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Abstract: Death-associated protein kinase 1 (DAPK1) is a serine/threonine protein kinase involved
in diverse fundamental cellular processes such as apoptosis and autophagy. DAPK1 isoform plays
an essential role as a tumor suppressor and inhibitor of metastasis. Consequently, DAPK1 became a
promising target protein for developing new anti-cancer agents. In this work, we present the rational
design and complete synthetic routes of a novel series of eighteen aryl carboxamide derivatives as
potential DAPK1 inhibitors. Using a custom panel of forty-five kinases, a single dose of 10 µM of
the picolinamide derivative 4a was able to selectively inhibit DAPK1 kinase by 44.19%. Further
investigations revealed the isonicotinamide derivative 4q as a promising DAPK1 inhibitory lead
compound with an IC50 value of 1.09 µM. In an in vitro anticancer activity assay using a library of
60 cancer cell lines including blood, lung, colon, CNS, skin, ovary, renal, prostate, and breast cancers,
four compounds (4d, 4e, 4o, and 4p) demonstrated high anti-proliferative activity with mean % GI
~70%. Furthermore, the most potent DAPK1 inhibitor (4q) exhibited remarkable activity against
leukemia (K-562) and breast cancer (MDA-MB-468) with % GI of 72% and 75%, respectively.

Keywords: death-associated protein kinase 1 (DAPK1); kinase inhibitors; DAPK1 inhibitors; anti-
proliferative activity; aryl carboxamides

1. Introduction

Death-associated protein kinase 1 (DAPK1) (a Ca2+/calmodulin dependent Ser/Thr
kinase) is an essential mediator in cell death and autophagy related signals [1,2]. It con-
sists of 1430 residues and is the largest member in the DAPK protein family, including a
Ca2+/CaM autoregulatory domain, a death domain, and a serine-rich C-terminal tail whose
phosphorylation activity is known to be responsible for specific forms of apoptosis [3,4].
It coordinates cell-death signaling pathways in response to various stimuli such as death
receptor activation, cytokines, matrix detachment, ceramide, ischemia, and glutamate toxic-
ity [5]. As previously discussed in various studies, DAPK1 as a stress-responsive kinase is
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a crucial component that transmits ER stress signals into two distinct directions, caspase
activation (via regulating type I apoptotic caspase-dependent cell death) and autophagy
(by controlling type II autophagic caspase-independent cell death) [5–13].

Among novel effective approaches to hinder apoptosis pathways, some fusion pro-
teins have been reported [14]. However, a peptide-based strategy has certain potential
scientific and technical cautions, such as lack of cell selectivity, instability, as well as un-
certainty of the effective therapeutic concentration, which influences the peptide cargo in
addition to suffering from rapid degradation after administration orally [15]. Hence, the
rational drug design of small molecule inhibitors could be a unique way to overcome such
drawbacks. Although DAPK1 has gained a lot of interest regarding the comprehension
of its functions, only a small number of chemical scaffolds, comprehensively discussed in
our recent review [4], have been found in the literature with DAPK1 inhibitory activity,
i.e., aminopyridazine [16,17], imidazo [1,2-b]pyridazine [18], pyridin-3-ylmethylene-1,3-
oxazol-5-one [19,20], pyrazolo [3,4-d]pyrimidinone [21,22], and 1H-pyrrolo [2,3-b]pyridine
(7-azaindole) [23] (Figure 1). Inspired by the various unsolved issues of reported scaffolds,
such as instability in biological systems, low potency, low selectivity profile, and/or insuffi-
cient toxicity studies, in addition to the absence of a current promising clinical candidate or
an FDA-approved specific DAPK1 inhibitor, our institute has launched a project aimed at
designing novel leads for DAPK1 activity modulation with potential anticancer activities.
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Figure 1. Reported synthetic small molecules bearing different chemical scaffolds and their IC50

values or % inhibition against DAPK1 kinase.

In previous studies, a structure-based virtual screening strategy was followed to
develop an oxazol-5-one derivative III and its related analogues as DAPK inhibitors.
Further in silico studies were conducted to define the structure–activity relationship (SAR)
of the developed inhibitors [19,24]. The SAR studies stated that a nitrogen containing
group, such as pyridinyl moiety, is essential for DAPK activity due to the role of the N-atom
in H-bond formation with the backbone NH of Val96 in the hinge region at the ATP binding
site. In addition, substitution on the terminal phenyl ring was found to improve potency
against DAPK compared to the unsubstituted analogues, which might be explained by
the increase in electron density of the phenyl ring which allows for ring contribution in
hydrophobic interactions at the ATP binding site. Regarding phenyl ring substitution, the
studies reported that meta-substitution seems to be more appropriate for binding at the ATP
binding site than para-substitution because of electronic effects. Additionally, substitution
with electron withdrawing groups at meta-positions is more effective for activity than
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electron donating ones. It was also observed that the phenyl ring is located near Asp161 in
a very tight area of the binding pocket, so bulky substitution would badly affect inhibitor
affinity to the binding site and reduce their stability and activity, as well. Finally, docking
of compound III in DAPK binding sites illustrated an observed vacancy around the phenyl
group, which is considered a point of optimization for developing new DAPK inhibitors
with extended substitution on the phenyl ring.

Relying on the aforementioned SAR studies, structural optimizations of the reported
inhibitor III were conducted, while keeping the essential binding interactions, with the
aim of producing a novel series of DAPK inhibitors (4a–r) (Figure 2). In the current work,
the designed carboxamide derivatives (4a–r) were designed to retain the hinge binding
interaction with the Val96 backbone by introducing different nitrogen containing groups
(pyridine, pyridazine, and pyrazine). However, the principal modification was the ring
opening of the central oxazole into carboxamide moiety, which has been reported in many
DAPK inhibitors. The lateral phenyl group of the designed series was substituted by an
electron withdrawing meta-chloro group that was reported for better hydrophobic interac-
tion. The new designed compounds possessed a unique extension in the hydrophobic area
via additional phenoxy substitutions on the terminal phenyl group in an attempt to boost
molecular interaction with the enzyme pocket.
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Figure 2. Diagrammatic representation of the structural modifications of compound III for developing
new DAPK inhibitor candidates: (A) molecular interactions of compound III into the DAPK active
site; (B) proposed binding interaction of the new synthesized derivatives 4a–r into the DAPK kinase
domain (W, X, Y, and Z could be C or N atoms).

2. Results and Discussion
2.1. Chemistry

The chemical synthesis of the target compounds 4a–r was carried out as illustrated in
Scheme 1. A nucleophilic aromatic substitution reaction of the commercially available start-
ing material 2-chloro-1-fluoro-4-nitrobenzene (1) was performed via adding the appropriate
phenolic derivative and a catalytic amount of potassium carbonate to generate 2-chloro-
4-nitrophenoxybenzene derivatives (2a–c). Catalytic hydrogenation of compounds 2a–c
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was performed using Pt/C catalyst under hydrogen atmosphere to yield compounds 3a–c.
Introduction of amide functionality to intermediate 3a–c was achieved by coupling with
the appropriate benzoic acid derivative using HATU to afford the final target compounds
4a–r (Table 1).

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 4 of 26 
 

 

2. Results and Discussion 
2.1. Chemistry 

The chemical synthesis of the target compounds 4a–r was carried out as illustrated 
in Scheme 1. A nucleophilic aromatic substitution reaction of the commercially available 
starting material 2-chloro-1-fluoro-4-nitrobenzene (1) was performed via adding the ap-
propriate phenolic derivative and a catalytic amount of potassium carbonate to generate 
2-chloro-4-nitrophenoxybenzene derivatives (2a–c). Catalytic hydrogenation of com-
pounds 2a–c was performed using Pt/C catalyst under hydrogen atmosphere to yield 
compounds 3a–c. Introduction of amide functionality to intermediate 3a–c was achieved 
by coupling with the appropriate benzoic acid derivative using HATU to afford the final 
target compounds 4a–r (Table 1). 

 
Scheme 1. Reagents and conditions: (a) appropriate phenol derivative, K2CO3, MeCN, 85 °C, 6 h; (b) 
H2, Pt/C, MeOH, rt, 6 h; (c) appropriate benzoic acid derivative, DIPEA, HATU, THF, reflux, over-
night. 

Table 1. Key Structure of the final target compounds 4a‒r. 

Cpd R Ar Yield% Cpd R Ar Yield% 

4a 4-F 
 

73 4j 4-F 
 

70 

4b 3-F 
 

50 4k 4-F 
 

56 

4c 3-F 
 

63 4l 4-F 
 

46 

4d 3-F 
 

59 4m 3-Cl 
 

62 

4e 3-F 
 

23 4n 3-Cl 
 

72 

4f 3-F 
 

29 4o 3-Cl 
 

65 

4g 3-F 
 

62 4p 3-Cl 
 

49 

4h 4-F 
 

82 4q 3-Cl 
 

12 

4i 4-F 
 

86 4r 3-Cl 
 

53 

  

Scheme 1. Reagents and conditions: (a) appropriate phenol derivative, K2CO3, MeCN, 85 ◦C,
6 h; (b) H2, Pt/C, MeOH, rt, 6 h; (c) appropriate benzoic acid derivative, DIPEA, HATU, THF,
reflux, overnight.

Table 1. Key Structure of the final target compounds 4a–r.

