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Abstract: Polyphenols and their derivates, a kind of natural product distributed in herb plants,
vegetables, and fruits, are the most abundant antioxidants in the human diet and have been found to
display cancer-preventative effects in several epidemiological studies. The scientific community has
also validated the anti-cancer bioactivities and low toxicities of polyphenolic compounds, including
flavones, tannins, phenolic acids, and anthocyanins, through in vitro and in vivo studies. However,
the low stability, weak targeting ability, poor solubility, and low bioavailability of pure polyphenolic
agents have significantly impaired their treatment efficacy. Nowadays, nano-based technology has
been applied to surmount these restrictions and maximize the treatment efficacy of polyphenols.
In this review, we summarize the advantages and related mechanisms of polyphenols in cancer
treatment. Moreover, aiming at the poor solubility and low bioavailability of pure polyphenols in vivo,
the advantages of nano-based delivery systems and recent research developments are highlighted.
Herein, particular emphasis is mainly placed on the most widely used nanomaterials in the delivery
of natural products, including liposomes, micelles, and nanogels. Finally, we present an overview and
the challenges of future implementations of nano-based delivery systems of polyphenolic compounds
in the cancer therapeutic field.

Keywords: polyphenolic compounds; nanosystem; drug delivery; cancer treatment

1. Introduction

Polyphenolic compounds, a class of plant-derived natural products with at least one
membered aromatic ring and some hydroxyl groups [1–3], are primarily derived from
secondary metabolites of plants and are widely distributed in daily dietary foods [4,5].
Polyphenolic compounds have extensive subtypes including flavones, tannins, phenolic
acids, anthocyanins, etc. [6–8]. In ancient China, many herbal medicines, such as S. glabra
(commonly called Zhong Jie Feng in Chinese) and Xanthoceras sorbifolium bunge, were
used by numerous quack doctors to deal with abscesses, rheumatism, and other diseases,
and polyphenols were later proved to be active ingredients in them [9,10]. Recently,
pharmacological studies have demonstrated that polyphenolic compounds exhibit strong
antioxidant effects and display obvious antitumor potential [11–13] (Figure 1). In the
combat against tumors, much attention has been paid to the development of polyphenolic
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compounds sourced from natural products because of their low toxicities and abundance of
resources [14,15]. However, polyphenolic compounds derived from natural products also
have some drawbacks, such as low stability, weak targeting ability, and poor solubility and
bioavailability, which limit their applications in the clinical treatment of cancers [16–18].
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Figure 1. Chemical structures of some common polyphenolic compounds derived from natural
products with antitumor activity.

The recent development of nanotechnology has gained tremendous attention as an
available avenue for overcoming these deficiencies of polyphenolic compounds in natural
products. Nano-based drug delivery systems can improve the circulating time of drugs in
plasma and promote their distribution [19]. Moreover, nanotechnology enables a targeted
delivery that can precisely deliver drugs to tumor sites [20,21]. Tumor cells highly express
many receptors/transporters specifically, and thus nanoparticles (NPs) engineered with
targeting ligands can enter these cells selectively [22]. In addition, the tumor microenvi-
ronment (TME) has some specific characteristics, such as being weakly acidic, hypoxia,
and so on [23,24]. These properties can be applied to the design of TME-responsive NPs
that promote the precise uptake and release of drugs in tumor cells [25,26]. Nowadays,
biomimetic nanocarriers, such as endogenous extracellular vesicles, have been vigorously
developed to overcome the possible immunogenicity of chemically synthesized materi-
als [27,28]. In addition, nano-based drug delivery systems provide the possibility for
the co-delivery of natural products and chemotherapeutic drugs, which can enhance the
antitumor effects [29,30].

In this review, we first provide a comprehensive overview of the anti-cancer properties
of polyphenolic compounds sourced from natural products and the related molecular
mechanisms. Afterward, we emphasize the advantages of nano-based delivery systems and
review recent progress in the nanocarrier-mediated delivery of polyphenolic compounds in
cancer treatment. Finally, we highlight the significance of nanotechnology in the delivery of
polyphenolic compounds and discuss the latest insights in this field. Using evidence from
the literature, numerous available inspirations can be provided for designing sophisticated
and innovative nano-based delivery systems of polyphenolic compounds in the future.
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2. Overview of Anti-Cancer Properties and Involved Mechanisms of
Polyphenolic Compounds

Recently, tremendous basic and clinical studies have demonstrated that polyphenolic
compounds extracted from natural products exhibit considerable antitumor activities. In
this section, we look at recent progress in the study of how polyphenolic compounds affect
cell growth, cell cycle, apoptosis, cell invasion, and metastasis (Table 1). This gives us a
foundation for the rest of the paper.

Table 1. Anti-cancer effects of polyphenolic compounds from different sources and related molecular
mechanisms.

Name Source Tumor Model Mechanisms Ref.

EGCG Green tea, etc.

Prostate cancer Targeting the Akt/PI3K pathway to inhibit
cell proliferation. [31]

Breast cancer Suppressing the activities of DNMT to promote the
expressions of tumor suppressor genes. [32]

Myeloma
Downregulating the expressions of miR-25, miR-92,
miR-141, and miR-200a to activate the expression of

tumor suppressor gene p53.
[33]

Colorectal cancer Modulating gut microbial composition. [34]

PB2
Grape seeds, peanut

skin, etc.

Liver cancer;
hepatocellular cancer

Targeting the Akt/PI3K pathway to inhibit
cell proliferation. [35]

Hepatocellular cancer Targeting the PKM2/HIF-1α signaling pathway to
trigger apoptosis and inhibit cell proliferation. [36]

Resveratrol
Grapes, berries,
soybeans, etc.

Breast cancer Targeting the Wnt/β-catenin signaling pathway to
inhibit cell proliferation. [37]

Colorectal cancer Targeting the TNF-β/NF-κB signaling pathway to
inhibit cell proliferation. [38]

Breast cancer Suppressing the activity of DNMT to enhance the
expression of ATP2A3. [39]

Breast cancer;
pancreatic cancer;

prostate cancer

Inducing apoptosis of cancer cells by suppressing the
phosphorylation of the Src-STAT3 signaling pathway. [40]

Non-small-cell
lung cancer

Modulating the AMPK/mTOR signaling pathway to
trigger autophagy. [41]

Colorectal cancer Preventing EMT by inhibiting the TGF-β/Smad
signaling pathway. [42]

Curcumin
Curcuma longa

(turmeric)

Cervical cancer Targeting the NF-κB signaling pathway to inhibit
cell proliferation. [43]

Lung cancer Enhancing ROS generation and FOXO3a expression,
thereby triggering apoptosis. [44]

Prostate cancer Inducing the apoptosis of CAFs to prevent the
growth and metastasis of tumors. [45]

Genistein
Legumes and
dentate plants

Esophageal carcinoma Targeting the JAK/STAT3 signaling pathway to
inhibit cell proliferation. [46]

Breast cancer Decreasing the CpG methylation in the promoters
of BRAC1. [47]

Hispolon
Traditional medicinal

mushroom
phellinus linteus

Breast cancer
Inhibiting the NF-κB signaling pathway and

suppressing the expression of MMP-9 to prevent
cell invasion.

