hz, 1H), 7.89 (t, J = 15 Hz, 1H), 7.77 (m, 5H), 7.56 (d, J = 9 Hz, 3H), 3.64 (t, J = 

Off white solid; yield: 83%, Rf: 0.76 (Chloroform: acetone, 9:1); mp: 198–200 ◦C;
1H-NMR (300 MHz, DMSO-d6): δ (ppm); 8.46 (d, J = 9 Hz, 1H), 8.06 (s, 1H), 7.92 (d, J = 6
Hz, 2H), 7.72 (d, J = 9 Hz, 1H), 7.45 (t, J = 15 Hz, 1H), 7.26 (m, 5H), 7.139d, J = 6 Hz, 3H),
3.66 (t, J = 12 Hz, 2H), 3.26 (t, J = 12 Hz, 2H); 13C NMR (75 MHz, DMSO-d6); 167.65, 164.63,
163.46, 155.83, 148.27, 137.66, 134.39, 131.38, 130.73, 130.17, 130.03, 128.99, 128.40, 127.90,
127.38, 125.52, 123.00, 121.81, 118.17.37.13, 30.54; FT-IR υ (cm−1): 3055 (C-H, SP2), 2942
(C-H, SP3), 1714 (C = O), 1594, 1525 (C = N); HR/MS (EI): m/z calculated for C27H18N4O3S:
478.5218; found 478.5220.

3.2.3. 2-(3-(5-(2-Phenylquinolin-4-yl)-1,3,4-oxadiazol-2-ylthio)propyl)isoindoline-1,3-dione (5c)
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130.53, 129.49, 128.95, 128.55, 127.26, 123.95, 122.36, 118.91 39.13; FT-IR υ (cm−1): 3006 (C-

H, SP2), 2930 (C-H, SP3), 1717 (C = O), 1614, 1595 (C = N); HR/MS (EI): m/z calculated for 

C26H16N4O3S: 464.0943; found 464.0947.  

3.2.2. 2-(2-(5-(2-Phenylquinolin-4-yl)-1,3,4-oxadiazol-2-ylthio)ethyl)isoindoline-1,3-dione 

(5b) 

O

NN

N

O

O

S
N

 

Off white solid; yield: 83%, Rf: 0.76 (Chloroform: acetone, 9:1); mp:198–200 °C; 1H-

NMR (300 MHz, DMSO-d6): δ (ppm); 8.46 (d, J = 9 Hz, 1H), 8.06 (s, 1H), 7.92 (d, J = 6 Hz, 

2H), 7.72 (d, J = 9 Hz, 1H), 7.45 (t, J = 15 Hz, 1H), 7.26 (m, 5H), 7.139d, J = 6 Hz, 3H), 3.66 (t, 

J = 12 Hz, 2H), 3.26 (t, J = 12 Hz, 2H); 13C NMR (75 MHz, DMSO-d6); 167.65, 164.63, 163.46, 

155.83, 148.27, 137.66, 134.39, 131.38, 130.73, 130.17, 130.03, 128.99, 128.40, 127.90, 127.38, 

125.52, 123.00, 121.81, 118.17.37.13, 30.54; FT-IR υ (cm−1): 3055 (C-H, SP2), 2942 (C-H, SP3), 

1714 (C = O), 1594, 1525 (C = N); HR/MS (EI): m/z calculated for C27H18N4O3S: 478.5218; 

found 478.5220. 

3.2.3. 2-(3-(5-(2-Phenylquinolin-4-yl)-1,3,4-oxadiazol-2-ylthio)propyl)isoindoline-1,3-

dione (5c) 

O

NN

N

O

O

S
N

 

Off white solid; yield: 80%, Rf: 0.77 (Chloroform: acetone, 9:1); mp: 154–158 °C; 1H-

NMR (300 MHz, DMSO-d6): δ (ppm); 8.98 (d, J = 9 Hz, 1H), 8.51(s, 1H), 8.31 (d, J = Hz, 2H), 

8.18 (d, J = 9 Hz, 1H), 7.81 (m, 6H), 7.55 (d, J = 6 HZ, 3H), 3.77 (t, J = 15 Hz, 2H), 3.45 (t, J = 

12 Hz, 2H), 2.19 (t, J = 12 Hz, 2H); 13C NMR (75 MHz, DMSO-d6); 168.56, 165.50, 164.07, 

146.28, 148.75, 138.10, 134.76, 132.19, 131.18, 130.60, 130.49, 129.44, 128.83, 128.64, 127.78, 

126.02, 123.44, 122.38, 118.66, 36.64, 30.14, 28.; FT-IR υ (cm−1): 3047 (C-H, SP2), 2943 (C-H, 

SP3), 1702 (C = O), 1599, 1536 (C = N); HR/MS (EI): m/z calculated for C29H22N4O3S: 

492.5484; found 492.5487. 

3.2.4. 2-(4-(5-(2-. Phenylquinolin-4-yl)-1,3,4-oxadiazol-2-ylthio)butyl)isoindoline-1,3-di-

one (5d) 

O

NN

N

O

O

S
N

 

White solid; yield: 86%, Rf: 0.76 (Chloroform: acetone, 9:1); mp: 121–125 °C; 1H-NMR 

(300 MHz, DMSO-d6): δ (ppm); 8.97 (d, J = 9 Hz, 1H), 8.48 (s, 1H), 8.30 (d, J = 6 Hz, 2H), 

8.17 (d, J = 9 Hz, 1H), 7.89 (t, J = 15 Hz, 1H), 7.77 (m, 5H), 7.56 (d, J = 9 Hz, 3H), 3.64 (t, J = 

Off white solid; yield: 80%, Rf: 0.77 (Chloroform: acetone, 9:1); mp: 154–158 ◦C;
1H-NMR (300 MHz, DMSO-d6): δ (ppm); 8.98 (d, J = 9 Hz, 1H), 8.51(s, 1H), 8.31 (d, J = Hz,
2H), 8.18 (d, J = 9 Hz, 1H), 7.81 (m, 6H), 7.55 (d, J = 6 HZ, 3H), 3.77 (t, J = 15 Hz, 2H), 3.45
(t, J = 12 Hz, 2H), 2.19 (t, J = 12 Hz, 2H); 13C NMR (75 MHz, DMSO-d6); 168.56, 165.50,
164.07, 146.28, 148.75, 138.10, 134.76, 132.19, 131.18, 130.60, 130.49, 129.44, 128.83, 128.64,
127.78, 126.02, 123.44, 122.38, 118.66, 36.64, 30.14, 28.; FT-IR υ (cm−1): 3047 (C-H, SP2), 2943
(C-H, SP3), 1702 (C = O), 1599, 1536 (C = N); HR/MS (EI): m/z calculated for C29H22N4O3S:
492.5484; found 492.5487.