Cpd R Ar Yield% Cpd R Ar Yield%

4a 4-F
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2.2. Biological Evaluation
2.2.1. Evaluation of Compound 4a against a Panel of 45 Kinases

In an attempt to test our design hypothesis and discover if DAPK1 is the potential
conceivable kinase target of the designed candidates, a kinase selectivity assay was carried
out to the first synthesized derivative (4a) against a group of forty-five different kinases.
Compound 4a was evaluated at a single dose concentration of 10 µM and % inhibition was
determined against each corresponding kinase (Table 2).
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Table 2. % enzyme inhibition (relative to DMSO controls) of compound 4a in a single-dose duplicate
mode assay at a concentration of 10 µM against 45 kinases.

Kinase DAPK1% Inhibition at 10
µM Dose a Kinase DAPK1% Inhibition at 10

µM Dose a

ABL1 12.29 ± 0.11 JAK1 8.11 ± 1.85
ACK1 0.53 ± 3.32 JNK1 −9.39 ± 0.22
AKT1 −6.56 ± 1.56 KDR/VEGFR2 −4.28 ± 0.11

AMPK(A1/B1/G1) 2.10 ± 2.96 LCK −15.69 ± 0.45
Aurora A −5.10 ± 0.78 LRRK2 23.80 ± 1.19

BRAF −4.67 ± 0.03 MARK1 −3.12 ± 0.15
BRAF (V599E) −9.72 ± 0.04 MEK1 −16.18 ± 0.42

BTK 1.97 ± 0.21 OSR1/OXSR1 −6.76 ± 1.93
CAMK1a −49.53 ± 0.28 P38a/MAPK14 −22.83 ± 0.63

CDK1/cyclin A −8.34 ± 0.93 PAK1 1.12 ± 2.73
CHK1 −7.21 ± 0.77 PDGFRa 19.18 ± 0.68
c-Kit 15.53 ± 3.14 RAF1 4.51 ± 1.32
CLK1 −0.14 ± 0.13 RET −12.78 ± 0.99
c-MET 7.03 ± 0.34 ROCK1 −6.35 ± 1.35
c-Src 10.63 ± 1.61 ROCK2 2.96 ± 1.06

DAPK1 44.19 ± 1.95 ROS/ROS1 −7.04 ± 1.71
DDR1 5.76 ± 1.69 STK39/STLK3 −2.47 ± 1.50

ERBB2/HER2 −7.42 ± 1.74 SYK −13.26 ± 0.10
FGFR1 −14.24 ± 0.24 TAK1 −4.08 ± 1.16
FLT3 0.13 ± 1.08 TIE2/TEK −13.18 ± 2.15
FMS 3.36 ± 0.31 TLK1 −2.23 ± 3.33

IGF1R −12.67 ± 0.72 TRKA −8.71 ± 0.17
IKKb/IKBKB −15.92 ± 0.74

a Inhibition percentage values expressed as a mean of duplicate measurements ± S.E.M.

Interestingly, the preliminary data revealed a remarkable selectivity of compound 4a
towards DAPK1, with mean % inhibition of 44.19%. On the other hand, the results for
the other 44 kinases showed no activity for most of the kinases and low activity (less than
25%) for a few of the tested kinases (Figure 3). An additional inspection of compound 4a
selectivity was carried out by evaluating its activity against other DAPK isoforms (DAPK2
and DAPK3). The obtained results showed no activity for compound 4a with DAPK2 and
DAPK3 isoforms (data not shown).

2.2.2. In Vitro DAPK1 Kinase Assay and Optimization towards Lead Development

Based on the previous panel of kinase data, a series of aryl carboxamide derivatives
(4b–r) were synthesized and evaluated in vitro for their inhibitory activity against DAPK1
using the ELISA technique (enzyme-linked immune sorbent assay). The enzyme inhibition
assay was conducted with a 10 µM dose of the tested compounds and the mean % inhibition
was measured. As illustrated in Table 3, derivatives possessing the pyridinyl carboxamide
moiety (4c, 4e, 4f, 4h, 4j, 4k, 4m, 4p, and 4q) exhibited the highest inhibitory activity
(59–81%) in comparison to the pyridazine or pyrazine possessing derivatives (38–61%). In
addition, the attachment point of these nitrogen heterocycles (pyridine, pyridazine, and
pyrazine) with the amide group did not show a remarkable effect in terms of activity. In
regard to the substitution on the terminal phenoxy moiety, the overall results showed
that para-substitution with the fluoro group in compounds 4a and 4h–l has a better effect
on activity than the meta-substituted derivatives 4b–g, except for the pyridazine bearing
derivatives 4a and 4b. Moreover, replacing the m-fluoro substitution with m-chloro in
compounds 4m–r showed a slight improvement in activity, except in compounds 4d and 4o
where the chloro substitution dramatically reduced activity to 37.99%. Among the tested
series, compounds 4h, 4j, 4k, and 4q revealed the highest activity of 81%, 79%, 80%, and
72%, respectively.
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Figure 3. A schematic chart illustrating the enzyme inhibitory activity of compound 4a (10 µM)
against a panel of 45 oncogenic kinases.

Table 3. DAPK1 kinase % inhibition activity for the final target compounds 4a–r at 10 µM.

Cpd % Inhibition against DAPK1 a Cpd % Inhibition against DAPK1 a

4a 44.19 4j 79.06
4b 58.95 4k 80.61
4c 58.83 4l 61.83
4d 50.91 4m 61.73
4e 59.98 4n 61.54
4f 64.06 4o 37.99
4g 50.18 4p 61.48
4h 81.00 4q 72.10
4i 63.69 4r 59.98

a % enzyme inhibition (relative to DMSO controls) for all synthesized analogs in a single-dose duplicate mode
assay at a concentration of 10 µM with DAPK1 kinase.

2.2.3. Dose-Dependent Assay of Compounds 4h, 4j, 4k, and 4q with DAPK1 Kinase

For more clarification of the structural activity relationship of the synthesized com-
pounds, the most active derivatives (4h, 4j, 4k ,and 4q) were subjected to a dose-dependent
IC50 kinase assay. The selected candidates showed low micromolar IC50 values against
DAPK1 kinase with a range of 1.09–7.26 µM. The data obtained in Table 4 revealed the
impact of the attachment point of the pyridine moiety with the amide linker and, for the
4-F phenoxy derivatives, nicotinamide owing compound 4j exhibited the highest activity
(IC50 = 1.7 µM). In contrast, substitution with picolinamide (4h) and isonicotinamide (4k)
declined activity to 6.81 µM and 7.26 µM, respectively. Interestingly, the isonicotinamide
derivative with the terminal m-chlorophenoxy moiety (4q) emerged to be the most potent
inhibitor with an IC50 value of 1.09 µM. In order to determine its selectivity against DAPK1,
compound 4q was evaluated at a single dose concentration (10 µM) against the other two
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isoforms (DAPK2/DAPK3). The two isoforms exhibited no inhibition at all by compound
4q (data not shown), indicating the high potential of compound 4q to be a promising
selective DAPK1 inhibitory lead compound.

Table 4. IC50 values of compounds 4h, 4j, 4k, and 4q against DAPK1 kinase.

Cpd DAPK1 a, IC50 (µM)

4h 6.81
4j 1.70
4k 7.26
4q 1.09

a Mean values of duplicate mode 10-dose IC50 assays with DAPK1 kinase, with 3-fold serial dilution starting at
10 µM.

2.2.4. In Vitro Anticancer Assay

The anticancer effects of all newly synthesized compounds (4a–r) were assessed
through determining their anti-proliferative activities against a panel of NCI-60 human
cancer cell lines belonging to nine cancer types (leukemia, non-small cell lung cancer, colon
cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer, and breast
cancer). All the subjected compounds were selected for one-dose 60 cell line assays. The
tested compounds showed wide spectrum activity against the different human cancer cell
lines with maximum mean inhibition of 71% (Figure 4). Among the tested compounds,
only compounds 4d, 4e, 4o, and 4p displayed high anti-proliferative activities (67.02%,
67.87%, 70.83%, and 69.27%, respectively). The data obtained from NCI assays are analyzed
in this section.
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Figure 4. Mean % inhibition of NCI-60 cell lines after treatment with a single dose (10 µM) of
compounds 4a–r.

� Anti-proliferative activity against leukemia:

The efficacy of the synthesized compounds against leukemia cell lines (CCRF-CEM,
HL-60(TB), K-562, MOLT-4, RPMI-8226, and SR) is illustrated in Table 5. It was observed
that leukemia cells (HL-60(TB) and K-562) are the most sensitive cell lines towards treatment
with the tested compounds (Figure 5). The pyrazine carboxamide derivatives 4d and 4o,
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with meta-(F or Cl) substitution on the terminal phenoxy group, totally inhibited the growth
of the leukemia HL-60(TB) cell line with almost 100% inhibition and showed above 90%
growth inhibition for leukemia K-562. Compounds 4e, 4h, and 4p exhibited satisfactory
inhibitory activity against both cell lines (78–83%), while most of the tested candidates
showed moderate anti-proliferative activity against leukemia (30–60%).

Table 5. Anti-proliferative activities (% growth inhibition) of the target compounds 4a–r against
leukemia cell lines.