[48]

Quercetin Green tea, onion, etc.
Breast cancer

Increasing the acetylation of histone H3K9 in the
promoter of BRCA1 (combination effects

with curcumin).
[49]

Gastric cancer Decreasing the expression of Bcl-2 and
triggering apoptosis. [50]

PE5 Roots of Phragmipedium
species Lung cancer Targeting Akt/mTOR and Bcl-2 signaling pathways

to trigger autophagy and apoptosis. [51]
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Table 1. Cont.

Name Source Tumor Model Mechanisms Ref.

Luteolin
Celery;

chrysanthemum
flowers

Breast cancer
Increasing the expressions of p53 and BAX while

decreasing the level of Bcl-2, thereby
triggering apoptosis.

[52]

Agrimoniin Agrimonia pilosa ledeb Pancreatic cancer Increasing intracellular ROS levels and
triggering apoptosis. [53]

HPE Hibiscus sabdariffa Colon carcinoma
Inhibiting CD44/c-MET signaling pathway to

decrease the expression of MMPs, thereby preventing
tumor metastasis.

[54]

Gossypol Cottonseed, etc.
Cervical cancer

Inhibiting the FAK signaling pathway and decreasing
the expression of MMPs, thereby preventing

tumor metastasis.
[55]

Cervical cancer Reversing the EMT mediated by TGF-β. [55]

Castalagin Camu-camu
(Myrciaria dubia)

Non-small-cell lung
cancer

Improving the infiltration of CD8+ T cells and
enhancing the efficacy of anti-PD-1 therapy by

modulating gut microbiota.
[12]

Abbreviations: EGCG, epigallocatechin-3-gallate; Akt, protein kinase B; PI3K, phosphatidylinositide 3-kinase;
DNMT, DNA methyltransferase; HDAC, histone deacetylase; miR, microRNA; PB2, proanthocyanidin-B2; PKM2,
pyruvate kinase M2; HIF-1α, hypoxia-inducible factor 1α; TNF-β, tumor necrosis factor-β; NF-κB, nuclear
factor kappa-B; ATP2A3, sarcoplasmic/endoplasmic reticulum calcium ATPase 3; STAT3, signal transducer
and activator of transcription-3; AMPK, adenosine 5′-monophosphate (AMP)-activated protein kinase; mTOR,
mammalian target of rapamycin; EMT, epithelial–mesenchymal transition; TGF-β, transforming growth factor-β;
ROS, reactive oxygen species; FOXO3a, forkhead box protein O3a; CAFs, cancer-associated fibroblasts; JAK,
janus-activated kinase; BRAC1, breast cancer 1; MMPs, matrix metalloproteinases; Bcl-2, B-cell lymphoma-2; PE5,
2-(4”-hydroxybenzyl)-5-2”-dihydroxy-3-methoxystilbene; BAX, Bcl-2-associated X protein; HPE, Hibiscus sabdariffa
extract; CD44, cluster of differentiation-44; c-MET, cellular-mesenchymal epithelial transition; FAK, focal adhesion
kinase; PD-1, programmed death-1.

2.1. Effects on Inhibiting Cell Proliferation and Cell Cycle

Epigallocatechin-3-gallate (EGCG) is a polyphenolic compound sourced from green tea
that possesses many biological activities, such as antitumor and anti-inflammatory charac-
teristics [56]. Studies have shown that EGCG can prevent the proliferation of prostate cancer
cells and breast cancer cells by modulating the protein kinase B (Akt)/phosphatidylinositide
3-kinases (PI3K) signaling pathway, which participates in the transcriptional regulation
of many genes related to cancer cell proliferation [31,56]. Mechanistically, EGCG can in-
teract with receptor tyrosine kinases (RTKs), which play a key role in the activation of the
Akt/PI3K signaling pathway [57]. In addition, polyphenolic proanthocyanidin-B2 (PB2),
usually found in grape seeds and peanut skin, was shown to have the ability to suppress
the proliferation of liver cancer cells and hepatocellular carcinogenesis by directly binding
to Akt and inhibiting the activation of the Akt/PI3K signaling pathway [35]. Additionally,
PB2 has been demonstrated to inhibit the nuclear translocation of pyruvate kinase M2
(PKM2) and disrupt its interaction with hypoxia-inducible factor 1α (HIF-1α), thereby
suppressing proliferation and triggering apoptosis in hepatocellular carcinoma via tran-
scriptional regulation [36]. Resveratrol is a non-flavonoid polyphenolic compound present
in grapes, berries, and soybeans [58]. It was demonstrated to have the ability to inhibit the
proliferation of breast-cancer-like stem cells by modulating the Wnt/β-catenin signaling
pathway [37]. Moreover, resveratrol can decrease the expression of tumor necrosis factor
(TNF)-β to suppress the proliferation of tumor cells by preventing the nuclear translocation
of nuclear factor kappa-B (NF-κB) [38]. In addition, curcumin is a natural polyphenolic
compound extracted from the rhizome of Curcuma longa (turmeric), and researchers have
demonstrated that it has many positive biological activities in relation to oxidative stress
and inflammation [59,60]. Curcumin was demonstrated to inhibit the NF-κB signaling
pathway in cervical cancer cells [43]. In addition to these compounds, genistein, a predomi-
nant isoflavonoid commonly originating from legumes and dentate plants, was suggested
to have the ability to block the Janus-activated kinase 1/2 (JAK1/2)-signal transduction
and the signal transducer and activator of transcription 3 (STAT3) signaling pathways
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in esophageal carcinoma cells by suppressing the expression of epidermal growth factor
receptor (EGFR), which finally leads to the inhibition of cell proliferation and cell cycle
arrest [46]. Hispolon is a natural polyphenolic compound usually derived from the tra-
ditional medicinal mushroom phellinus linteus [61]. Some researchers have demonstrated
that hispolon can induce cell cycle arrest in various cancers [62]. Specifically, hispolon can
induce cell cycle G2/M arrest in glioblastoma cells by suppressing the expressions of cyclin
B1, cell division cycle 2 (CDC2), and M-phase inducer phosphatase 3 (CDC25C), which are
three major regulatory proteins of cell cycle [63]. In summary, these studies demonstrate
that polyphenolic compounds can inhibit the proliferation of cancer cells and promote cell
cycle arrest by modulating associated pathways, such as the Akt/PI3K, Wnt/β-catenin,
NF-κB, and JAK1/2-STAT3 signaling pathways (Figure 2).
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Figure 2. (A) Polyphenolic compounds can inhibit tumor growth by modulating various signaling
pathways associated with cell proliferation and cell cycle. Polyphenolic compounds EGCG and PB2
can prevent the proliferation of cancer cells by modulating Akt/PI3K signaling pathway. PB2 can
also inhibit the nuclear translocation of PKM2 and disrupt its interaction with HIF-1α to suppress the
proliferation of cancer cells. Resveratrol can inhibit the proliferation of cancer cells by modulating
Wnt/β-catenin and NF-κB signaling pathways. Curcumin can block the nuclear translocation of NF-
κB to inhibit cancer development. Genistein can induce cell cycle arrest by inhibiting the JAK/STAT3
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signaling pathway. (B) Polyphenolic compounds can inhibit tumor growth through epigenetic regu-
lation. (I) Treatment with polyphenolic compounds EGCG, genistein, or resveratrol can suppress the
activity of DNMT and decrease DNA methylation levels, thereby recovering the transcriptional activ-
ity of tumor suppressor genes. (II) EGCG can inhibit the expression of miRNAs that target tumor sup-
pressor genes. (III) Quercetin and curcumin can enhance the expression of BRAC1 by increasing the
acetylation of histone H3K9 in the promoter of BRCA1 gene. Abbreviations: EGCG, epigallocatechin-
3-gallate; Akt, protein kinase B; PI3K, phosphatidylinositide 3-kinase; PB2, proanthocyanidin-B2;
PKM2, pyruvate kinase M2; HIF-1α, hypoxia-inducible factor 1α; TNF, tumor necrosis factor; NF-κB,
nuclear factor kappa-B; GSK3β, glycogen synthase kinase-3β; STAT3, signal transducer and activator
of transcription-3; JAK, janus-activated kinase; DNMT, DNA methyltransferase; BRAC1, breast
cancer 1.