3.2.4. 2-(4-(5-(2-Phenylquinolin-4-yl)-1,3,4-oxadiazol-2-ylthio)butyl)isoindoline-1,3-dione (5d)
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130.53, 129.49, 128.95, 128.55, 127.26, 123.95, 122.36, 118.91 39.13; FT-IR υ (cm−1): 3006 (C-

H, SP2), 2930 (C-H, SP3), 1717 (C = O), 1614, 1595 (C = N); HR/MS (EI): m/z calculated for 

C26H16N4O3S: 464.0943; found 464.0947.  

3.2.2. 2-(2-(5-(2-Phenylquinolin-4-yl)-1,3,4-oxadiazol-2-ylthio)ethyl)isoindoline-1,3-dione 

(5b) 

O

NN

N

O

O

S
N

 

Off white solid; yield: 83%, Rf: 0.76 (Chloroform: acetone, 9:1); mp:198–200 °C; 1H-

NMR (300 MHz, DMSO-d6): δ (ppm); 8.46 (d, J = 9 Hz, 1H), 8.06 (s, 1H), 7.92 (d, J = 6 Hz, 

2H), 7.72 (d, J = 9 Hz, 1H), 7.45 (t, J = 15 Hz, 1H), 7.26 (m, 5H), 7.139d, J = 6 Hz, 3H), 3.66 (t, 

J = 12 Hz, 2H), 3.26 (t, J = 12 Hz, 2H); 13C NMR (75 MHz, DMSO-d6); 167.65, 164.63, 163.46, 

155.83, 148.27, 137.66, 134.39, 131.38, 130.73, 130.17, 130.03, 128.99, 128.40, 127.90, 127.38, 

125.52, 123.00, 121.81, 118.17.37.13, 30.54; FT-IR υ (cm−1): 3055 (C-H, SP2), 2942 (C-H, SP3), 

1714 (C = O), 1594, 1525 (C = N); HR/MS (EI): m/z calculated for C27H18N4O3S: 478.5218; 

found 478.5220. 

3.2.3. 2-(3-(5-(2-Phenylquinolin-4-yl)-1,3,4-oxadiazol-2-ylthio)propyl)isoindoline-1,3-

dione (5c) 

O

NN

N

O

O

S
N

 

Off white solid; yield: 80%, Rf: 0.77 (Chloroform: acetone, 9:1); mp: 154–158 °C; 1H-

NMR (300 MHz, DMSO-d6): δ (ppm); 8.98 (d, J = 9 Hz, 1H), 8.51(s, 1H), 8.31 (d, J = Hz, 2H), 

8.18 (d, J = 9 Hz, 1H), 7.81 (m, 6H), 7.55 (d, J = 6 HZ, 3H), 3.77 (t, J = 15 Hz, 2H), 3.45 (t, J = 

12 Hz, 2H), 2.19 (t, J = 12 Hz, 2H); 13C NMR (75 MHz, DMSO-d6); 168.56, 165.50, 164.07, 

146.28, 148.75, 138.10, 134.76, 132.19, 131.18, 130.60, 130.49, 129.44, 128.83, 128.64, 127.78, 

126.02, 123.44, 122.38, 118.66, 36.64, 30.14, 28.; FT-IR υ (cm−1): 3047 (C-H, SP2), 2943 (C-H, 

SP3), 1702 (C = O), 1599, 1536 (C = N); HR/MS (EI): m/z calculated for C29H22N4O3S: 

492.5484; found 492.5487. 

3.2.4. 2-(4-(5-(2-. Phenylquinolin-4-yl)-1,3,4-oxadiazol-2-ylthio)butyl)isoindoline-1,3-di-

one (5d) 

O

NN

N

O

O

S
N

 

White solid; yield: 86%, Rf: 0.76 (Chloroform: acetone, 9:1); mp: 121–125 °C; 1H-NMR 

(300 MHz, DMSO-d6): δ (ppm); 8.97 (d, J = 9 Hz, 1H), 8.48 (s, 1H), 8.30 (d, J = 6 Hz, 2H), 

8.17 (d, J = 9 Hz, 1H), 7.89 (t, J = 15 Hz, 1H), 7.77 (m, 5H), 7.56 (d, J = 9 Hz, 3H), 3.64 (t, J = 

White solid; yield: 86%, Rf: 0.76 (Chloroform: acetone, 9:1); mp: 121–125 ◦C; 1H-NMR
(300 MHz, DMSO-d6): δ (ppm); 8.97 (d, J = 9 Hz, 1H), 8.48 (s, 1H), 8.30 (d, J = 6 Hz, 2H),
8.17 (d, J = 9 Hz, 1H), 7.89 (t, J = 15 Hz, 1H), 7.77 (m, 5H), 7.56 (d, J = 9 Hz, 3H), 3.64 (t,
J = 9 Hz, 2H), 3.42 (t, J = 9 Hz, 2H), 1.78 (m, 4H); 13C NMR (75 MHz, DMSO-d6); 168.43,
165.52, 164.00, 156.26, 148.75, 138.11, 134.75, 132.02, 131.16, 130.58, 130.48, 129.44, 128.81,
128.62, 127.75, 126.04, 123.40, 122.36, 118.62, 37.31, 32.13, 27.33, 26.82; FT-IR υ (cm−1): 3040
(C-H, SP2), 2943 (C-H, SP3), 1707 (C = O), 1598, 1549 (C = N); HR/MS (EI): m/z calculated
for C28H20N4O3S: 506.1413; found 506.1416.
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3.2.5. 2-(5-(5-(2-Phenylquinolin-4-yl)-1,3,4-oxadiazol-2-ylthio)pentyl)isoindoline-1,3-dione (5e)
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9 Hz, 2H), 3.42 (t, J = 9 Hz, 2H), 1.78 (m, 4H); 13C NMR (75 MHz, DMSO-d6); 168.43, 165.52, 

164.00, 156.26, 148.75, 138.11, 134.75, 132.02, 131.16, 130.58, 130.48, 129.44, 128.81, 128.62, 

127.75, 126.04, 123.40, 122.36, 118.62, 37.31, 32.13, 27.33, 26.82; FT-IR υ (cm−1): 3040 (C-H, 

SP2), 2943 (C-H, SP3), 1707 (C = O), 1598, 1549 (C = N); HR/MS (EI): m/z calculated for 

C28H20N4O3S: 506.1413; found 506.1416. 