Cpd. CCRF-CEM HL-60(TB) K-562 MOLT-4 RPMI-8226 SR

4a 24.87 43.74 44.47 40.16 37.38 2.35
4b 24.49 26.45 38.23 19.72 42.72 −6.10
4c 6.71 11.44 10.98 6.93 21.08 −4.05
4d 81.59 96.88 86.57 58.79 82.05 79.23
4e 76.04 87.94 83.79 59.83 84.21 76.25
4f 41.83 32.93 67.22 27.56 54.45 36.39
4g 40.77 30.04 44.68 24.07 55.39 8.58
4h −5.45 −5.22 4.80 −24.34 −1.85 −26.54
4i 35.87 78.57 78.88 54.90 19.59 50.71
4j −0.75 16.79 49.09 -5.20 12.69 24.85
4k 21.90 16.39 53.90 5.43 34.21 10.68
4l 21.39 15.06 19.57 12.50 33.55 −2.96

4m −0.92 12.35 −7.67 −12.52 0.39 −26.02
4n 16.03 10.46 23.01 19.89 28.89 13.01
4o 83.35 98.50 86.78 73.85 81.94 73.68
4p 82.54 93.94 88.94 62.59 88.07 80.15
4q 43.23 40.60 71.93 32.16 59.20 18.60
4r 34.26 18.01 41.54 14.16 46.55 −11.83
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Figure 5. Mean % inhibition of the target compounds 4a–r against leukemia cell lines (HL-60(TB) and
K-562).

� Anti-proliferative activity on non-small cell lung cancer:

The synthesized candidates were evaluated against a panel of nine NSCLCs (A549,
EKVX, HOP62, HOP92, NCI-H226, NCI-H23, NCI-H322M, NCI-H460, and NCI-H522). The
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results are represented in Table 6. Among the tested series, compounds 4d, 4e, 4o, and 4p
were the most active anti-proliferative agents against the nine NSCLCs (% GI = 55–60%).

Table 6. Anti-proliferative activities (% growth inhibition) of the target compounds 4a–r against
non-small cell lung cancer cell lines.

Cpd A549/
ATCC EKVX HOP-62 HOP-92 NCI-

H226 NCI-H23 NCI-
H322M

NCI-
H460

NCI-
H522

4a 34.51 25.04 15.76 33.54 45.00 37.68 12.42 23.21 38.20
4b 32.62 25.29 0.90 17.89 30.57 23.57 6.18 3.78 27.10
4c 18.95 10.63 −7.22 15.05 1.09 6.75 2.94 0.03 17.87
4d 60.88 48.75 57.56 48.48 38.23 55.06 53.70 77.90 77.71
4e 64.48 50.41 65.97 36.59 43.08 55.14 49.18 75.35 63.79
4f 44.90 46.82 31.88 12.60 37.44 49.29 10.81 22.18 24.20
4g 36.08 35.47 10.18 NT 30.80 33.47 −0.14 11.06 22.76
4h 1.70 13.06 −8.34 7.68 5.54 14.36 1.66 0.15 20.06
4i 56.25 21.95 43.80 41.84 25.60 34.41 17.83 71.99 45.79
4j 14.04 18.08 −6.37 8.10 0.24 20.04 −0.70 3.01 27.70
4k 12.58 60.37 29.52 20.18 17.62 51.60 1.00 18.70 37.11
4l 24.02 19.22 1.57 16.91 26.86 25.71 7.09 5.29 20.81

4m 8.08 −0.64 −6.77 3.98 −8.86 −5.18 −5.68 −0.87 5.22
4n 24.70 12.67 −0.67 15.62 21.16 15.91 6.13 0.21 26.35
4o 76.05 46.82 59.01 37.99 35.91 53.91 52.07 84.28 87.52
4p 63.21 49.14 62.02 38.66 45.68 52.09 52.92 77.80 72.66
4q 50.61 47.56 33.07 13.96 42.84 55.74 19.25 28.11 35.65
4r 32.61 28.53 6.68 5.58 29.92 32.81 1.73 7.58 27.65

As depicted in Figure 6, NCI-H460 and NCI-H522 were the highest affected cell lines
by the mentioned active compounds. NCI-H460 showed % GI of 77.9%, 75.34%, 84.28%,
and 77.8%, while NCI- H522 growth was inhibited by 77.7%, 63.79%, 87.25%, and 72.65%
upon treatment with 10 µM of 4d, 4e, 4o, and 4p, respectively. Compounds 4i and 4q
elicited moderate activity with average inhibition of 40% and 36%, respectively. Meanwhile,
the rest of the tested series did not exhibit significant activity towards NSCLCs (average %
GI < 30%).
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� Anti-proliferative activity on colon cancers:
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The target compounds were assayed against a panel of seven colon adenocarcinoma
cell lines (COLO-205, HCC-2998, HCT-116, HCT-15, HT29, KM12, and SW-620) and the re-
sults are summarized in Table 7. The tested compounds revealed a wide range of inhibitory
activity against the seven cell lines, with average % GI from 0% to 78%. The overall data
indicated that compounds 4d, 4e, 4o, and 4p had the highest growth inhibitory activity
and showed average % GI of 71.84%, 69.73%, 78.16%, and 71.11%, respectively (Figure 7).
Compounds 4d and 4e significantly inhibited the growth of HOP92 adenocarcinoma with
% GI of 90.87% and 87.13%, respectively. The two compounds also exhibited outstanding
activity towards the COLO 205 cell line (% GI = 84.52% and 77.29%, respectively).

Table 7. Anti-proliferative activities (% growth inhibition) of the target compounds 4a–r against colon
adenocarcinoma cell lines.

Cpd COLO 205 HCC-2998 HCT-116 HCT-15 HT29 KM12 SW-620

4a −11.74 10.88 3.23 22.43 23.27 20.85 5.86
4b −0.78 3.23 44.58 48.54 13.03 17.64 −3.69
4c −10.09 7.89 14.49 24.71 15.35 4.65 −2.86
4d 84.52 43.81 67.97 68.78 90.87 69.66 77.31
4e 77.29 42.26 66.25 70.11 87.31 70.73 74.22
4f 9.29 −6.85 52.29 19.16 3.92 29.08 15.56
4g 1.75 −5.80 21.38 20.12 0.43 25.11 1.33
4h −24.87 6.42 8.49 3.76 −3.35 1.13 5.68
4i 30.70 23.68 41.31 52.26 76.34 72.49 63.04
4j −20.33 8.79 11.85 15.67 11.48 23.60 7.30
4k 4.83 27.39 56.60 13.33 1.72 22.04 14.96
4l −2.63 3.36 6.44 9.12 12.54 10.52 −5.05

4m −12.61 −17.45 −3.79 −0.91 −2.08 −1.10 −0.09
4n −5.90 4.76 33.28 43.26 10.11 14.71 −4.84
4o 87.71 49.22 79.08 76.69 97.86 79.27 77.28
4p 84.61 42.04 70.09 63.16 91.43 71.89 74.59
4q 17.91 −0.82 55.73 24.37 15.41 32.88 23.45
4r −1.57 −10.77 15.72 17.28 3.02 21.25 −0.48
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Figure 7. Anti-proliferative activities (% GI) of compounds 4d, 4e, 4i, 4o, and 4p against colon cancer
cell lines.

Moreover, compounds 4o and 4p emerged to be the most potent inhibitors of HOP92
adenocarcinoma with % GI of 97.8% and 91.4%, respectively. Furthermore, the COLO 205
cell line was also inhibited by the two compounds with % GI of 87.71% and 84.61% for
the two compounds. Compound 4i moderately inhibited the growth of HCT-15, HT29,



Pharmaceuticals 2022, 15, 1050 11 of 23

KM12, and SW-620 and exhibited % GI of 52.26%, 76.34%, 72.49%, and 63.04%, respectively
(Figure 7).

� Anti-proliferative activity on CNS cancers:

The anti-proliferative activities of the target derivatives were determined against six
CNS cancer cell lines (SF-268, SF-295, SF-539, SNB-19, SNB-75, and U251) and the resulting
% GIs were tabulated in Table 8. As illustrated, compounds 4d, 4e, 4o, and 4p kept their
ranking among the tested derivatives as the most potent anti-proliferative agents. It was
observed that SF-539 and SNB-75 were the most sensitive cell lines that showed growth
inhibition around 100% upon treatment with 10 µM of compounds 4d, 4o, 4p, 4e (Figure 8).
In addition, the mentioned derivatives broadly inhibited the growth of the remaining
four cell lines (44.50–83.53%). Compound 4q moderately inhibited the growth of SF-295
(67.42%), while there was no observable activity from the compound towards the other five
cell lines.

Table 8. Anti-proliferative activities (% growth inhibition) of the target compounds 4a–r against CNS
cancer cell lines.