Some natural polyphenolic compounds may also inhibit tumor growth through epi-
genetic regulation. For example, EGCG can regulate the expression of genes associated
with cell proliferation and invasion by modifying DNA methylation and chromatin re-
modeling in breast cancer cells [49]. Specifically, EGCG can suppress the activities of DNA
methyltransferases (DNMTs) and histone deacetylases (HDACs), thereby recovering the
expression of tumor suppressor genes [32,49]. In myeloma cells, treatment with EGCG was
reported to downregulate the expressions of miR-25, miR-92, miR-141, and miR-200a [33].
These miRNAs can target the tumor suppressor gene p53 and decrease its expression [33].
This study showed that EGCG could inhibit the proliferation of cancer cells by recovering
the activity of tumor suppressor gene p53. Genistein has also been shown to decrease the
CpG methylation in promoters of tumor suppressor gene breast cancer 1 (BRAC1), which is
usually silenced in triple-negative breast cancer [64], leading to decreased cell proliferation
in breast cancer cells [47]. It was also revealed by others that treatment with quercetin
and curcumin could enhance the expression of BRAC1 by increasing the acetylation of
histone H3K9 in the promoter of the BRCA1 gene to inhibit the proliferation of breast cancer
cells [49]. Moreover, genistein treatment can inhibit the promoter methylation of various
tumor suppressor genes induced by bisphenol A (a carcinogen in various plastics such as
food containers) in breast cancer cells [65]. Sarcoplasmic/endoplasmic reticulum calcium
ATPase 3 (ATP2A3) is a significant component in the Ca2+ signaling network, which par-
ticipates in regulating various cellular processes such as differentiation, proliferation, and
cell death [66]. Recent studies demonstrated that ATP2A3 was downregulated in various
cancers [67]. Resveratrol can enhance ATP2A3 expression through epigenetic modification
on the promoter and suppressing the activity of DNMT [39].

2.2. Effects on Inducing Autophagic or Apoptotic Cell Death

Adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK)/mammalian
target of rapamycin (mTOR) and Akt/mTOR are two crucial signaling axes in the regulation
of apoptosis and autophagy, so they are often used as targets for antitumor therapy. A
natural polyphenolic compound 2-(4′′-hydroxybenzyl)-5-2′′-dihydroxy-3-methoxystilbene
(PE5) isolated from the roots of the Phragmipedium species was verified to trigger autophagy
and apoptosis in lung cancer cells by intervening Akt/mTOR and B-cell lymphoma-2 (Bcl-
2) signaling pathways [51]. In addition, a thermostable flavonoid, luteolin, could induce
apoptosis in breast cancer cells by increasing the expressions of p53 and Bcl-2-associated X
protein (BAX) while decreasing the level of Bcl-2 [52]. Similarly, the polyphenolic compound
EGCG was demonstrated to induce apoptosis by increasing the stability and transcrip-
tional activity of tumor suppressor p53 in prostate cancer cells [68]. Quercetin can trigger
apoptosis in cancer cells by decreasing the expression of Bcl-2 via a mitochondria-mediated
pathway [50]. Moreover, some researchers discovered that quercetin treatment can also
trigger protective autophagy by modulating Akt/mTOR signaling and activating HIF-1α
signaling, which counteracted quercetin-mediated apoptotic cell death and impaired its
therapeutic efficacy [50]. Eukaryotic Initiation Factors 2α (eIF2α) is a crucial regulatory
subunit in the translation process of protein synthesis in eukaryotic cells [69]. Many stud-
ies have shown that the abnormal fluctuation of the phosphorylation level of eIF2α is
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associated with the proliferation and invasiveness of tumor cells [70,71]. A combinational
treatment of resveratrol and cisplatin can increase the level of phosphorylated eIF2α, which
leads to increased intracellular Ca2+ levels, thereby triggering endoplasmic reticulum stress
and apoptosis of gastric cancer cells [72]. Alongside these treatments, the accumulation of
intracellular reactive oxygen species (ROS) has also been shown to be associated with the
induction of apoptosis [73]. Agrimoniin is a type of polyphenolic compound derived from
Agrimonia pilosa ledeb, a perennial herb that has been widely used in traditional Chinese
medicine [74]. A study has shown that agrimoniin can significantly increase intracellular
ROS levels and lead to the dysfunction of mitochondria, which finally triggers apopto-
sis of pancreatic cancer cells [53]. Forkhead box O3 (FOXO3a) belongs to the family of
forkhead transcription factors that plays a significant role in general cellular processes,
such as proliferation, apoptosis, differentiation, and DNA damage repair [75]. FOXO3a is
abnormally downregulated in various cancers for it can induce apoptosis or exert other
tumor-suppressive effects [75,76]. Curcumin and its analogs have been shown to increase
the expression of FOXO3a by enhancing ROS generation in lung cancer cells [77]. Addi-
tionally, polyphenolic compound resveratrol was demonstrated to induce the apoptosis of
cancer cells by suppressing the phosphorylation of the Src-STAT3 signaling pathway [40,78].
Resveratrol can also induce the autophagy of cancer cells by modulating the AMPK/mTOR
signaling pathway [41]. Taken together, these studies indicate that polyphenolic com-
pounds derived from natural products can induce autophagic or apoptotic cell death by
regulating different pathways (Figure 3).
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inhibiting the NF-κB signaling pathway, thereby decreasing the invasive capabilities of 
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Figure 3. Polyphenolic compounds can trigger apoptosis and autophagy of cancer cells. Resver-
atrol can induce autophagy of cancer cells by modulating the AMPK/mTOR signaling pathway
while inducing apoptosis by inhibiting the Src-STAT3 signaling pathway. The polyphenolic com-
pound PE5 can trigger autophagy and apoptosis by intervening Akt/mTOR and Bcl-2 signaling
pathways. Luteolin could induce apoptosis by increasing the expressions of p53 and BAX while
decreasing the level of Bcl-2. Similarly, the polyphenolic compound EGCG was demonstrated to
induce apoptosis by increasing the stability and transcriptional activity of tumor suppressor p53.
Quercetin can trigger apoptosis in cancer cells by decreasing the expression of Bcl-2. Treatment
with polyphenolic compounds agrimoniin and curcumin can lead to intracellular ROS accumula-
tion, thereby triggering apoptosis of cancer cells. Abbreviations: EGCG, epigallocatechin-3-gallate;
Akt, protein kinase B; STAT3, signal transducer and activator of transcription-3; AMPK, adenosine
5′-monophosphate (AMP)-activated protein kinase; mTOR, mammalian target of rapamycin; ROS,
reactive oxygen species; FOXO3a, forkhead box protein O3a; Bcl-2, B-cell lymphoma-2; PE5, 2-(4′′-
hydroxybenzyl)-5-2′′-dihydroxy-3-methoxystilbene; BAX, Bcl-2-associated X protein; PARP, poly
ADP-ribose polymerase.
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2.3. Suppressing Cell Invasion and Metastasis