3.2.5. 2-(5-(5-(2-Phenylquinolin-4-yl)-1,3,4-oxadiazol-2-ylthio)pentyl)isoindoline-1,3-di-

one (5e) 

O

NN

N

O

O

S
N

 

White solid; yield 74%, Rf: 0.67 (Chloroform: acetone, 9:1); mp: 146–150 °C; 1H-NMR 

(30 0MHz, DMSO-d6): δ (ppm); 8.99 (d, J = 6 Hz, 1H), 8.49 (s, 1H), 8.29 (d, J = 6 Hz, 2H), 

8.17 (j = 9 Hz, 1H), 7.88 (t, J = 15 Hz, 1H), 7.75 (m, 5H), 3.58 (t, J = 15 Hz, 2H), 3.38 (t, J = 18 

Hz, 2H), 1.88 (pnt, J = 15, 9 Hz, 2H), 1.64 (m, 2H), 1.47 (t, J = 15 Hz, 2H);13C NMR (75 MHz, 

DMSO-d6); 168.39, 165.59, 163.98, 156.27, 148.76, 138.11, 134.77, 132.00, 131.15, 130.57, 

130.48, 129.43, 128.79, 128.67, 127.73, 126.04, 123.40, 122.38, 118.62, 37.64, 32.35, 28.98, 27.88, 

25.64; FT-IR υ (cm−1): 3060 (C-H, SP2), 2933 (C-H, SP3), 1713 (C = O), 1597, 1534 (C = N); 

HR/MS (EI): m/z calculated for C30H24N4O3S: 520.1569; found 520.1572. 

3.2.6. 2-(6-(5-(2-Phenylquinolin-4-yl)-1,3,4-oxadiazol-2-ylthio)hexyl)isoindoline-1,3-dione 

(5f) 

O

NN

N

O

O

S
N

 

White solid; yield 73%, Rf: 0.85 (Chloroform: acetone, 9:1); mp: 132–135 °C; 1H-NMR 

(300 MHz, DMSO-d6): δ (ppm); 8.97(d, J = 9 Hz, 1H), 8.48 (s, 1H), 8.29 (t, J = 9 Hz, 2H), 8.16 

(d, J = 9 Hz, 1H), 7.88 (t, J = 12 Hz, 1H), 7.77 (m, 5H), 7.56 (m, 3H), 3.56 (t, J = 18 Hz, 2H), 

3.37 (t, J = 15 Hz, 2H), 1.81 (pnt, J = 12, 6 Hz, 2H), 1.59 (pnt, J = 15, 9 Hz, 2H), 1.46 (pnt, J = 

18, 9 Hz, 2H), 1.32 (pnt, J = 15, 6 Hz, 2H); 13C NMR (75 MHz, DMSO-d6); 168.38, 165.68, 

163.98, 156.28, 148.76, 138.11, 134.77, 132.02, 131.17, 130.60, 130.49, 129.44, 128.82, 128.69, 

127.74, 126.03, 123.40, 122.39, 118.65, 37.70, 32.43, 29.26, 28.22, 27.88, 26.12; FT-IR υ (cm−1): 

30,457 (C-H, SP2), 2933 (C-H, SP3), 1717 (C = O), 1596, 1536 (C = N); HR/MS (EI): m/z calcu-

lated for C31H26N4O3S: 534.1726; found 534.1728. 

3.2.7. 4-(5-(4-(Trifluoromethyl)benzylthio)-1,3,4-oxadiazol-2-yl)-2-phenylquinoline (6a) 

O

NN

S

N

CF3

 

White solid; yield 74%, Rf: 0.67 (Chloroform: acetone, 9:1); mp: 146–150 ◦C; 1H-NMR
(30 0MHz, DMSO-d6): δ (ppm); 8.99 (d, J = 6 Hz, 1H), 8.49 (s, 1H), 8.29 (d, J = 6 Hz, 2H),
8.17 (j = 9 Hz, 1H), 7.88 (t, J = 15 Hz, 1H), 7.75 (m, 5H), 3.58 (t, J = 15 Hz, 2H), 3.38 (t,
J = 18 Hz, 2H), 1.88 (pnt, J = 15, 9 Hz, 2H), 1.64 (m, 2H), 1.47 (t, J = 15 Hz, 2H);13C NMR
(75 MHz, DMSO-d6); 168.39, 165.59, 163.98, 156.27, 148.76, 138.11, 134.77, 132.00, 131.15,
130.57, 130.48, 129.43, 128.79, 128.67, 127.73, 126.04, 123.40, 122.38, 118.62, 37.64, 32.35, 28.98,
27.88, 25.64; FT-IR υ (cm−1): 3060 (C-H, SP2), 2933 (C-H, SP3), 1713 (C = O), 1597, 1534
(C = N); HR/MS (EI): m/z calculated for C30H24N4O3S: 520.1569; found 520.1572.

3.2.6. 2-(6-(5-(2-Phenylquinolin-4-yl)-1,3,4-oxadiazol-2-ylthio)hexyl)isoindoline-1,3-dione (5f)
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9 Hz, 2H), 3.42 (t, J = 9 Hz, 2H), 1.78 (m, 4H); 13C NMR (75 MHz, DMSO-d6); 168.43, 165.52, 

164.00, 156.26, 148.75, 138.11, 134.75, 132.02, 131.16, 130.58, 130.48, 129.44, 128.81, 128.62, 

127.75, 126.04, 123.40, 122.36, 118.62, 37.31, 32.13, 27.33, 26.82; FT-IR υ (cm−1): 3040 (C-H, 

SP2), 2943 (C-H, SP3), 1707 (C = O), 1598, 1549 (C = N); HR/MS (EI): m/z calculated for 

C28H20N4O3S: 506.1413; found 506.1416. 

3.2.5. 2-(5-(5-(2-Phenylquinolin-4-yl)-1,3,4-oxadiazol-2-ylthio)pentyl)isoindoline-1,3-di-

one (5e) 

O

NN

N

O

O

S
N

 

White solid; yield 74%, Rf: 0.67 (Chloroform: acetone, 9:1); mp: 146–150 °C; 1H-NMR 

(30 0MHz, DMSO-d6): δ (ppm); 8.99 (d, J = 6 Hz, 1H), 8.49 (s, 1H), 8.29 (d, J = 6 Hz, 2H), 

8.17 (j = 9 Hz, 1H), 7.88 (t, J = 15 Hz, 1H), 7.75 (m, 5H), 3.58 (t, J = 15 Hz, 2H), 3.38 (t, J = 18 

Hz, 2H), 1.88 (pnt, J = 15, 9 Hz, 2H), 1.64 (m, 2H), 1.47 (t, J = 15 Hz, 2H);13C NMR (75 MHz, 

DMSO-d6); 168.39, 165.59, 163.98, 156.27, 148.76, 138.11, 134.77, 132.00, 131.15, 130.57, 

130.48, 129.43, 128.79, 128.67, 127.73, 126.04, 123.40, 122.38, 118.62, 37.64, 32.35, 28.98, 27.88, 

25.64; FT-IR υ (cm−1): 3060 (C-H, SP2), 2933 (C-H, SP3), 1713 (C = O), 1597, 1534 (C = N); 

HR/MS (EI): m/z calculated for C30H24N4O3S: 520.1569; found 520.1572. 