Cpd SF-268 SF-295 SF-539 SNB-19 SNB-75 U251

4a 19.64 26.63 14.50 33.85 12.24 37.09
4b 15.24 19.22 3.77 13.63 19.94 30.61
4c 3.67 6.83 −4.47 8.03 20.26 21.79
4d 44.50 63.96 103.46 59.62 99.15 74.34
4e 46.35 59.88 95.94 57.35 92.15 67.54
4f 15.83 59.58 17.49 32.89 10.07 27.52
4g 18.94 22.54 7.93 18.58 14.60 21.98
4h −1.32 8.92 4.25 8.73 NT 12.52
4i 27.80 27.12 32.90 36.26 52.28 61.85
4j 5.00 14.00 5.58 6.79 NT 10.97
4k 16.97 58.92 18.58 26.78 NT 14.64
4l 18.14 14.27 4.69 11.91 28.81 15.77

4m −1.72 5.99 −3.28 4.33 12.89 9.88
4n 16.12 17.78 4.69 10.47 22.28 23.31
4o 45.68 58.77 135.24 66.47 120.94 83.53
4p 46.58 58.61 108.37 58.71 123.19 76.10
4q 20.45 67.42 24.18 41.32 18.27 37.68
4r 17.40 27.73 4.39 18.63 12.21 19.46Pharmaceuticals 2021, 14, x FOR PEER REVIEW 13 of 26 
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Figure 8. Anti-proliferative activities (% GI) of compounds 4d, 4e, 4o, and 4p against CNS cancer
cell lines.
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� Anti-proliferative activity on melanoma:

Melanoma anti-proliferative activity of the synthesized compounds was evaluated
using a panel of nine melanoma cell lines (LOX IMVI, MALME-3M, M14, MDA-MB-435, SK-
MEL-2, SK-MEL-28, SK-MEL-5, UACC-257, and UACC-62) with the % GI results illustrated
in Table 9. The highest potency was observed on the MDA-MB-435 cell line which was
strongly inhibited by compounds 4d, 4e, 4i, 4o, and 4p (% GI = 121%, 98%, 102%, 139%, and
144%, respectively) (Figure 9). Compound 4e exhibited high potency against the SK-MEL-5
cell line with % GI of 124%, while the same cell line was highly inhibited by 4d, 4o, 4p, and
4q (% GI of 90.39%, 74.19%, 85.47%, and 73.04%, respectively) and moderately inhibited
by 4a, 4f, 4i, and 4k (% GI of 69.25%, 58.84%, 50.48%, and 67.41%, respectively). Moreover,
compounds 4o and 4p showed moderate activity against the M14 cell line (80.21% and
78.15%, respectively) and UACC-62 cell line (71.64% and 62.37%, respectively).

Table 9. Anti-proliferative activities (% growth inhibition) of the target compounds 4a–r against
melanoma cell lines.

Cpd LOX IMVI MALME-
3M M14 MDA-MB-

435 SK-MEL-2 SK-MEL-
28 SK-MEL-5 UACC-257 UACC-62

4a 27.24 −4.65 −14.00 32.75 22.30 9.15 69.25 35.74 37.47
4b 25.22 7.97 7.10 19.00 8.32 1.43 32.67 7.10 31.60
4c 2.62 2.27 −1.30 8.65 5.50 −0.68 9.49 −9.00 16.27
4d 56.13 48.64 74.39 121.17 62.33 39.39 90.39 35.06 66.46
4e 47.19 52.84 84.06 98.36 63.46 45.96 123.95 43.92 68.80
4f 38.68 16.33 15.91 33.96 30.20 13.40 58.84 41.05 48.32
4g 18.38 −3.55 11.13 23.66 14.50 2.85 41.79 19.72 36.67
4h 3.90 −1.10 −5.94 5.26 −4.51 −14.37 2.21 −12.41 12.42
4i 48.55 29.89 7.62 102.80 46.40 23.13 50.48 20.25 49.67
4j 8.76 −2.94 2.72 58.51 8.69 −2.54 20.48 8.59 18.73
4k 29.89 8.49 6.80 28.75 40.51 1.54 67.41 23.72 40.20
4l 10.38 −2.67 5.36 10.47 2.21 −0.94 21.76 6.33 25.61

4m -2.57 −9.79 −4.28 6.16 −7.38 0.87 −3.94 −4.90 6.68
4n 11.48 −3.78 7.23 22.44 −2.18 0.55 16.20 −3.76 25.33
4o 70.14 46.63 80.21 139.73 56.37 35.07 74.19 27.57 71.64
4p 48.29 49.87 78.15 144.28 55.91 36.16 85.47 35.81 62.37
4q 44.43 27.35 26.33 40.27 35.39 17.55 73.04 38.68 49.14
4r 14.41 2.90 15.11 21.71 14.60 5.10 29.20 16.23 33.19
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Figure 9. Anti-proliferative activities (% GI) of compounds 4a, 4d, 4e, 4i, 4k, 4o, 4p, and 4q against
Melanoma cell lines.
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� Anti-proliferative activity on ovarian cancers:

The growth inhibition results of the tested compounds against a panel of six ovarian
cancer cell lines are demonstrated in Table 10. Among the employed ovarian cell lines,
OVCAR-3 emerged to be the most sensitive cell line, which was strongly inhibited by com-
pounds 4d, 4e, 4o, and 4p with % GI of 117.85%, 93.03%, 107.23%, and 97.34%, respectively.
The 4d, 4e, 4o, and 4p compounds also inhibited the growth of the NCI/ADR-RES cell
line with % GI over 85%. OVCAR-3 and NCI/ADR-RES were moderately inhibited by
compound 4i (56.36% and 59.16%, respectively). In addition, moderate growth inhibition
activity was detected against three cell lines: SK-OV-3 by compounds 4e and 4p (69.98% and
65.75%, respectively); OVCAR-8 by compounds 4d, 4e, 4o, and 4p (62.49%, 65.37%, 72.05%,
and 67.92%, respectively); OVCAR-4 by compounds 4d, 4e, 4f, 4o, 4p, and 4q (55.46%,
53.83%, 54.30%, 61.05%, 52.16%, 56.18%, respectively); and IGROV1 by compounds 4d, 4e,
4o, and 4p (59.49%, 58.28%, 72.96%, 57.85%, respectively) (Figure 10).

Table 10. Anti-proliferative activities (% growth inhibition) of the target compounds 4a–r against
ovarian cancer cell lines.

Cpd IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-8 NCI/ADR-RES SK-OV-3

4a 2.39 26.40 NT 15.95 28.75 30.57 11.16
4b 7.95 21.21 38.86 3.48 6.93 7.85 −3.63
4c 5.29 5.30 21.99 2.65 −2.78 −3.02 −7.73
4d 59.49 117.85 55.46 43.39 62.49 90.94 14.03
4e 58.24 93.03 53.83 27.40 65.37 86.14 69.98
4f 10.32 24.90 54.30 −3.67 33.96 30.30 18.97
4g −0.70 18.15 26.00 −8.04 11.94 8.76 −1.53
4h 1.79 −2.65 11.49 −5.31 −5.64 11.70 −14.73
4i 37.38 56.36 NT 18.94 28.56 59.16 −0.47
4j 4.59 14.21 14.85 0.07 1.40 14.87 −10.36
4k 7.73 31.85 22.92 7.00 27.11 36.38 19.08
4l 3.35 12.54 24.55 −2.71 9.85 7.17 3.83

4m −4.42 −2.87 1.25 6.70 −3.01 −14.69 −3.50
4n 8.57 14.44 31.35 8.86 8.33 15.03 −2.30
4o 72.96 107.23 61.05 39.64 72.05 85.16 16.73
4p 57.85 97.34 52.16 28.80 67.92 88.11 65.75
4q 14.33 27.51 56.18 9.72 40.42 33.17 19.67
4r 7.86 14.64 31.04 −5.97 10.63 4.76 0.32
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Figure 10. Anti-proliferative activities (% GI) of compounds 4d, 4e, 4f, 4o, 4p, and 4q against ovarian
cancer cell lines.
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� Anti-proliferative activity on renal cancers:

The synthesized compounds 4a–r exhibited a wide range of inhibitive activity towards
a panel of eight renal cancer cell lines (786-0, A498, ACHN, CAKI-1, RXF 393, SN12C,
TK-10, and UO-31), as shown in Table 11. The uppermost activity was observed against the
growth of the RXF 393 cell line which was totally inhibited (% GI > 100%) by compounds 4o
and 4p and greatly inhibited by compounds 4d and 4e (92.63% and 86.46%, respectively).
Additionally, the A498 cell line showed inhibition of 100% by compound 4p and 95.84%
by compound 4e (Figure 11). Modest activity was noticed against the 786-0 cell line by
compounds 4d, 4e, 4o, and 4p (% GI of 53.47%, 59.13%, 55.36%, and 60.79%, respectively),
the ACHN cell line by compounds 4d, 4e, 4o, 4p, and 4q (% GI of 62.30%, 64.82%, 60.04%,
58.34%, and 52.45%, respectively), the CAKI-1 cell line by compounds 4d, 4e, 4o, and 4p (%
GI of 74.84%, 67.45%, 78.37%, and 69.44%, respectively), the SN12C cell line by compounds
4d, 4e, 4o, and 4p (% GI of 54.42%, 63.63%, 55.60%, and 56.56%, respectively), and the
UO-31 cell line by compounds 4d, 4e, 4o, and 4p (% GI of 56.60%, 60.28%, 62.66%, and
55.92%, respectively) (Figure 11).

Table 11. Anti-proliferative activities (% growth inhibition) of the target compounds 4a–r against
renal cancer cell lines.