Rutin is a glycosylated form of quercetin and widely exists in many fruits and vegeta-
bles, such as citrus, onions, and mulberries [79]. Recent research has shown that rutin has
the potential to be an effective metastatic inhibitor in the progression of cancer. Treatment
with rutin can decrease the levels of matrix metalloproteinases (MMPs) by inhibiting the
activation of the mitogen-activated protein kinase (MAPK)/NF-κB signaling pathway [80].
MMPs are a kind of endopeptidase enzyme that play a role in the degradation of the
extracellular matrix (ECM), which is a crucial process during tumor invasion [81]. Con-
sistently, the polyphenolic compound hispolon can suppress the expression of MMP-9 by
inhibiting the NF-κB signaling pathway, thereby decreasing the invasive capabilities of
breast cancer cells [48]. Polyphenolic compounds extracted from Hibiscus sabdariffa (HPE)
were demonstrated to suppress colon carcinoma metastasis via inhibiting the cluster of
differentiation-44 (CD44)/cellular–mesenchymal epithelial transition (c-MET) signaling
pathways to decrease the expression of MMPs [54,82]. Moreover, a polyphenolic compound
derived from cottonseed termed gossypol [83] has also been found to exhibit a strong sup-
pressive effect on the metastasis of human cervical cancer cells [55]. Specifically, gossypol
can reduce the expression of MMPs by inhibiting the focal adhesion kinase (FAK) signaling
pathway, and on the other hand, it can reverse the epithelial–mesenchymal transition (EMT)
mediated by transforming growth factor (TGF)-β [55]. Similarly, the natural polyphenolic
compound resveratrol has also been shown to prevent EMT by inhibiting the TGF-β/Smad
signaling pathway and downregulating the expression of transcription factor Snail [42].
In conclusion, these studies indicate that polyphenolic compounds derived from natural
products can regulate cancer progression via multiple aspects, including cell proliferation
and cell cycle, apoptosis and autophagy, and invasion and metastasis (Figure 4).
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ways, including NF-κB, CD44/c-MET, and FAK signaling pathways. Gossypol and resveratrol can
also reverse the EMT mediated by the TGF-β/Smad signaling pathway to suppress the metastasis and
invasion of cancer cells. Abbreviations: JNK, c-Jun N-terminal kinase; NF-κB, nuclear factor kappa-B;
HPE, Hibiscus sabdariffa extract; CD44, cluster of differentiation-44; c-MET, cellular-mesenchymal
epithelial transition; FAK, focal adhesion kinase; EMT, epithelial–mesenchymal transition; MMPs,
matrix metalloproteinases.
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2.4. Other Involved Mechanisms

Accumulating evidence has indicated that polyphenolic compounds display some
modulatory effects on gut microbiota, which can influence the development of colorectal
cancer. Supplementation of polyphenolic compounds, such as isoliquiritigenin extracted
from traditional Chinese medicine, anthocyanin derived from black raspberry, and EGCG,
can influence the gut microbial composition of mice with colorectal cancer, making them
more similar to those of healthy mice [34]. Polyphenolic compounds, in addition to tumor
cells, can regulate the behaviors of cells in the TME, inhibiting tumor cell growth and
proliferation indirectly. Cancer-associated fibroblasts (CAFs) are one of the main compo-
nents of the TME and play a key role in promoting the progression and invasion of tumor
cells by constructing a pro-inflammatory and immunosuppressive TME [84]. Curcumin, a
polyphenolic compound, can inhibit prostate cancer cell growth and metastasis by induc-
ing apoptosis in CAFs via activation of the ROS-mediated endoplasmic reticulum stress
signaling pathway [45]. Castalagin is a polyphenolic compound derived from the berry
Camu-camu (Myrciaria dubia) [85]. Some researchers discovered that oral administration of
castalagin can improve the level of functional CD8+ T cells in the TME through the recruit-
ment of gut bacteria related to efficient immune response (Ruminococcaceae and Alistipes),
which enhanced the efficacy of anti-programmed death-1 (PD-1) therapy in cancer treat-
ment [12]. Some epidemiological studies also demonstrated that polyphenolic compounds
derived from coffee, such as ferulic acid, 3,4-dihydroxyphenylpropionic acid, and caffeic
acid, showed therapeutic effects on colorectal cancer [86]. Polyphenolic compounds in
green tea extracts can exert a suppressive effect on many types of tumors, including lung,
stomach, pancreatic, prostate, esophagus, and breast cancers [87].

3. Advantages of Nano-Based Delivery Systems for Polyphenolic Compounds in
Cancer Therapy

Although natural polyphenolic compounds have excellent tumor-suppression effects,
poor solubility has restricted their clinical applications. Moreover, direct injection of these
natural polyphenolic compounds into the bloodstream may lead to severe adverse effects.
In addition, their short circulation time and rapid metabolism also affect their therapeutic
efficacy. Due to these problems, researchers started to explore new delivery strategies to
maximize the treatment outcomes of various therapeutic polyphenolic compounds. Cur-
rently, it has been demonstrated that the emerging field of nanotechnology has the potential
to improve the delivery efficiencies and cancer treatment outcomes of many chemother-
apeutic drugs, antitumor vaccines, and nucleic acids [88–91]. Nano-based drug delivery
systems can improve many natural drawbacks of polyphenolic compounds due to their
structural properties. According to that, we summarize the advantages of nanotechnology
in the delivery of natural polyphenolic compounds in cancer treatment.