3.2.6. 2-(6-(5-(2-Phenylquinolin-4-yl)-1,3,4-oxadiazol-2-ylthio)hexyl)isoindoline-1,3-dione 

(5f) 

O

NN

N

O

O

S
N

 

White solid; yield 73%, Rf: 0.85 (Chloroform: acetone, 9:1); mp: 132–135 °C; 1H-NMR 

(300 MHz, DMSO-d6): δ (ppm); 8.97(d, J = 9 Hz, 1H), 8.48 (s, 1H), 8.29 (t, J = 9 Hz, 2H), 8.16 

(d, J = 9 Hz, 1H), 7.88 (t, J = 12 Hz, 1H), 7.77 (m, 5H), 7.56 (m, 3H), 3.56 (t, J = 18 Hz, 2H), 

3.37 (t, J = 15 Hz, 2H), 1.81 (pnt, J = 12, 6 Hz, 2H), 1.59 (pnt, J = 15, 9 Hz, 2H), 1.46 (pnt, J = 

18, 9 Hz, 2H), 1.32 (pnt, J = 15, 6 Hz, 2H); 13C NMR (75 MHz, DMSO-d6); 168.38, 165.68, 

163.98, 156.28, 148.76, 138.11, 134.77, 132.02, 131.17, 130.60, 130.49, 129.44, 128.82, 128.69, 

127.74, 126.03, 123.40, 122.39, 118.65, 37.70, 32.43, 29.26, 28.22, 27.88, 26.12; FT-IR υ (cm−1): 

30,457 (C-H, SP2), 2933 (C-H, SP3), 1717 (C = O), 1596, 1536 (C = N); HR/MS (EI): m/z calcu-

lated for C31H26N4O3S: 534.1726; found 534.1728. 

3.2.7. 4-(5-(4-(Trifluoromethyl)benzylthio)-1,3,4-oxadiazol-2-yl)-2-phenylquinoline (6a) 

O

NN

S

N

CF3

 

White solid; yield 73%, Rf: 0.85 (Chloroform: acetone, 9:1); mp: 132–135 ◦C; 1H-NMR
(300 MHz, DMSO-d6): δ (ppm); 8.97(d, J = 9 Hz, 1H), 8.48 (s, 1H), 8.29 (t, J = 9 Hz, 2H),
8.16 (d, J = 9 Hz, 1H), 7.88 (t, J = 12 Hz, 1H), 7.77 (m, 5H), 7.56 (m, 3H), 3.56 (t, J = 18 Hz,
2H), 3.37 (t, J = 15 Hz, 2H), 1.81 (pnt, J = 12, 6 Hz, 2H), 1.59 (pnt, J = 15, 9 Hz, 2H), 1.46
(pnt, J = 18, 9 Hz, 2H), 1.32 (pnt, J = 15, 6 Hz, 2H); 13C NMR (75 MHz, DMSO-d6); 168.38,
165.68, 163.98, 156.28, 148.76, 138.11, 134.77, 132.02, 131.17, 130.60, 130.49, 129.44, 128.82,
128.69, 127.74, 126.03, 123.40, 122.39, 118.65, 37.70, 32.43, 29.26, 28.22, 27.88, 26.12; FT-IR υ

(cm−1): 30,457 (C-H, SP2), 2933 (C-H, SP3), 1717 (C = O), 1596, 1536 (C = N); HR/MS (EI):
m/z calculated for C31H26N4O3S: 534.1726; found 534.1728.

3.2.7. 4-(5-(4-(Trifluoromethyl)benzylthio)-1,3,4-oxadiazol-2-yl)-2-phenylquinoline (6a)
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9 Hz, 2H), 3.42 (t, J = 9 Hz, 2H), 1.78 (m, 4H); 13C NMR (75 MHz, DMSO-d6); 168.43, 165.52, 

164.00, 156.26, 148.75, 138.11, 134.75, 132.02, 131.16, 130.58, 130.48, 129.44, 128.81, 128.62, 

127.75, 126.04, 123.40, 122.36, 118.62, 37.31, 32.13, 27.33, 26.82; FT-IR υ (cm−1): 3040 (C-H, 

SP2), 2943 (C-H, SP3), 1707 (C = O), 1598, 1549 (C = N); HR/MS (EI): m/z calculated for 

C28H20N4O3S: 506.1413; found 506.1416. 

3.2.5. 2-(5-(5-(2-Phenylquinolin-4-yl)-1,3,4-oxadiazol-2-ylthio)pentyl)isoindoline-1,3-di-

one (5e) 

O

NN

N

O

O

S
N

 

White solid; yield 74%, Rf: 0.67 (Chloroform: acetone, 9:1); mp: 146–150 °C; 1H-NMR 

(30 0MHz, DMSO-d6): δ (ppm); 8.99 (d, J = 6 Hz, 1H), 8.49 (s, 1H), 8.29 (d, J = 6 Hz, 2H), 

8.17 (j = 9 Hz, 1H), 7.88 (t, J = 15 Hz, 1H), 7.75 (m, 5H), 3.58 (t, J = 15 Hz, 2H), 3.38 (t, J = 18 

Hz, 2H), 1.88 (pnt, J = 15, 9 Hz, 2H), 1.64 (m, 2H), 1.47 (t, J = 15 Hz, 2H);13C NMR (75 MHz, 

DMSO-d6); 168.39, 165.59, 163.98, 156.27, 148.76, 138.11, 134.77, 132.00, 131.15, 130.57, 

130.48, 129.43, 128.79, 128.67, 127.73, 126.04, 123.40, 122.38, 118.62, 37.64, 32.35, 28.98, 27.88, 

25.64; FT-IR υ (cm−1): 3060 (C-H, SP2), 2933 (C-H, SP3), 1713 (C = O), 1597, 1534 (C = N); 

HR/MS (EI): m/z calculated for C30H24N4O3S: 520.1569; found 520.1572. 