Cpd 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31

4a −5.04 38.95 26.30 45.20 17.36 36.18 35.56 45.01
4b 23.45 21.77 14.60 24.59 20.89 15.74 25.76 33.84
4c 21.26 10.29 2.04 14.58 −4.88 7.62 22.97 17.68
4d 53.47 30.57 62.30 74.84 92.63 54.42 40.46 56.60
4e 59.13 95.84 64.82 67.45 86.46 63.63 40.07 60.28
4f 23.38 41.23 44.98 33.92 −6.80 18.18 22.50 31.83
4g 15.44 24.78 31.68 37.07 0.38 18.44 18.94 31.99
4h 5.85 22.23 −2.59 15.45 −0.44 −4.70 1.08 22.52
4i 18.95 32.33 5.89 50.35 27.74 30.22 14.22 34.97
4j 7.73 29.16 0.47 13.15 9.82 4.16 2.30 19.09
4k 16.26 56.91 25.12 30.56 8.16 16.37 15.85 28.68
4l 13.93 19.59 12.22 22.93 −11.93 14.96 18.03 40.38

4m 9.93 5.35 −1.09 7.21 −11.85 2.65 7.95 12.70
4n 22.57 12.65 2.11 19.24 9.70 16.79 24.95 35.06
4o 55.36 49.81 60.04 78.37 104.58 55.60 43.63 62.66
4p 60.79 103.10 58.34 69.44 100.14 56.56 40.23 55.92
4q 27.67 40.37 52.45 41.45 9.56 30.90 25.70 43.59
4r 14.13 27.83 26.38 33.64 −20.50 16.91 17.18 35.82
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cancer cell lines.



Pharmaceuticals 2022, 15, 1050 15 of 23

� Anti-proliferative activity on prostate cancers:

Two prostate cancer cell lines (PC-3 and DU-145) were used for the anti-proliferative
evaluation of the target compounds 4a–r (Table 12). Among the tested series, only com-
pounds 4d, 4e, 4o, and 4p exhibited satisfactory potency against the two cell lines. The four
candidates inhibited the growth of the PC-3 cell line by % GI of 83.31%, 75.41%, 88.90%,
and 85.15%, respectively. However, the DU-145 cell line was inhibited by % GI of 80.87%,
78.17%, 77.35%, and 83.88% by the four compounds, respectively (Figure 12).

Table 12. Anti-proliferative activities (% growth inhibition) of the target compounds 4a-r against
prostate cancer cell lines.

Cpd PC-3 DU-145

4a 35.59 23.29
4b 47.62 17.49
4c 33.62 8.58
4d 83.31 80.87
4e 75.41 78.17
4f 20.74 9.42
4g 28.39 16.44
4h 2.71 3.23
4i 23.96 20.47
4j 9.30 12.96
4k 24.42 22.70
4l 13.07 5.67

4m 9.03 −3.53
4n 42.83 13.68
4o 88.90 77.35
4p 85.15 83.88
4q 25.02 22.55
4r 19.59 15.68
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cell lines.

� Anti-proliferative activity on breast cancers:

Finally, the target compounds were evaluated as anti-proliferative agents against six
different breast cancer cell lines (MCF7, MDA-MB-231/ATCC, HS 578T, BT-549, T-47D,
and MDA-MB-468) and the results were summarized. As shown in Table 13, the growth
of the MDA-MB-468 cell line was completely inhibited (100–109%) by compounds 4d, 4e,
4o, and 4p, while its growth was moderately inhibited by compounds 4a, 4f, 4g, 4i, 4k,
4q, and 4r (52–76%). The MCF7 cell line was less sensitive to the tested compounds and
showed maximum growth inhibition of 82.54% and 80.44% with compounds 4d and 4e,
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respectively. The HS 578T and T-47D cell lines were moderately inhibited by compounds
4a, 4d, 4e, 4o, and 4p (% GI 59.27–81.27%). MDA-MB-231/ATCC and BT-549 were the most
resistant cell lines to the tested compounds, except for compound 4o that inhibited the
growth of MDA-MB-231/ATCC by % GI of 68.29% (Figure 13).

Table 13. Anti-proliferative activities (% growth inhibition) of the target compounds 4a–r against
breast cancer cell lines.

Cpd MCF7 MDA-MB-231/ATCC HS 578T BT-549 T-47D MDA-MB-468

4a 34.71 11.88 4.36 −3.11 62.39 60.73
4b 12.80 6.93 −4.53 15.34 42.13 41.58
4c 11.41 −0.05 1.61 7.71 23.18 14.77
4d 82.54 46.50 72.17 40.15 61.71 99.92
4e 80.44 39.78 68.75 51.44 66.51 109.22
4f 44.11 14.71 7.30 40.61 46.75 76.00
4g 18.46 1.84 8.39 8.12 39.23 55.16
4h 13.86 0.09 −0.49 2.31 27.84 20.32
4i 70.32 41.29 37.62 −0.40 57.08 68.17
4j 23.32 6.34 8.51 7.52 29.40 42.77
4k 39.38 19.70 6.71 36.00 56.60 78.17
4l 9.28 9.19 −7.24 5.75 30.08 36.63

4m 3.69 −2.42 3.47 1.02 −4.39 −2.35
4n 8.35 4.49 −6.22 1.47 27.64 36.69
4o 79.69 68.29 81.27 42.55 59.27 99.57
4p 78.44 41.02 68.95 46.72 64.41 109.21
4q 56.26 20.80 10.84 40.15 51.56 74.71
4r 14.03 5.90 2.82 1.87 38.96 52.01
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Figure 13. Anti-proliferative activities (% GI) of compounds 4d, 4e, 4o, 4p, and 4q against breast
cancer cell lines.

2.2.5. Docking Study

In an attempt to introduce a reasonable explanation for the observed DAPK1 kinase
activity with respect to the inhibitors’ binding affinity, the potent inhibitor 4j was subjected
to a molecular docking study as a representative example of the designed inhibitors. In
this study, Molecular Operating Environment (MOE, 2014) software was used to operate
the docking protocol. The X-ray crystallographic structures of DAPK1 in complex with
Genistein (PDB ID: 5AUZ) were downloaded from the protein data bank (PDB). Validation
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of the docking protocol was achieved by re-docking of the co-crystalized ligand, Genistein,
in the binding site of DAPK1. The re-docked ligand retained the same binding manner in
the DAPK1 active site (docking score= −6.1511 kcal/mol) with an RMSD value of 0.8894 Å.
As illustrated in Figure 14A, the iso-flavone moiety of the native ligand, Genistein, is
binding in the adenine pocket via H-bonding between the hydroxyl group and Glu100
residue while the pyran ring is additionally embedded in the pocket by AreneH interaction
with Val27. Furthermore, the DAPK1 hydrophobic pocket is occupied by the lateral hydroxy
phenyl moiety, which exhibits H-bonding between its para-hydroxyl group and the Glu94
residue. Accordingly, the target compounds should conserve the binding mode of the
native ligand, which in turn would also be an indication of their binding affinity and
enzymatic activity. In Figure 14B, docking of compound 4j in the active site of DAPK1
(docking score= -5.5545 kcal/mol) illustrates that the NH of the amide linker is introduced
to the adenine pocket and forms H-bonding with Glu100, while the phenoxy moiety is
inserted deeply in the pocket via Arene-H interaction with Val27. On the other hand, the
pyridine ring, which is substituted on the amide linker, exhibits additional H-bonding with
Arg150.
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3. Materials and Methods
3.1. Chemistry

General: All reactions and manipulations were performed in a nitrogen atmosphere
using standard Schlenk techniques. All reaction solvents and reagents were purchased
from commercial suppliers and used without further purification. The NMR spectra were
obtained with a Bruker Avance 400 (400 MHz 1H and 100.6 MHz 13C NMR). 1H NMR
spectra were referenced to tetramethylsilane (δ = 0.00 ppm) as an internal standard and
were reported as follows: chemical shift, multiplicity (b = broad, s = singlet, d = doublet,
t = triplet, dd = doublet of doublet, m = multiplet). Column chromatography was performed
on Merck Silica Gel 60 (230–400 mesh) and eluting solvents for all of these chromatographic
methods were noted as appropriated-mixed solvent with given volume-to-volume ratios.
TLC was carried out using glass sheets pre-coated with silica gel 60 F254 purchased by Merk.
For more details, see Supplementary Files.

3.1.1. General Procedure of 2-Chloro-4-nitrophenoxybenzene Derivatives (2a–c)

Potassium carbonate (1.25 mmol) and the appropriate phenol (1 mmol) were added to
a solution of commercially available 2-chloro-1-fluoro-4-nitrobenzene (1 mmol) in MeCN
(12 mL). The reaction mixture was heated at 85 ◦C for 6 h. The mixture was extracted
with EtOAc and water. The organic layer was dried over Na2SO4 and concentrated under
reduced pressure to give the target compound.



Pharmaceuticals 2022, 15, 1050 18 of 23

2-Chloro-1-(4-fluorophenoxy)-4-nitrobenzene (2a)

Yellowish white solid, yield: 77%, mp: 76.3−92.4 ◦C, 1H NMR (400 MHz, CDCl3) δ
6.76 (d, J = 8.9 Hz, 1H), 7.00−7.09 (m, 4H), 7.98 (d, J = 8.9 Hz, 1H), 8.31 (s, 1H) [25,26].