3.1. Increasing the Aqueous Solubility via Nanomaterials

Wrapping water-insoluble natural polyphenolic compounds into hydrophilic nanoma-
terials can improve the delivery efficiency and cellular uptake of drugs [92]. Quercetin has
shown excellent antitumor activities in many types of cancer, for example, it can induce
apoptosis in leukemia and trigger cell cycle arrest in prostate cancer [93,94]. However, prob-
lems such as poor aqueous solubility make quercetin an unreliable choice for clinical cancer
treatment [95]. The advent of nanotechnology has expanded the prospects for the clinical
application of quercetin. Sun et al. reported a co-delivery nanosystem of ginsenoside Rg3
and quercetin that is hydrophilic and can be used for intravenous administration with good
biosafety [96]. Moreover, the concentration of free drugs in the plasma decreased quickly
while drugs in the nanosystem stayed significantly longer in the plasma [96]. Kaempferol,
a polyphenolic compound with antitumor activity, also faces the challenge of poor solubil-
ity [97,98]. A recent study reported a nanosystem incorporated with kaempferol that had
excellent antitumor efficacy via disrupting calcium homeostasis in cancer cells [99]. In this
study, kaempferol was loaded into CaCO3 NPs and encapsulated with the membrane of a
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human pulmonary carcinoma (A549) cell to achieve targeted delivery [99]. The authors first
verified that the proliferation suppressive ability of this nanoplatform was stronger than
that of pure kaempferol in in vitro cell experiments [99]. They also detected the expression
of apoptosis-related proteins and preliminarily explored the related mechanisms [99]. Im-
portantly, this nanosystem overcomes the poor solubility and bioavailability of kaempferol
and exhibits good in vivo administration in cancer treatment [99]. Genistein is a natu-
ral polyphenolic compound with strong antioxidant and anti-inflammatory bioactivities,
which afford it a good antitumor performance [100]. However, its poor water solubility
and rapid metabolism restrict its application, making the plasma or tissue concentrations
of genistein in vivo much lower than its in vitro IC50 [101,102]. Gold NPs can increase the
bioavailability of genistein and provide a possible delivery strategy to efficiently preserve
the antitumor performance of genistein in vivo [102]. The in vivo antitumor performance of
this nanosystem is even better than that observed in in vitro cell experiments because of the
good targeting ability of this nanoplatform mediated by enhanced permeability and reten-
tion (EPR) effects [102]. Moreover, many researchers used water-soluble and harmless shell
materials (e.g., modified starch, gum, and maltodextrin) to encapsulate anti-cancer polyphe-
nolic compounds with poor solubility, which allowed better bioavailability in vivo [16].
Some researchers also hope to improve the water solubility and stability of resveratrol
through the synthesis of resveratrol-modified mesoporous silica NPs [103]. These NPs
can induce apoptosis in gastric cancer cells and inhibit tumor growth in vivo with no
obvious adverse effects on normal tissues and organs, which greatly broadens the clinical
application potential of resveratrol [103]. Additionally, the application of natural products
via nanoplatforms can optimize the chemo-physical properties of some frequently-used
chemotherapeutic agents and improve their therapeutic performance in vivo. A tannic
acid–docetaxel self-assemblies nanoplatform was developed recently [104]. Tannic acid is
a polyphenolic natural compound with anti-cancer abilities against various cancers, such
as breast cancer and prostate cancer [105]. Incorporating tannic acid into the nanosystem
can facilitate the solubilization of docetaxel [104]. In addition, this nanoplatform was
demonstrated to be an efficient delivery strategy to deliver chemotherapeutic docetaxel to
prostate cancer cells, which greatly enhanced the treatment outcome [104].

3.2. Enhancing the Targeting Ability of Polyphenolic Compounds

Cancer cells highly express a large number of unique receptors on their surface, such
as transferrin receptor 1 (TfR1) and CD44 [106,107]. Nanocarriers engineered with specific
ligands to highly-expressed receptors on the cell membranes of cancer cells can achieve
targeted drug delivery [108]. A kind of dextran-modified quercetin-Cu(II)/hyaluronic
acid nanomedicine was developed to broaden the application prospect of quercetin in
the treatment of triple-negative breast cancer [109]. This nanoplatform was smartly dec-
orated with hyaluronic acid, a specific ligand for CD44, to achieve targeted delivery in
the treatment of cancer [109]. Similarly, hyaluronic acid cross-linked zein nanogels were
constructed to deliver curcumin in the treatment of colon cancer [110]. The nanogel can
achieve targeted delivery via CD44-mediated mechanisms and improve the biocompati-
bility of curcumin, thereby enhancing the therapeutic effects [110]. Hu et al. reported a
kind of lipid–calcium NP loaded with quercetin phosphate, which can be transformed into
quercetin and exert antitumor effects under physiological conditions [111]. This nanoplat-
form was further encapsulated by lipid bilayers engineered with a tumor-specific targeting
ligand aminoethylanisamide to enhance the tumor tissue targeting ability of quercetin
phosphate [111]. In recent years, there have also been several studies about the utilization
of cellular membranes in nano-based drug delivery systems. NPs modified with cellular
membranes are more biocompatible and have exhibited some desirable characteristics
inherited from source cells [112]. Moreover, many studies have shown that NPs decorated
with cancer cell membranes have better tumor tissue targeting abilities and longer circulat-
ing times in vivo [113]. Based on this, a nanoplatform consisting of a core of mesoporous
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silica nanoparticles (MSNs) loaded with quercetin and a shell of cancer cell membranes
was designed to achieve targeted therapy [112].

Moreover, the physicochemical properties (such as acidity and oxygen level) of the
TME are very different from those of normal tissues, which makes it possible to design
TME-responsive nanosystems [114,115]. In addition, the suitable sizes of NPs can promote
the accumulation of drugs in tumor sites and increase the take-up efficiency of cancer
cells via EPR effects [116]. Therefore, the application of nanotechnology can enhance the
targeting ability and tumor accumulation of natural polyphenolic compounds, thus im-
proving their antitumor performances. Because of the high glucose requirement, many
glucose transporters are overexpressed in cancer cells [117]. Accordingly, glycol-conjugated
biomaterials can be used to achieve targeted delivery of drugs to tumor cells. Levan is a
natural polysaccharide derived from Zymomonas mobilis, and it can be used as an active
tumor-targeting carrier due to the interactions between its glycosidic structure and glucose
transporters on the membranes of cancer cells [118]. A study reported that a nanosystem
using levan as the nanocarrier and loaded with curcumin, a natural polyphenolic com-
pound with antitumor bioactivity, can achieve targeted delivery in the treatment of breast
cancer [118].