3.2.6. 2-(6-(5-(2-Phenylquinolin-4-yl)-1,3,4-oxadiazol-2-ylthio)hexyl)isoindoline-1,3-dione 

(5f) 

O

NN

N

O

O

S
N

 

White solid; yield 73%, Rf: 0.85 (Chloroform: acetone, 9:1); mp: 132–135 °C; 1H-NMR 

(300 MHz, DMSO-d6): δ (ppm); 8.97(d, J = 9 Hz, 1H), 8.48 (s, 1H), 8.29 (t, J = 9 Hz, 2H), 8.16 

(d, J = 9 Hz, 1H), 7.88 (t, J = 12 Hz, 1H), 7.77 (m, 5H), 7.56 (m, 3H), 3.56 (t, J = 18 Hz, 2H), 

3.37 (t, J = 15 Hz, 2H), 1.81 (pnt, J = 12, 6 Hz, 2H), 1.59 (pnt, J = 15, 9 Hz, 2H), 1.46 (pnt, J = 

18, 9 Hz, 2H), 1.32 (pnt, J = 15, 6 Hz, 2H); 13C NMR (75 MHz, DMSO-d6); 168.38, 165.68, 

163.98, 156.28, 148.76, 138.11, 134.77, 132.02, 131.17, 130.60, 130.49, 129.44, 128.82, 128.69, 

127.74, 126.03, 123.40, 122.39, 118.65, 37.70, 32.43, 29.26, 28.22, 27.88, 26.12; FT-IR υ (cm−1): 

30,457 (C-H, SP2), 2933 (C-H, SP3), 1717 (C = O), 1596, 1536 (C = N); HR/MS (EI): m/z calcu-

lated for C31H26N4O3S: 534.1726; found 534.1728. 

3.2.7. 4-(5-(4-(Trifluoromethyl)benzylthio)-1,3,4-oxadiazol-2-yl)-2-phenylquinoline (6a) 

O

NN

S

N

CF3

 

White solid; yield: 74%, Rf: 0.84 (n-hexane: ethylacetate; 6:4); mp: 144–145 ◦C; 1H-
NMR (300 MHz, CDCl3): δ (ppm); 9.14 (d, J = 9 Hz, 1H), 8.38 (s, 1H), 8.23 (m, 3H), 7.84
(m, 1H), 7.70 (m, 5H), 7.55 (m, 3H), 4.65 (s, 2H); 13C NMR (75 MHz, CDCl3); 164.66, 164.53,
156.74, 149.19, 139.71, 138.60, 130.66, 130.52, 130.47,130.22, 129.92, 129.61, 129.02, 128.27,
128.18, 127.46, 125.89, 125.85, 125.80, 122.44, 122.11, 118.32, 35.98; FT-IR υ (cm−1): 3064
(C-H, SP2), 2950 (C-H, SP3), 1599 (C = N), 1325 (C-S); HR/MS (EI): m/z calculated for
C25H16F3N3OS: 463.0966; found 463.0969.
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3.2.8. 4-(5-(3-(Trifluoromethyl)benzylthio)-1,3,4-oxadiazol-2-yl)-2-phenylquinoline (6b)
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White solid; yield: 74%, Rf: 0.84 (n-hexane: ethylacetate; 6:4); mp: 144–145 °C; 1H-

NMR (300 MHz, CDCl3): δ (ppm); 9.14 (d, J = 9 Hz, 1H), 8.38 (s, 1H), 8.23 (m, 3H), 7.84 (m, 

1H), 7.70 (m, 5H), 7.55 (m, 3H), 4.65 (s, 2H); 13C NMR (75 MHz, CDCl3); 164.66, 164.53, 

156.74, 149.19, 139.71, 138.60, 130.66, 130.52, 130.47,130.22, 129.92, 129.61, 129.02, 128.27, 

128.18, 127.46, 125.89, 125.85, 125.80, 122.44, 122.11, 118.32, 35.98; FT-IR υ (cm−1): 3064 (C-

H, SP2), 2950 (C-H, SP3), 1599 (C = N), 1325 (C-S); HR/MS (EI): m/z calculated for 

C25H16F3N3OS: 463.0966; found 463.0969. 

3.2.8. 4-(5-(3-(Trifluoromethyl)benzylthio)-1,3,4-oxadiazol-2-yl)-2-phenylquinoline (6b) 

O

NN

S

N

F3C

 

White solid; yield: 76%, Rf: 0.64 (n-hexane: ethylacetate; 6:4); mp: 134–135 °C; 1H-

NMR (300 MHz, CDCl3): δ (ppm); 8.97 (d, J = 9 Hz, 1H), 8.48 (s, 1H), 8.29 (dd, J 9, 6 Hz, 

2H), 8.17 (d, J = 9 Hz, 1H), 7.95 (s, 1H), 7.86 (dd, J = 15, 6 Hz, 2H), 7.74 (m, 1H), 7.59 (m, 

5H), 4.78 (s, 2H); 13C NMR (75 MHz, CDCl3; 164.84, 164.35, 156.25, 148.74, 139.55, 138.99, 

138.06, 133.77, 131.17, 130.61, 130.49, 130.12, 129.88, 129.42, 128.84, 128.50, 127.73, 126.32, 

126.20, 125.98, 124.97, 124.92, 122.71, 122.31.118.65, 35.48; FT-IR υ (cm−1): 3054 (C-H, SP2), 

2951 (C-H, SP3), 1595 (C = N), 1327 (C-S); HR/MS (EI): m/z calculated for C25H16F3N3OS: 

463.0966; found 463.0968. 

3.2.9. 4-(5-(2-(Trifluoromethyl)benzylthio)-1,3,4-oxadiazol-2-yl)-2-phenylquinoline (6c) 

O

NN

S

N

F3C

 

White solid; yield: 76%, Rf: 0.81 (n-hexane: ethylacetate; 6:4); mp: 122–123 °C; 1H-

NMR (300 MHz, CDCl3): δ (ppm); 8.98 (d, J = 9 Hz, 1H), 8.45 (s, 1H), 8.28 (m, 2H), 8.17 (d, 

J = 6 Hz, 1H), 7.89 (m, 2H), 7.73 (m, 3H), 7.56 (m, 4H), 4.85 (s, 2H); 13C NMR (75 MHz, 

CDCl3; 164.45, 164.42, 156.23, 148.75, 138.05, 134.69, 133.60, 132.52, 131.20, 130.63, 130.50, 

129.44, 129.29, 128.87, 128.50, 127.88, 128.50, 127.88, 127.70, 127.48, 126.93, 126.86, 126.57, 

125.96, 122.33, 33.51; FT-IR υ (cm−1): 3065 (C-H, SP2), 2950 (C-H, SP3), 1599 (C = N), 1346 

(C-S); HR/MS (EI): m/z calculated for C25H16F3N3OS: 463.0966; found 463.0970. 