2-Chloro-1-(3-fluorophenoxy)-4-nitrobenzene (2b)

Yellow oil, yield: 96%, 1H NMR (400 MHz, CDCl3) δ 6.80−6.87 (m, 2H), 6.95−7.00 (m,
2H), 7.40 (dd, J = 8.2 Hz, 14.6 Hz, 1H), 8.10 (dd, J = 2.7 Hz, 9.0 Hz, 1H), 8.40 (d, J = 2.7 Hz,
1H). 13C NMR (100.6 MHz, CDCl3) δ 107.68 (JC−F = 24.1 Hz), 112.49 (JC−F = 21.1 Hz),
115.27 (JC−F = 3.0 Hz), 117.91, 123.69, 125.39, 126.66, 131.27 (JC−F = 9.1 Hz), 143.29, 115.83
(JC−F = 10.1 Hz), 158.07, 163.58 (JC−F = 248.5 Hz) [27].

2-Chloro-1-(3-chlorophenoxy)-4-nitrobenzene (2c)

Yellow solid, yield: 90%, mp: 92.4−93.1 ◦C, 1H NMR (400 MHz, CDCl3) δ 6.95−6.98
(m, 2H), 7.09 (s, 1H), 7.24 (d, J = 8.0 Hz, 1H), 7.37 (t, J = 8.1 Hz, 1H), 8.09 (dd, J = 2.0 Hz,
9.0 Hz, 1H), 8.38 (d, J = 2.0 Hz, 1H). 13C NMR (100.6 MHz, CDCl3) δ 117.84, 117.91, 120.22,
123.71, 125.36, 125.71, 126.67, 131.15, 135.73, 143.28, 155.41, 158.07 [28].

3.1.2. General Procedure of 3-Choro-4-phenoxyaniline Derivatives (3a–c)

Pt/C catalyst was added to a solution of the appropriate 2-chloro-4-nitrophenoxybenzene
derivative (0.1 mmol) in MeOH (15 mL) under hydrogen atmosphere. The mixture was stirred
at room temperature for 6 h. The reaction mixture was filtered with celite and washed
with MeOH. The filtrate was evaporated in vacuo. The residue was purified by column
chromatography to give the target compound.

3-Chloro-4-(4-fluorophenoxy) aniline (3a)

Brown oil, yield: 65%, 1H NMR (400 MHz, DMSO-d6) δ 5.34 (s, 2H), 6.55 (d, J = 8.8 Hz,
1H), 6.72 (s, 1H), 6.80–6.84 (m, 2H), 6.90 (d, J = 8.6 Hz, 1H), 7.13 (t, J = 8.2 Hz, 2H) [29].

3-Chloro-4-(3-fluorophenoxy) aniline (3b)

Yellow oil, yield: 78%, 1H NMR (400 MHz, DMSO-d6) δ 5.40 (s, 2H), 6.57 (d, J = 8.6 Hz,
1H), 6.63 (d, J = 8.4 Hz, 2H), 6.73 (s, 1H), 6.86 (t, J = 8.5 Hz, 1H), 6.96 (d, J = 8.8 Hz, 1H), 7.33
(t, J = 8.0 Hz, 1H) [27,30].

3-Chloro-4-(3-chlorophenoxy) aniline (3c)

Brown oil, yield: 60%, 1H NMR (400 MHz, DMSO-d6) δ 5.41 (s, 2H), 6.58 (dd, J = 2.6 Hz,
8.7 Hz, 1H), 6.73 (d, J = 2.6 Hz, 1H), 6.77–6.82 (m, 2H), 6.96 (d, J = 8.6 Hz, 2H), 7.09 (dd,
J = 1.0 Hz, 8.0 Hz, 1H), 7.34 (t, J = 8.1 Hz, 1H) [28,30].

3.1.3. General Procedure of Target Compounds 4a–r

The appropriate 3-chloro-4-phenoxyaniline derivative (0.1 mmol) was dissolved in
THF (12 mL), followed by adding DIPEA (0.27 mmol), HATU (0.11 mmol), and the appro-
priate benzoic acid derivative (0.1 mmol). The reaction mixture was refluxed overnight.
The mixture was extracted with EtOAc, water, and brine. The organic layer was dried over
Na2SO4 and concentrated under reduced pressure. The residue was purified by column
chromatography to give the target compound.

N-(3-chloro-4-(4-fluorophenoxy) phenyl) picolinamide (4a)

Brown solid, mp: 95.6–97.0 ◦C, 1H NMR (400 MHz, CDCl3) δ 6.91–6.95 (m, 2H), 7.01
(dd, J = 8.8 Hz, 17.2 Hz, 3H), 7.49–7.52 (m, 1H), 7.60 (dd, J = 2.4 Hz, 8.8 Hz, 1H), 7.92
(t, J = 7.6 Hz, 1H), 8.03 (d, J = 2.4 Hz, 1H), 8.29 (d, J = 7.8 Hz, 1H), 8.61 (d, J = 4.6 Hz,
1H), 10.04 (s, 1H). 13C NMR (100.6 MHz, CDCl3) δ 116.30 (JC−F = 23.1 Hz), 118.91, 119.16
(JC−F = 31.2 Hz), 121.03, 121.97, 122.48, 126.22, 126.72, 134.55, 137.82, 148.05, 148.89, 149.37,
153.14, 158.69 (JC−F = 241.4 Hz), 162.02. HRMS (ESI) m/z calculated for C17H11ClFN3NaO2
[M+Na]+: 366.0416, found: 366.0408.

N-(3-chloro-4-(4-fluorophenoxy) phenyl) pyridazine-3-carboxamide (4b)
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White solid, mp: 134.1–134.9 ◦C, 1H NMR (400 MHz, CDCl3) δ 6.95–7.06 (m, 5H), 7.57
(d, J = 8.8 Hz, 1H), 7.77 (dd, J = 5.4 Hz, 7.9 Hz, 1H), 8.08 (s, 1H), 8.43 (d, J = 8.3 Hz,
1H), 9.36 (d, J = 4.4 Hz, 1H), 10.11 (s, 1H). 13C NMR (100.6 MHz, CDCl3) δ 116.37
(JC−F = 23.1 Hz), 119.15, 119.40 (JC−F = 34.2 Hz), 120.86, 122.32, 125.90, 126.23, 128.09,
133.80, 149.54, 157.27, 152.92, 153.17, 158.80 (JC−F = 241.4 Hz), 160.15. HRMS (ESI) m/z
calculated for C17H11ClFN3NaO2 [M+Na]+: 366.0416, found: 366.0420.

N-(3-chloro-4-(4-fluorophenoxy) phenyl) pyrazine-2-carboxamide (4c)

White solid, mp: 155.5–156.0 ◦C, 1H NMR (400 MHz, CDCl3) δ 6.92–7.05 (m, 5H), 7.59
(dd, J = 2.4 Hz, 8.8 Hz, 1H), 7.99 (d, J = 2.4 Hz, 1H), 8.60 (s, 1H), 8.84 (d, J = 2.2 Hz, 1H), 9.51
(s, 1H), 9.67 (s, 1H). 13C NMR (100.6 MHz, CDCl3) δ 116.35 (JC−F = 23.1 Hz), 119.10, 119.33
(JC−F = 27.2 Hz), 120.86, 122.18, 126.20, 133.85, 142.40, 143.98, 144.72, 147.81, 149.45, 152.92,
158.79 (JC−F = 242.4 Hz), 160.67. HRMS (ESI) m/z calculated for C18H13ClFN2O2 [M+H]+:
343.0644, found: 343.0638.

N-(3-chloro-4-(4-fluorophenoxy) phenyl) nicotinamide (4d)

White solid, mp: 112.0–113.2 ◦C, 1H NMR (400 MHz, CDCl3) δ 6.89–6.93 (m, 3H), 7.02
(t, J = 9.1 Hz, 2H), 7.38–7.41 (m, 1H), 7.46 (dd, J = 2.5 Hz, 8.8 Hz, 1H), 7.83 (d, J = 2.4 Hz,
1H), 8.18 (dt, J = 1.8 Hz, 8.0 Hz, 1H), 8.71 (dd, J = 1.5 Hz, 4.8 Hz, 1H), 9.05 (s, 1H). 13C
NMR (100.6 MHz, CDCl3) δ 116.38 (JC−F = 23.1 Hz), 118.85, 119.26 (JC−F = 8.0 Hz), 120.49
(JC−F = 12.1 Hz), 123.15, 123.81, 125.91, 130.43, 130.04, 135.57, 147.91, 149.70, 152.52, 152.77,
158.82 (JC−F = 241.4 Hz), 164.20. HRMS (ESI) m/z calculated for C17H12ClFN3O2 [M+H]+:
344.0597, found: 343.0600.

N-(3-chloro-4-(4-fluorophenoxy) phenyl) isonicotinamide (4e)

White solid, mp: 57.0–58.5 ◦C, 1H NMR (400 MHz, CDCl3) δ 6.90–6.93 (m, 3H),
7.00–7.04 (m, 2H), 7.46 (dd, J = 2.5 Hz, 8.8 Hz, 1H), 7.68–7.70 (m, 2H), 7.83 (d, J = 2.5 Hz,
1H), 8.70–8.71 (m, 3H). 13C NMR (100.6 MHz, CDCl3) δ 116.41 (JC−F = 24.1 Hz), 118.82,
119.35 (JC−F = 9.1 Hz), 120.43 (JC−F = 10.1 Hz), 123.12, 125.91, 133.74, 141.74, 149.92, 150.58,
152.68, 158.87 (JC−F = 241.4 Hz), 164.10. HRMS (ESI) m/z calculated for C18H13ClFN2O2
[M+H]+: 343.0644, found: 343.0640.