3.3. Taking Advantage of the Structural Properties of Polyphenolic Compounds

Polyphenolic compounds can be integrated into some nanosystems to exert antitumor
effects based on their inherent structural characteristics. Nanotechnology can precisely
engineer drugs or carriers to enable them to have excellent therapeutic effects without sys-
temic toxicity in vivo. Wu et al. reported a smart-engineered strategy for EGCG to optimize
its delivery efficacy and immunotherapeutic effect [119]. They synthesized fluorinated-
coordinative-EGCG, which had a higher stability and transfection efficacy than free EGCG
due to the lipophobic and hydrophobic properties of fluorination [119]. Moreover, zinc ions
can be incorporated into this nanosystem to increase the affinity of nanocarriers with car-
gos [119]. Phenolic ligands in polyphenolic compounds can coordinate with metal ions to
constitute metal–phenolic networks, which can encapsulate chemotherapeutic agents and
then release these functional components at tumor sites due to the weakly acidic TME [120].
A natural polyphenolic compound derived from the cotton plant, gossypol, self-assembly
polyethylene glycol-chlorin e6 (PEG-Ce6) polyphenol, and Fe2+ were designed to fabri-
cate a metal–phenolic network and form a nanoplatform that showed chemotherapeutic
effects and significantly improved the treatment outcome of programmed death-ligand
1 (PD-L1) checkpoint blockade immunotherapy [121]. Yan and his colleagues used Mn2+

and amphiphilic polyethylene glycol (PEG)-polyphenol to construct metal–phenolic net-
works [122]. The nanosystem also incorporated a radiosensitizer via coordination with
Mn2+ [122]. This nanosystem can inhibit tumor growth effectively via sensitizing radiation
and triggering stimulator of interferon genes (STING)-pathway-mediated immunostimula-
tion [122]. The construction of platinum-based nanomedicines often takes advantage of
the coordination properties of Pt and polyphenolic compounds. Tannic acid and the pro-
drug of oxaliplatin were demonstrated to form a well-defined nanosystem for oxaliplatin
delivery and cancer therapy [123]. Specifically, this nanosystem can not only promote the
apoptosis of tumor cells but also enhance antitumor immune responses by promoting the
recruitment of cytotoxic T cells in the TME, thereby achieving good antitumor outcomes
synergistically [123]. Recent studies demonstrated that quercetin could inhibit the interac-
tion of PD-1/PD-L1 to relieve immunosuppression in the TME [124] and remodel the TME
by reducing the α-SMA+ fibroblast populations at tumor sites [111]. Moreover, natural
polyphenolic compound quercetin can also coordinate with metal ions [125]. Therefore,
some researchers designed quercetin–ferrum NPs to enhance the photothermal therapeutic
effects and prevent the reoccurrence of melanoma by reducing immunosuppression and
reshaping the TME [125].

In addition to traditional nano-based drug delivery systems, some natural polyphe-
nolic compounds can promote the cross-linking of polymer chains, which plays a critical
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role in the formation and maintenance of functional hydrogels [126]. Incorporating the
natural polyphenolic compound tannic acid can enhance the cross-linking of polymer
chains, thereby increasing the stability of nanogels [127]. Moreover, tannic acid can coordi-
nate with various metal ions and assist the loading of metal-containing agents such as the
chemotherapeutic drug cisplatin [127]. Importantly, this tannic-acid-incorporated nanogel
can also achieve acid-sensitive drug release and targeted delivery of metallic chemother-
apeutic agents [127]. In conclusion, nano-based drug delivery systems can overcome the
drawbacks of natural polyphenolic compounds and broaden their application potential in
clinical cancer treatment. According to the structural properties of natural polyphenolic
compounds, they can be smartly integrated into nano-based drug delivery systems and
achieve better antitumor performances in vivo.

4. Progress in Nanocarrier-Mediated Delivery of Polyphenolic Compounds in
Cancer Therapy

There have been an increasing number of studies demonstrating promising outcomes
in the nanocarrier-mediated delivery of polyphenolic compounds in cancer therapy. In this
section, we review the commonly used nanocarriers and their characteristics in the delivery
of natural polyphenolic compounds to enhance the therapeutic efficacy of cancer (Table 2,
Figure 5).

Table 2. Recent progress in nano-based drug delivery systems of natural polyphenolic compounds
for cancer therapy.

Nanocarriers/Nanosystem Natural Products
(Therapeutic Agents) Tumor Model Therapy Strategies Ref.

Cyclodextrin-based
nanoformulation

Quercetin (ginsenoside
Rg3) Colorectal cancer Chemotherapy;

immunotherapy [96]

Quercetin–ferrum NPs Quercetin Melanoma Photothermal therapy;
immunotherapy [125]

CaCO3 NPs Kaempferol Lung cancer Chemotherapy [99]
Gold NPs Genistein Prostate cancer Chemotherapy [102]

Mesoporous silica NPs Resveratrol Gastric cancer Chemotherapy [103]
Lecithin Resveratrol Breast cancer Chemotherapy [128]

Liposomes Resveratrol (docetaxel) Prostate cancer Chemotherapy [129]
Eudragit-coated liposomes Resveratrol (artemisinin) Intestinal tumors Chemotherapy [130]

Micelles conjugated on hyaluronic
nanogel Resveratrol (Ce6) Oral squamous

cell carcinoma
Chemotherapy;

photodynamic therapy [131]

Micelles Curcumin Esophageal cancer Chemotherapy [132]
Micelles Curcumin Breast cancer Chemotherapy [133]

Nanogels Curcumin Liver cancer Chemotherapy [134]
Nanogels Curcumin Colon cancer Chemotherapy [110]
Nanogels Curcumin (doxorubicin) Colon cancer Chemotherapy [135]

Metal–phenolic network Gossypol (Ce6) Breast cancer
Chemotherapy;

immunotherapy;
photodynamic therapy

[121]

Metal–phenolic network Tannic acid (oxaliplatin) Colon cancer Chemotherapy;
immunotherapy [123]

Nanogels Tannic acid (cisplatin) / / [127]
Nanoassembly EGCG (siPD-L1) Liver cancer Immunotherapy [119]

Micellar nanocomplex EGCG (sunitinib) Kidney cancer Chemotherapy [136]
Nanogels EGCG (resiquimod) Melanoma Immunotherapy [137]

Iron-doped LDH Nanosheets EGCG Melanoma Chemotherapy;
chemodynamic therapy [138]

Platinum NPs EGCG Breast cancer Immunotherapy [139]
Nanoassembly EGCG (ursolic acid) Hepatocellular carcinoma Immunotherapy [140]

Exosome-like natural nanovesicles
from tea flowers EGCG, ECG, etc. Breast cancer Chemotherapy [141]
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Figure 5. Nano-based drug delivery of natural polyphenolic compounds. Overview of the natural
barriers of polyphenolic compounds that nano-based drug delivery systems can overcome (inner
ring), and nanocarriers that are generally used for the delivery of natural polyphenolic compounds
(outer ring). Nano-based drug delivery systems can achieve targeted delivery of drugs to tumor cells
and can specifically respond to chemo-physical stimuli in the TME. Additionally, they can increase
the aqueous solubility of polyphenolic compounds. Moreover, we can smartly integrate polyphenolic
compounds into nano-based drug delivery systems by taking advantage of their structural properties.
Liposomes, micelles, nanogels, and polymeric NPs are four commonly used nanocarriers in the
delivery of natural polyphenolic compounds. Bottom box: some other nano-based drug delivery
systems of natural polyphenolic compounds in the treatment of cancer.