3.2.10. 4-(5-(Benzylthio)-1,3,4-oxadiazol-2-yl)-2-phenylquinoline (6d) 

O

NN

S

N

 

White solid; yield: 74%, Rf: 0.85 (n-hexane: ethylacetate; 6:4); mp: 139–140 °C; 1H-

NMR (300 MHz, DMS0-d6): δ (ppm); 8.98 (d, J = 9 Hz, 1H), 8.46 (s, 1H), 8.29 (d, J = 6 Hz, 

2H), 8.16 (d, J = 6 Hz, 1H), 7.88 (t, J = 15 Hz, 1H), 7.75 (t, J = 15 Hz, 1H), 7.58 (m, 5H), 7.35 

White solid; yield: 76%, Rf: 0.64 (n-hexane: ethylacetate; 6:4); mp: 134–135 ◦C; 1H-
NMR (300 MHz, CDCl3): δ (ppm); 8.97 (d, J = 9 Hz, 1H), 8.48 (s, 1H), 8.29 (dd, J 9, 6 Hz,
2H), 8.17 (d, J = 9 Hz, 1H), 7.95 (s, 1H), 7.86 (dd, J = 15, 6 Hz, 2H), 7.74 (m, 1H), 7.59 (m,
5H), 4.78 (s, 2H); 13C NMR (75 MHz, CDCl3; 164.84, 164.35, 156.25, 148.74, 139.55, 138.99,
138.06, 133.77, 131.17, 130.61, 130.49, 130.12, 129.88, 129.42, 128.84, 128.50, 127.73, 126.32,
126.20, 125.98, 124.97, 124.92, 122.71, 122.31.118.65, 35.48; FT-IR υ (cm−1): 3054 (C-H, SP2),
2951 (C-H, SP3), 1595 (C = N), 1327 (C-S); HR/MS (EI): m/z calculated for C25H16F3N3OS:
463.0966; found 463.0968.

3.2.9. 4-(5-(2-(Trifluoromethyl)benzylthio)-1,3,4-oxadiazol-2-yl)-2-phenylquinoline (6c)
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White solid; yield: 74%, Rf: 0.84 (n-hexane: ethylacetate; 6:4); mp: 144–145 °C; 1H-

NMR (300 MHz, CDCl3): δ (ppm); 9.14 (d, J = 9 Hz, 1H), 8.38 (s, 1H), 8.23 (m, 3H), 7.84 (m, 

1H), 7.70 (m, 5H), 7.55 (m, 3H), 4.65 (s, 2H); 13C NMR (75 MHz, CDCl3); 164.66, 164.53, 

156.74, 149.19, 139.71, 138.60, 130.66, 130.52, 130.47,130.22, 129.92, 129.61, 129.02, 128.27, 

128.18, 127.46, 125.89, 125.85, 125.80, 122.44, 122.11, 118.32, 35.98; FT-IR υ (cm−1): 3064 (C-

H, SP2), 2950 (C-H, SP3), 1599 (C = N), 1325 (C-S); HR/MS (EI): m/z calculated for 

C25H16F3N3OS: 463.0966; found 463.0969. 

3.2.8. 4-(5-(3-(Trifluoromethyl)benzylthio)-1,3,4-oxadiazol-2-yl)-2-phenylquinoline (6b) 

O

NN

S

N

F3C

 

White solid; yield: 76%, Rf: 0.64 (n-hexane: ethylacetate; 6:4); mp: 134–135 °C; 1H-

NMR (300 MHz, CDCl3): δ (ppm); 8.97 (d, J = 9 Hz, 1H), 8.48 (s, 1H), 8.29 (dd, J 9, 6 Hz, 

2H), 8.17 (d, J = 9 Hz, 1H), 7.95 (s, 1H), 7.86 (dd, J = 15, 6 Hz, 2H), 7.74 (m, 1H), 7.59 (m, 

5H), 4.78 (s, 2H); 13C NMR (75 MHz, CDCl3; 164.84, 164.35, 156.25, 148.74, 139.55, 138.99, 

138.06, 133.77, 131.17, 130.61, 130.49, 130.12, 129.88, 129.42, 128.84, 128.50, 127.73, 126.32, 

126.20, 125.98, 124.97, 124.92, 122.71, 122.31.118.65, 35.48; FT-IR υ (cm−1): 3054 (C-H, SP2), 

2951 (C-H, SP3), 1595 (C = N), 1327 (C-S); HR/MS (EI): m/z calculated for C25H16F3N3OS: 

463.0966; found 463.0968. 

3.2.9. 4-(5-(2-(Trifluoromethyl)benzylthio)-1,3,4-oxadiazol-2-yl)-2-phenylquinoline (6c) 

O

NN

S

N

F3C

 

White solid; yield: 76%, Rf: 0.81 (n-hexane: ethylacetate; 6:4); mp: 122–123 °C; 1H-

NMR (300 MHz, CDCl3): δ (ppm); 8.98 (d, J = 9 Hz, 1H), 8.45 (s, 1H), 8.28 (m, 2H), 8.17 (d, 

J = 6 Hz, 1H), 7.89 (m, 2H), 7.73 (m, 3H), 7.56 (m, 4H), 4.85 (s, 2H); 13C NMR (75 MHz, 

CDCl3; 164.45, 164.42, 156.23, 148.75, 138.05, 134.69, 133.60, 132.52, 131.20, 130.63, 130.50, 

129.44, 129.29, 128.87, 128.50, 127.88, 128.50, 127.88, 127.70, 127.48, 126.93, 126.86, 126.57, 

125.96, 122.33, 33.51; FT-IR υ (cm−1): 3065 (C-H, SP2), 2950 (C-H, SP3), 1599 (C = N), 1346 

(C-S); HR/MS (EI): m/z calculated for C25H16F3N3OS: 463.0966; found 463.0970. 