N-(3-chloro-4-(4-fluorophenoxy) phenyl) pyridazine-4-carboxamide (4f)

White solid, mp: 164.2–165.2 ◦C, 1H NMR (400 MHz, DMSO-d6) δ 7.02 (s, 2H),
7.16–7.23 (m, 3H), 7.69–7.79 (m, 1H), 8.11 (d, J = 6.1 Hz, 2H), 9.52 (d, J = 4.6 Hz, 1H),
9.65 (s, 1H), 10.89 (s, 1H). 13C NMR (100.6 MHz, DMSO-d6) δ 117.07 (JC−F = 23.1 Hz), 119.40
(JC−F = 8.0 Hz), 121.19, 121.88, 122.61 (JC−F = 11.1 Hz), 124.90, 125.01, 132.39, 135.97, 148.45,
149.34, 152.62, 153.35, 158.46 (JC−F = 225.3 Hz), 162.98.

N-(3-chloro-4-(3-fluorophenoxy) phenyl) picolinamide (4g)

White solid, mp: 79.0–80.0 ◦C, 1H NMR (400 MHz, CDCl3) δ 6.65 (dt, J = 2.4 Hz,
10.2 Hz, 1H), 6.72 (dd, J = 2.2 Hz, 8.3 Hz, 1H), 6.75–6.80 (m, 1H), 7.09 (d, J = 8.8 Hz,
1H), 7.23–7.28 (m, 1H), 7.48–7.51 (m, 1H), 7.64 (dd, J = 2.6 Hz, 8.8 Hz, 1H), 7.92 (td,
J = 1.7 Hz, 7.7 Hz, 1H), 8.05 (d, J = 2.6 Hz, 1H), 8.29 (d, J = 7.8 Hz, 1H), 8.61 (dt, J = 0.64 Hz,
4.12 Hz, 1H), 10.08 (s, 1H). 13C NMR (100.6 MHz, CDCl3) δ 104.73 (JC−F = 25.2 Hz), 109.76
(JC−F = 21.1 Hz), 112.49 (JC−F = 3.0 Hz), 119.36, 121.91, 122.44, 122.50, 126.77, 127.05, 130.53
(JC−F = 10.1 Hz), 135.34, 137.82, 147.49, 148.07, 149.30, 158.83 (JC−F = 10.1 Hz), 162.07, 163.55
(JC−F = 246.5 Hz). HRMS (ESI) m/z calculated for C17H12ClFN3O2 [M+H]+: 344.0597, found:
344.0601.

N-(3-chloro-4-(3-fluorophenoxy) phenyl) pyridazine-3-carboxamide (4h)

White solid, mp: 130.3–131.2 ◦C, 1H NMR (400 MHz, CDCl3) δ 6.65–6.82 (m, 3H), 7.12
(d, J = 8.8 Hz, 1H), 7.27 (dd, J = 8.0 Hz, 15.0 Hz, 1H), 7.62 (dd, J = 1.8 Hz, 8.6 Hz, 1H),
7.75–7.79 (m, 1H), 8.10 (d, J = 1.8 Hz, 1H), 8.44 (d, J = 8.3 Hz, 1H), 9.37 (d, J = 4.3 Hz, 1H),
10.16 (s, 1H). 13C NMR (100.6 MHz, CDCl3) δ 104.90 (JC−F = 25.2 Hz), 109.93
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(JC−F = 21.1 Hz), 112.64 (JC−F = 3.0 Hz), 119.62, 120.33, 121.61, 122.33 (JC−F = 9.1 Hz),
125.91, 127.13, 128.09, 130.55 (JC−F = 10.1 Hz), 134.60, 148.13, 152.22, 153.19, 160.19, 160.5
(JC−F = 366.2 Hz).

N-(3-chloro-4-(3-fluorophenoxy) phenyl) pyrazine-2-carboxamide (4i)

White solid, mp: 156.6–157.2 ◦C, 1H NMR (400 MHz, DMSO-d6) δ 6.75 (d, J = 8.4 Hz,
1H), 6.83 (d, J = 10.3 Hz, 1H), 6.96 (t, J = 8.2 Hz, 1H), 7.30 (d, J = 8.9 Hz, 1H), 7.41 (dd,
J = 8.2 Hz, 15.4 Hz, 1H), 7.95–7.97 (m, 1H), 8.28 (d, J = 2.0 Hz, 1H), 8.85 (s, 1H), 8.97
(d, J = 2.1 Hz, 1H), 9.33 (s, 1H), 11.05 (s, 1H). 13C NMR (100.6 MHz, DMSO-d6) δ 104.75
(JC−F = 25.2 Hz), 110.26 (JC−F = 21.1 Hz), 112.87, 120.26, 121.45, 122.87 (JC−F = 31.2 Hz),
125.56, 131.81 (JC−F = 10.1 Hz), 136.70, 143.74, 144.63, 145.21, 146.89, 148.37, 158.88 (JC−F =
11.1 Hz), 162.45, 163.38 (JC−F = 244.5 Hz). HRMS (ESI) m/z calculated for C17H11ClFN3NaO2
[M+Na]+: 366.0416, found: 366.0415.

N-(3-chloro-4-(3-fluorophenoxy) phenyl) nicotinamide (4j)

White solid, mp: 117.3–118.2 ◦C, 1H NMR (400 MHz, MeOD) δ 6.63 (dt, J = 2.3 Hz,
10.4 Hz, 1H), 6.69 (dd, J = 2.3 Hz, 8.4 Hz, 1H), 6.81 (td, J = 1.9 Hz, 8.4 Hz, 1H), 7.12 (d,
J = 8.8 Hz, 1H), 7.27–7.32 (m, 1H), 7.55–7.59 (m, 1H), 7.65 (dd, J = 2.5 Hz, 8.8 Hz, 1H), 8.02
(d, J = 2.5 Hz, 1H), 8.34 (dt, J = 1.8 Hz, 8.1 Hz, 1H), 8.72 (dd, J = 1.5 Hz, 5.0 Hz, 1H), 9.09 (d,
J = 1.5 Hz, 1H). HRMS (ESI) m/z calculated for C18H13ClFN2O2 [M+H]+: 343.0644, found:
343.0648.

N-(3-chloro-4-(3-fluorophenoxy) phenyl) isonicotinamide (4k)

White solid, mp: 49.8–51.0 ◦C, 1H NMR (400 MHz, CDCl3) δ 6.63 (d, J = 10.1 Hz, 1H),
6.70 (d, J = 8.2 Hz, 1H), 6.75–6.81 (m, 1H), 7.04 (t, J = 8.7 Hz, 1H), 7.26 (dd, J = 8.2 Hz,
14.9 Hz, 1H), 7.52–7.62 (m, 1H), 7.70 (d, J = 4.8 Hz, 2H), 7.88 (d, J = 1.8 Hz, 1H), 8.71 (d,
J = 5.0 Hz, 2H), 8.81 (s, 1H). 13C NMR (100.6 MHz, CDCl3) δ 104.95 (JC−F = 24.1 Hz), 110.07
(JC−F = 21.1 Hz), 112.73, 120.24 (JC−F = 25.2 Hz), 121.11, 122.10, 122.49, 123.02, 126.88, 130.61
(JC−F = 10.1 Hz), 134.71, 148.43, 150.57, 158.43 (JC−F = 10.1 Hz), 163.21 (JC−F = 187.1 Hz),
164.74. HRMS (ESI) m/z calculated for C18H13ClFN2O2 [M+H]+: 343.0644, found: 343.0639.

N-(3-chloro-4-(3-fluorophenoxy) phenyl) pyridazine-4-carboxamide (4l)

Yellow solid, mp: 141.3–142.7 ◦C, 1H NMR (400 MHz, CDCl3) δ 6.64 (d, J = 10.1 Hz,
1H), 6.72 (d, J = 8.4 Hz, 1H), 6.80 (t, J = 8.1 Hz, 1H), 7.06 (d, J = 8.7 Hz, 1H), 7.27 (dd,
J = 8.0 Hz, 15.0 Hz, 1H), 7.58–7.68 (m, 1H), 7.95–8.02 (m, 2H), 9.30 (d, J = 5.0 Hz, 1H),
9.59 (s, 1H), 9.82 (s, 1H). 13C NMR (100.6 MHz, CDCl3) δ 105.04 (JC−F = 25.2 Hz), 110.15
(JC−F = 21.1 Hz), 112.84 (JC−F = 3.0 Hz), 120.07, 120.56, 122.05, 123.22, 125.23, 126.87, 130.63
(JC−F = 10.1 Hz), 133.09, 134.57, 148.67, 151.96, 158.29, 162.13, 163.52 (JC−F = 247.5 Hz).
HRMS (ESI) m/z calculated for C17H12ClFN3O2 [M+H]+: 344.0597, found: 344.0596.