4.1. Liposome-Mediated Delivery of Polyphenolic Compounds

Liposomes, a kind of spherical nanocarrier with a phospholipid bilayer similar to
cell membranes, are the first FDA-approved nanocarriers that can be used in clinical treat-
ments [142]. Liposomes are widely used in the development of nanomedicine because of
their good biosafety and bioavailability. A tea polyphenol liposome was designed to treat
helicobacter pylori infection, which is one of the main causes of gastric cancer [143]. The
phospholipid layer in this nanoliposome can inhibit the growth of helicobacter pylori via fu-
sion with the bacterial membrane [144]. Moreover, tea polyphenols in this nanosystem can
reduce inflammation and improve the gut microbes to construct a healthier gastrointestinal
environment [144]. This tea polyphenol-based nanoliposome provides a new strategy
for treating helicobacter pylori infection and preventing the subsequent development of
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gastric cancer [144]. Some researchers used liposome nanocarriers to achieve synergistic
treatment outcomes for polyphenolic compounds and traditional chemotherapeutic drugs.
Specifically, the polyphenolic compound resveratrol and chemotherapeutic agent docetaxel
were encapsulated in PEGylated liposomes, which can realize the controlled release of
drugs and display higher cellular uptake rates in cancer cells [129]. The authors first
evaluated the release profile and cytotoxicity of this nanoplatform in prostate cancer PC3
cells [129]. Additionally, in vivo assays demonstrated that the co-delivery of resveratrol
and docetaxel can suppress tumor growth by inhibiting cell proliferation and triggering
apoptosis, which acted synergistically in treating prostate cancer [129]. Incorporating
polyphenolic compounds into liposomes can also enhance their stability. Some researchers
discovered that embedding the polyphenolic compounds curcumin or/and EGCG into
liposomes can increase their stability in blood circulation [145]. Moreover, these nanoformu-
lations also possessed good anti-cancer performances in prostate cancer cells and bladder
cancer cells [145]. Liposomes can also be applied for drug delivery in special physiological
environments, such as the gastrointestinal environment. The encapsulation of therapeutic
agents by liposomes can improve their stability in these environments and enhance their
bioavailability [130]. A kind of eudragit-coated liposome was designed to deliver two
naturally occurring compounds resveratrol and artemisinin, which made them more stable
in the gastrointestinal environment [130]. Combinational administration of resveratrol and
artemisinin showed cytotoxic effects on intestinal adenocarcinoma cells by promoting the
generation of ROS, which provided a potential strategy for treating intestinal tumors [130].

4.2. Micelles as Nanocarriers for Drug Delivery

Micelles are self-assembled nanocarriers that typically have a hydrophilic polymeric
shell and a hydrophobic core [146]. Compared with other nanocarriers, nanomicelles tend
to be smaller in size and have better permeability at the lesion sites [147]. Moreover, micelles
are sensitive to many endogenous and exogenous stimuli such as pH, hypoxia, light, and
temperature, which makes them an ideal nanocarrier for various therapeutic agents [148].
Therefore, they are potential nanocarriers for the targeted delivery and controlled release
of polyphenolic compounds. Hypoxia at tumor sites often limits the treatment efficacy
of photodynamic therapy [149]. Resveratrol can alleviate this phenomenon by reducing
oxygen consumption by tumor cells [131]. Based on this, a tumor-targeted nanomicelle
loaded with the hypoxia modulator resveratrol and photodynamic reagent Ce6 was con-
structed to treat oral squamous cell carcinoma by triggering autophagic cell death and
the apoptosis of cancer cells [131]. Moreover, some researchers designed a GSH-sensitive
nanomicelle integrated with the polyphenolic compound curcumin to treat esophageal
cancer [132]. The release of curcumin was stimulated by GSH in the TME, which improved
the delivery efficacy of curcumin to tumor sites [132]. In vivo pharmacokinetic research
showed that loading curcumin into nanomicelles can improve the plasma concentration
of curcumin and enhance its bioavailability [132]. Application of nanomicelles can also
improve the poor solubility of natural polyphenolic compounds. The nano poly (Lactide-co-
Glycolide) (PLGA)–curcumin micelle was synthesized to reverse gemcitabine resistance, as
curcumin has the ability to suppress the activation of the NF-κB signaling pathway during
chemotherapy [133]. Encapsulation into nanomicelles increased the solubility of curcumin
up to 10,000-fold, which greatly enhanced their antitumor performance in vivo [133]. Some
nanomaterials of micelles not only have low toxicities to healthy tissues but also exhibit
therapeutic effects on tumor lesions. Due to their special structural properties, natural
polyphenolic compounds have been applied in the synthesis of some therapeutic carrier
materials. Based on this, an EGCG-based micelle was constructed, and it could stably de-
liver drugs to tumor sites [136]. Encapsulated drug synergies with functional EGCG-based
micelles can achieve better antitumor outcomes compared with conventional carriers [136].
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4.3. Drug Delivery Mediated by Nanogels

Nanogels are a kind of nanocarrier with porous structures and large surface/volume
ratios that have an excellent ability for encapsulating either hydrophilic or hydrophobic
therapeutic agents [150]. Recently, many researchers have attempted to apply nanogels to
tumor therapy, as nanogels can effectively improve the permeability and retention times
of drugs at tumor sites [151]. A TME-responsive nanogel loaded with resiquimod and the
polyphenolic compound EGCG was designed to relieve the immunosuppression in the
TME. This nanogel could increase the ratio of cytotoxic T cells to regulatory T cells (Tregs) in
tumor sites and inhibit the expression of PD-L1, which significantly improved the efficacy
of immunotherapy [137]. Other researchers synthesized a pH- and thermo-responsive
nanogel loaded with doxorubicin and curcumin to improve the treatment outcomes of
colon cancer [135]. Mechanistically, curcumin can enhance the doxorubicin sensitivity of
tumor cells by decreasing the expression of p-glycoprotein, which worked synergistically to
achieve better treatment outcomes [135]. Nanogels can also achieve long-term drug release
and reduce the distribution of drugs in healthy tissues, improving the therapeutic effects
and avoiding the side effects of the drugs. A curcumin-loaded nanogel was synthesized
via microemulsion photopolymerization, which was demonstrated to display stronger
suppressive effects in tumor growth than free curcumin [134].