3.2.10. 4-(5-(Benzylthio)-1,3,4-oxadiazol-2-yl)-2-phenylquinoline (6d) 

O

NN

S

N

 

White solid; yield: 74%, Rf: 0.85 (n-hexane: ethylacetate; 6:4); mp: 139–140 °C; 1H-

NMR (300 MHz, DMS0-d6): δ (ppm); 8.98 (d, J = 9 Hz, 1H), 8.46 (s, 1H), 8.29 (d, J = 6 Hz, 

2H), 8.16 (d, J = 6 Hz, 1H), 7.88 (t, J = 15 Hz, 1H), 7.75 (t, J = 15 Hz, 1H), 7.58 (m, 5H), 7.35 

White solid; yield: 76%, Rf: 0.81 (n-hexane: ethylacetate; 6:4); mp: 122–123 ◦C; 1H-
NMR (300 MHz, CDCl3): δ (ppm); 8.98 (d, J = 9 Hz, 1H), 8.45 (s, 1H), 8.28 (m, 2H), 8.17
(d, J = 6 Hz, 1H), 7.89 (m, 2H), 7.73 (m, 3H), 7.56 (m, 4H), 4.85 (s, 2H); 13C NMR (75 MHz,
CDCl3; 164.45, 164.42, 156.23, 148.75, 138.05, 134.69, 133.60, 132.52, 131.20, 130.63, 130.50,
129.44, 129.29, 128.87, 128.50, 127.88, 128.50, 127.88, 127.70, 127.48, 126.93, 126.86, 126.57,
125.96, 122.33, 33.51; FT-IR υ (cm−1): 3065 (C-H, SP2), 2950 (C-H, SP3), 1599 (C = N), 1346
(C-S); HR/MS (EI): m/z calculated for C25H16F3N3OS: 463.0966; found 463.0970.

3.2.10. 4-(5-(Benzylthio)-1,3,4-oxadiazol-2-yl)-2-phenylquinoline (6d)
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White solid; yield: 74%, Rf: 0.84 (n-hexane: ethylacetate; 6:4); mp: 144–145 °C; 1H-

NMR (300 MHz, CDCl3): δ (ppm); 9.14 (d, J = 9 Hz, 1H), 8.38 (s, 1H), 8.23 (m, 3H), 7.84 (m, 

1H), 7.70 (m, 5H), 7.55 (m, 3H), 4.65 (s, 2H); 13C NMR (75 MHz, CDCl3); 164.66, 164.53, 

156.74, 149.19, 139.71, 138.60, 130.66, 130.52, 130.47,130.22, 129.92, 129.61, 129.02, 128.27, 

128.18, 127.46, 125.89, 125.85, 125.80, 122.44, 122.11, 118.32, 35.98; FT-IR υ (cm−1): 3064 (C-

H, SP2), 2950 (C-H, SP3), 1599 (C = N), 1325 (C-S); HR/MS (EI): m/z calculated for 

C25H16F3N3OS: 463.0966; found 463.0969. 

3.2.8. 4-(5-(3-(Trifluoromethyl)benzylthio)-1,3,4-oxadiazol-2-yl)-2-phenylquinoline (6b) 

O

NN

S

N

F3C

 

White solid; yield: 76%, Rf: 0.64 (n-hexane: ethylacetate; 6:4); mp: 134–135 °C; 1H-

NMR (300 MHz, CDCl3): δ (ppm); 8.97 (d, J = 9 Hz, 1H), 8.48 (s, 1H), 8.29 (dd, J 9, 6 Hz, 

2H), 8.17 (d, J = 9 Hz, 1H), 7.95 (s, 1H), 7.86 (dd, J = 15, 6 Hz, 2H), 7.74 (m, 1H), 7.59 (m, 

5H), 4.78 (s, 2H); 13C NMR (75 MHz, CDCl3; 164.84, 164.35, 156.25, 148.74, 139.55, 138.99, 

138.06, 133.77, 131.17, 130.61, 130.49, 130.12, 129.88, 129.42, 128.84, 128.50, 127.73, 126.32, 

126.20, 125.98, 124.97, 124.92, 122.71, 122.31.118.65, 35.48; FT-IR υ (cm−1): 3054 (C-H, SP2), 

2951 (C-H, SP3), 1595 (C = N), 1327 (C-S); HR/MS (EI): m/z calculated for C25H16F3N3OS: 

463.0966; found 463.0968. 

3.2.9. 4-(5-(2-(Trifluoromethyl)benzylthio)-1,3,4-oxadiazol-2-yl)-2-phenylquinoline (6c) 

O

NN

S

N

F3C

 

White solid; yield: 76%, Rf: 0.81 (n-hexane: ethylacetate; 6:4); mp: 122–123 °C; 1H-

NMR (300 MHz, CDCl3): δ (ppm); 8.98 (d, J = 9 Hz, 1H), 8.45 (s, 1H), 8.28 (m, 2H), 8.17 (d, 

J = 6 Hz, 1H), 7.89 (m, 2H), 7.73 (m, 3H), 7.56 (m, 4H), 4.85 (s, 2H); 13C NMR (75 MHz, 

CDCl3; 164.45, 164.42, 156.23, 148.75, 138.05, 134.69, 133.60, 132.52, 131.20, 130.63, 130.50, 

129.44, 129.29, 128.87, 128.50, 127.88, 128.50, 127.88, 127.70, 127.48, 126.93, 126.86, 126.57, 

125.96, 122.33, 33.51; FT-IR υ (cm−1): 3065 (C-H, SP2), 2950 (C-H, SP3), 1599 (C = N), 1346 

(C-S); HR/MS (EI): m/z calculated for C25H16F3N3OS: 463.0966; found 463.0970. 

3.2.10. 4-(5-(Benzylthio)-1,3,4-oxadiazol-2-yl)-2-phenylquinoline (6d) 

O

NN

S

N

 

White solid; yield: 74%, Rf: 0.85 (n-hexane: ethylacetate; 6:4); mp: 139–140 °C; 1H-

NMR (300 MHz, DMS0-d6): δ (ppm); 8.98 (d, J = 9 Hz, 1H), 8.46 (s, 1H), 8.29 (d, J = 6 Hz, 

2H), 8.16 (d, J = 6 Hz, 1H), 7.88 (t, J = 15 Hz, 1H), 7.75 (t, J = 15 Hz, 1H), 7.58 (m, 5H), 7.35 

White solid; yield: 74%, Rf: 0.85 (n-hexane: ethylacetate; 6:4); mp: 139–140 ◦C; 1H-
NMR (300 MHz, DMS0-d6): δ (ppm); 8.98 (d, J = 9 Hz, 1H), 8.46 (s, 1H), 8.29 (d, J = 6 Hz,
2H), 8.16 (d, J = 6 Hz, 1H), 7.88 (t, J = 15 Hz, 1H), 7.75 (t, J = 15 Hz, 1H), 7.58 (m, 5H), 7.35
(m, 3H), 4.69 (s, 2H);13C NMR (75 MHz, DMS0-d6; 165.09, 164.21, 156.26, 148.75, 138.08,
137.04, 131.18, 130.63, 130.49, 129.59, 129.45, 129.10, 128.86, 128.52, 128.30, 127.75, 126.01,
122.32, 118.63, 36.28; FT-IR υ (cm−1): 3062 (C-H, SP2), 2950 (C-H, SP3), 1595 (C = N), 1336
(C-S); HR/MS (EI): m/z calculated for C24H17F3N3OS: 395.1092; found 395.1095.