N-(3-chloro-4-(3-chlorophenoxy) phenyl) picolinamide (4m)

Brown solid, mp: 92.7–93.5 ◦C, 1H NMR (400 MHz, CDCl3) δ 6.82 (dd, J = 1.9 Hz,
8.3 Hz, 1H), 6.92 (t, J = 2.1 Hz, 1H), 7.03–7.08 (m, 2H), 7.22 (t, J = 8.1 Hz, 1H), 7.47–7.50 (m,
1H), 7.63 (dd, J = 2.5 Hz, 8.8 Hz, 1H), 7.90 (td, J = 1.6 Hz, 7.7 Hz, 1H), 8.05 (d, J = 2.5 Hz, 1H),
8.28 (d, J = 7.8 Hz, 1H), 8.59 (d, J = 4.5 Hz, 1H), 10.07. 13C NMR (100.6 MHz, CDCl3) δ 115.18,
119.38, 121.91, 122.35, 122.47, 123.09, 126.76, 126.99, 130.52, 135.11, 135.35, 137.80, 147.43,
148.06, 149.27, 158.27, 162.06. HRMS (ESI) m/z calculated for C18H13Cl2N2O2 [M+H]+:
359.0349, found: 359.0346.

N-(3-chloro-4-(3-chlorophenoxy) phenyl) pyridazine-3-carboxamide (4n)

Light brown solid, mp: 138.0–139.6 ◦C, 1H NMR (400 MHz, DMSO-d6) δ 6.90 (dd,
J = 1.9 Hz, 8.2 Hz, 1H), 7.01 (t, J = 2.0 Hz, 1H), 7.18 (d, J = 8.0 Hz, 1H), 7.31 (d, J = 8.9 Hz,
1H), 7.40 (t, J = 8.1 Hz, 1H), 7.99–8.02 (m, 2H), 8.32–8.36 (m, 2H), 9.50 (dd, J = 1.4 Hz, 4.9 Hz,
1H), 11.40 (s, 1H). 13C NMR (100.6 MHz, DMSO-d6) δ 115.63, 116.98, 121.63, 122.86, 123.12,
123.46, 125.59, 126.67, 129.19, 131.96, 134.50, 136.81, 146.78, 153.40, 154.13, 158.49, 162.23.
HRMS (ESI) m/z calculated for C17H11Cl2N3NaO2 [M+Na]+: 382.0121, found: 382.0123.
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N-(3-chloro-4-(3-chlorophenoxy) phenyl) pyrazine-2-carboxamide (4o)

Light brown solid, mp: 153.2–154.6 ◦C, 1H NMR (400 MHz, DMSO-d6) δ 6.90 (d,
J = 8.0 Hz, 1H), 7.00 (s, 1H), 7.19 (d, J = 8.1 Hz, 1H), 7.30 (d, J = 8.8 Hz, 1H), 7.40 (t,
J = 8.0 Hz, 1H), 7.96 (dd, J = 2.0 Hz, 8.8 Hz, 1H), 8.28 (d, J = 1.8 Hz, 1H), 8.84 (s, 1H), 8.96 (s,
1H), 9.32 (s, 1H), 11.05 (s, 1H). 13C NMR (100.6 MHz, DMSO-d6) δ 115.61, 116.98, 121.47,
122.72, 123.08, 123.45, 125.59, 131.94, 134.50, 136.76, 143.73, 144.63, 145.17, 146.75, 148.37,
158.47, 162.43. HRMS (ESI) m/z calculated for C17H12Cl2N3O2 [M+H]+: 360.0301, found:
360.0304.

N-(3-chloro-4-(3-chlorophenoxy) phenyl) nicotinamide (4p)

White solid, mp: 141.0–141.5 ◦C, 1H NMR (400 MHz, DMSO-d6) δ 6.89 (dd, J = 1.6 Hz,
8.4 Hz, 1H), 6.99 (s, 1H), 7.18 (d, J = 9.0 Hz, 1H), 7.30 (d, J = 8.8 Hz, 1H), 7.40 (t, J = 8.2 Hz,
1H), 7.58–7.61 (m, 1H), 7.77 (dd, J = 2.4 Hz, 8.9 Hz, 1H), 8.14 (d, J = 2.4 Hz, 1H), 8.30
(d, J = 8.1 Hz, 1H), 8.78–8.79 (m, 1H), 9.12 (d, J = 1.6 Hz, 1H), 10.66 (s, 1H). 13C NMR
(100.6 MHz, DMSO-d6) δ 115.61, 116.93, 121.10, 122.34, 123.23, 123.45, 124.04, 125.65, 130.68,
131.96, 134.51, 135.97, 137.39, 146.53, 149.16, 152.83, 158.53, 164.73. HRMS (ESI) m/z calcu-
lated for C18H13Cl2N2O2 [M+H]+: 359.0349, found: 359.0351.

N-(3-chloro-4-(3-chlorophenoxy) phenyl) isonicotinamide (4q)

White solid, mp: 124.3–126.0 ◦C, 1H NMR (400 MHz, DMSO-d6) δ 6.91–7.00 (m, 2H),
7.19 (s, 1H), 7.28–7.40 (m, 2H), 7.78–7.88 (m, 3H), 8.15 (s, 1H), 8.82 (s, 2H), 10.72 (s, 1H).

N-(3-chloro-4-(3-chlorophenoxy) phenyl) pyridazine-4-carboxamide (4r)

Yellow solid, mp: 133.2–134.0 ◦C, 1H NMR (400 MHz, DMSO-d6) δ 6.91 (dd, J = 2.2 Hz,
8.3 Hz, 1H), 7.01 (s, 1H), 7.20 (d, J = 8.0 Hz, 1H), 7.32 (d, J = 8.8 Hz, 1H), 7.42 (t, J = 8.2 Hz,
1H), 7.76 (dd, J = 2.4 Hz, 8.9 Hz, 1H), 8.13 (d, J = 2.3 Hz, 2H), 9.53 (d, J = 5.2 Hz, 1H), 9.67 (s,
1H), 10.92 (s, 1H). 13C NMR (100.6 MHz, DMSO-d6) δ 115.74, 117.09, 121.22, 122.49, 123.18,
123.57, 125.01, 125.65, 131.97, 132.34, 134.53, 136.74, 147.03, 149.32, 152.62, 158.38, 163.04.
HRMS (ESI) m/z calculated for C17H12Cl2N3O2 [M+H]+: 360.0301, found: 360.0304.

3.2. Biological Evaluation
3.2.1. In Vitro Kinase Screening

Kinase assays were performed at the Reaction Biology Corporation (Malvern, PA)
using the “HotSpot” assay platform. All the target compounds were evaluated according
to the Reaction Biology Corp implemented protocol as reported on their website (http:
//www.reactionbiology.com/ 25 January 2019).

3.2.2. NCI Cell Line Screening

The target compounds were evaluated for their anti-proliferative activity at the Na-
tional Cancer Institute (NCI), Bethesda, Maryland, USA, applying the standard protocol of
the NCI (http://www.dtp.nci.nih.gov/).

3.2.3. Docking Methodology

The X-ray crystal structures of DAPK1 kinase in complex with Genistein (PDB ID:
5AUZ) were downloaded from the protein data bank (www.rcsb.org) in PDB format. The
2D structure of compound 4j was drawn using ChemDraw software. Molecular Operating
Environment (MOE, 2014.0901) software was used for the molecular docking operation
docking protocol. DAPK1 kinase was prepared for the molecular docking procedure by
applying 3D protonation of both enzyme amino acids and the native ligand (Genistein). In
addition, water from crystallization was removed from the kinase domain. The active site
was isolated. The grid space was determined from the coordinates of the reference ligand
(−22.780412, 2.367623, −10.682060) and expanded to cover all amino acid residues in the
DAPK1 active site cavity (r = 8.383472). The docking protocol was validated by re-docking
of Genistein with RMSD = 0.8894 Å and retained the same binding pose in the DAPK1
active site.

http://www.reactionbiology.com/
http://www.reactionbiology.com/
http://www.dtp.nci.nih.gov/
www.rcsb.org
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4. Conclusions

In the current study, a series of 3-chloro-4-(phenoxy)phenyl carboxamide derivatives
featuring different substituents on the terminal phenoxy group, along with diverse nitrogen
containing heterocycles on the carboxamide linker, has been designed and synthesized as
DAPK1 inhibitors with potential anti-proliferative activity. A preliminary kinase inhibition
evaluation was conducted on the first synthesized compound 4a in an attempt to explore
its DAPK1 activity and selectivity. Among the 45 panel kinases, compound 4a exhibited
higher activity and selectivity against DAPK1 kinase. Hence, DAPK1 inhibitory activity of
the synthesized derivatives was detected; pyridinyl moiety owing derivatives 4h, 4j, 4f,
and 4q displayed the highest activity and were subjected to 10-dose evaluation. The IC50
values of the mentioned compounds were determined and compound 4q emerged to be
the most potent DAPK1 inhibitor (IC50 =1.09 µM). Additionally, all the target compounds
were evaluated for their cytotoxic activity against a panel of 60 NCI cancer cell lines at
10 µM concentration. Out of the tested series, compounds 4d, 4e, 4o, and 4p revealed the
highest anti-proliferative activities against most of the employed cell lines (67.02%, 67.87%,
70.83%, and 69.27%. Moreover, two leukemia cell lines (HL-60(TB) and K-562) exhibited
the highest sensitivity towards the tested candidates.
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