4.4. Other Nano-Based Drug Delivery Systems

Some researchers designed Fe-doped layered double hydroxide (LDH) nanosheets
to encapsulate the polyphenolic compound EGCG [138]. This nanoplatform can precisely
release Fe and EGCG in the TME while causing no harm to healthy organs [138]. Fer-
roptosis induced by Fe and EGCG-triggered apoptosis synergistically inhibited tumor
growth in melanoma animal models [138]. Nano-based delivery strategies make possible
the combinational use of multiple functional drugs simultaneously. A tumor-targeted nano-
framework was fabricated using a platinum-based drug that can induce immunogenic
cell death (ICD), and EGCG, a polyphenolic compound that can inhibit the activation of
PD-L1 [139]. This nanoplatform can inhibit tumor growth not only by triggering ICD but
also by enhancing the infiltration of cytotoxic T cells at the tumor sites [139]. Recently,
pure drug nano-assemblies without carriers have gained much attention because they
have a very high or even approximately 100% drug loading efficiency, and they are very
biocompatible, without carrier-related toxicity [152]. A novel carrier-free nanosystem was
constructed based on the self-assembly of the natural products ursolic acid and EGCG [140].
This nanosystem demonstrated satisfactory immunotherapy outcomes in the treatment
of hepatocellular carcinoma without any adverse effects on normal tissues [140]. Some
plant-derived exosomes rich in polyphenolic compounds also have the potential to be used
as nanocarriers for tumor therapy. Exosome-like natural nanovesicles from tea flowers
(TFENs) contain various bioactive polyphenolic compounds such as EGCG and epicatechin
gallate (ECG) [141]. TFENs can inhibit the proliferation and invasion of breast cancer
cells by promoting ROS generation [141]. Moreover, in vivo experiments demonstrated
that TFENs have a good targeting ability due to their accumulation in tumor sites and
metastatic sites [141]. Intravenous injection or oral administration of TFENs can suppress
the progression and metastasis of breast cancer via modulating the gut microbiota [141].
Many nanomaterials can exert tumor suppression functions themselves, such as many
metal–organic frameworks (MOFs), D-alpha-tocopheryl poly (ethylene glycol 1000) suc-
cinate (TPGS), Pluronic P85, etc. [153–155]. Therefore, natural products can synergize
with nanomaterials to enhance tumor-suppressive effects. Some researchers developed a
synergistic resveratrol nanosystem by using lecithin, a natural phospholipid sourced from
soybean and possessing antitumor activity, to achieve excellent tumor-suppressive effects in
the treatment of breast cancer [128]. Summarily, nano-based drug delivery systems enhance
the bioavailability of natural polyphenolic compounds with poor aqueous solubility, enable
the combinational administration of two, or even more, therapeutic agents, and achieve
targeted drug delivery to tumor sites with no obvious adverse effects on normal tissues and
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organs. Therefore, nanocarrier-mediated systems constitute a pivotal arm in the delivery of
natural polyphenolic compounds in cancer treatment.

5. Conclusions and Perspective

As mentioned above, polyphenolic compounds, one of the most common metabolites
found in herb plants, vegetables, and fruits, have been found to display potent antitumor
properties via regulating different signaling pathways in various cancer types, presenting
potential candidates for the development of antitumor agents. To improve the inherent lim-
itations of pure polyphenolic compounds, such as low stability, weak targeting ability, and
poor solubility and bioavailability, nano-based drug delivery systems (e.g., liposome-based,
micelle-based, and nanogel-based) have been widely used to achieve targeted delivery
and maximize the treatment efficacy of polyphenols. In addition to the encapsulation of
polyphenols alone, recent studies also focus on the combinational package of polyphenols
and drugs applied to chemotherapy, immunotherapy, and radiotherapy. Due to the syner-
gistic effects displayed by polyphenols and antitumor drugs, these nanoformulations can
achieve better treatment outcomes both in vitro and in vivo. As a result, the application
of nano-based drug delivery systems can significantly broaden the use of polyphenolic
compounds for clinical cancer treatment.

Despite the promising prospects, several concerns should also be addressed to drive
the application of nano-based drug delivery systems of polyphenols for treating cancers.
First, more nanocarriers should be developed to provide more candidates for packaging
polyphenolic compounds as much as possible, which may improve the treatment efficacy
of more kinds of polyphenols. In addition, current investigations on the antitumor effects
of nano-wrapped drugs are mainly conducted in tumor cell lines and mouse models. More
clinical trials should be carried out to verify the treatment effects and safety of nano-packed
polyphenols, and there is still a long way to the real use of these nanoformulations in clinical
cancer treatment. Furthermore, many nanocarriers have been successfully used to package
polyphenols on the laboratory scale, but this may not be realized for scale-up production at
the factory level and thus should be taken into consideration in future research.

In summary, nano-wrapped polyphenolic compounds show improved antitumor
effects compared with free drugs, which may provide promising candidates for the devel-
opment of anticancer agents.
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sition; EPR: enhanced permeability and retention; FAK: focal adhesion kinase; FOXO3a: forkhead
box O3; HDAC: histone deacetylase; HIF-1α: hypoxia-inducible factor 1α; HPE: hibiscus sabdariffa
extract; ICD: immunogenic cell death; JAK1/2: Janus-activated kinase 1/2; LDH: layered double
hydroxide; MAPK: mitogen-activated protein kinase; MMPs: matrix metalloproteinases; MOFs:
metal–organic frameworks; mTOR: mammalian target of rapamycin; NF-κB: nuclear factor kappa-B;
NPs: nanoparticles; PB2: proanthocyanidin-B2; PD-1: programmed death-1; PD-L1: programmed
death-ligand 1; PE5: 2-(4′′-hydroxybenzyl)-5-2′′-dihydroxy-3-methoxystilbene; PEG: polyethylene
glycol; PI3K: phosphatidylinositide 3-kinase; PKM2: pyruvate kinase M2; PLGA: poly (Lactide-co-
Glycolide); ROS: reactive oxygen species; RTK: receptor tyrosine kinase; STAT3: signal transducer
and activator of transcription 3; STING: stimulator of interferon genes; TFENs: exosome-like natural
nanovesicles from tea flowers; TfR1: transferrin receptor 1; TGF: transforming growth factor; TME:
tumor microenvironment; TNF: tumor necrosis factor; TPGS: D-alpha-tocopheryl poly (ethylene
glycol 1000) succinate; Tregs: regulatory T cells.
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