3.3. Inhibition Assay Protocol
3.3.1. Monoamine Oxidase

According to the previously reported protocol, the synthesized compounds’ action
on the monoamine oxidase (MAO-A and MAO-B) enzymes was tested. The enzyme was
produced just 15 to 20 min before, at a cold room temperature. Accordingly, clorgyline
(60 nM) or deprenyl (300 nM) were used to permanently inhibit MAO-A and MAO-B
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activity. White 96-well plates were utilized for the test. The assay volume was 100 µL,
having 60 µL buffer (pH 7.4) and 10 µL test compound (0.1 mM, 10% DMSO), followed by
adding enzyme 10 µL (26 µg of protein for MAO-A and 5.0 µg for MAO-B). For MAO-A
and MAO-B, the mixture was incubated for 20 and 15 min, respectively. The mixture was
then given 10 µL of the substrate and 10 µL of newly prepared Amplex red. Accordingly,
the final concentrations of clorgyline and deprenyl were utilized to calculate the activities
of non-MAO-A and MAO-B. Using a fluorescence plate reader (BMG Labtech GmbH, orten
berg Germany), the change in fluorescence was identified. The compounds that showed
inhibition of either MAO-A or MAO-B activity of >50% underwent additional testing to
determine their IC50 values. The non-linear curve fitting tool PRISM 5.0 (GraphPad, San
Diego, CA, USA) was employed to compute IC50 values.

3.3.2. Acetylcholinesterase

All substances were put through a little modified version of Ellman’s test to gauge the
effectiveness of their ability to inhibit acetylcholinesterase (AChE). Released thiocholine
reacts with chromogenic reagent 5,5-dithio-bis (2-nitrobenzoic) acid to produce a colorful
product (DTNB). At a concentration of 2.5 units/mL, the enzyme solutions were prepared.
The assay volume was 100 µL, having 60 µL buffer and 10 µL test compound (0.1 mM, 10%
DMSO), pursued by inserting enzyme 10 µL (0.04 U/well). The mixture was incubated for
10 min. 10 µL of the substrate and 10 µL of DTNB were added to the mixture. After 30 min,
the production of the yellow anion was recorded at 405 nm.

3.4. Molecular Docking and ADMET Characteristics
3.4.1. Enzyme Preparation

The X-ray structures of MAO-A (PDB code: 2Z5X [87]), MAO-B (PDB code: 2V5Z [88]),
and AChE (PDB code: 4EY7 [89]) were opted as templates for all docking predictions. The
enzymes were prepared by excluding all ions, heteroatoms, water molecules, and ligands.
The Modeller software was applied to create all missing residues [90]. The investigated
enzymes’ protonation states were examined using the H++ website [91]. All missing
hydrogen atoms were inserted.

3.4.2. Inhibitor Preparation

The 3D molecular structures of the inspected molecules 5a–f and 6a–d were manually
constructed. Before any computation, all investigated compounds were firstly minimized
using the MMFF94S force field implemented inside the SZYBKI software [92,93]. The
charges of all investigated compounds were computed utilizing the Gasteiger-Marsili
method [94].

3.4.3. Docking Calculations

The AutoDock4.2.6 software was employed to execute all docking computations [95].
Based on the AutoDock protocol, the pdbqt file for the examined enzymes was generated
utilizing the MGL (molecular graphics laboratory) tools 1.5.7 [96]. In general, the docking
parameters of the AutoDock4.2.6 software were maintained at their default settings. The
GA (number of genetic algorithms) run variables was 250. The eval (maximum number
of energy evaluations) was 25,000,000. The grid box size was 50 Å × 50 Å × 50 Å. For all
docking engines, the cartesian coordinates of the grid center were located at the center of
the binding pockets of the investigated enzymes. The AutoGrid4.2.6 program was used to
create the grid maps with a spacing of 0.375 Å. All molecular interactions were visualized
by the Discovery Studio module of Biovia software [97].

3.4.4. ADMET Properties

For the purpose of identifying significant compounds that exhibit drug-likeness for current
in silico studies, excellent and better experimental ADMET (absorption, distribution, metabolism,
excretion, and toxicity) features are required. The physicochemical properties of the compounds
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under study, including MW, nHBA, nHBD, and Log P were estimated. Moreover, the properties
in accordance with absorption and distribution included volume of distribution, HIA, Caco2
permeability, and BBB. Metabolism-associated properties were estimated using CYP2C19 in-
hibitor. Excretion included clearance. Toxicity was evaluated based on AMES toxicity. All the
parameters were computed using the online server ADMET lab 2.0 [98].

3.5. DFT Studies

To thoroughly investigate the molecular structures of the molecules under study,
density functional theory (DFT) calculations were executed at the B3LYP/6-31G level using
Gaussian09 software [99]. The geometries of the studied compounds were first optimized
and further submitted to frequency computations to ensure if the obtained structures were
true minima or not. The distributions and energies of the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) were unveiled by
means of the Frontier molecular orbitals (FMO). To well-characterize the features of the
studied compounds, a diversity of global reactivity descriptors, including global hardness
(η), global softness (σ), polarizability (α), and dipole moment (µ), was assessed.

4. Conclusions

A series of 2-methyl-5-(2-phenylquinolin-4-yl)-1,3,4-oxadiazole were synthesized with
various substituents and analyzed against monoamine oxidase (MAO-A and MAO-B)
and acetylcholinesterase (AChE) enzymes. All molecules showed promising inhibition
in the lower µM range against targeted enzymes. Compounds 5a and 5f were the most
promising MAO-A and MAO-B inhibitors (IC50 = 0.91 ± 0.15 and 0.84 ± 0.06 nM, respec-
tively). While compound 5c exhibited the most efficient acetylcholinesterase inhibition
(IC50 = 1.02 ± 0.65 µM). Furthermore, 5a–f and 6a–d were in silico investigated towards
MAO-A, MAO-B, and AChE as anti-Alzheimer treatments using the AutoDock4.2.6 soft-
ware. According to docking scores results, 5a, 5f, and 5c demonstrated the promising
docking scores against the investigated enzymes. Moreover, the crucial function played by
the investigated enzymes in Alzheimer’s remediation proposes that promising molecules
may act as potent novel chemical entities in identifying multi-target-directed inhibitors.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph16010011/s1, Figure S1: 1H-NMR, 13C-NMR, and FT-IR Spectra
of compounds 5a–f and 6a–d.
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