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Abstract: In recent years, Saturation Transfer Difference NMR (STD NMR) has been proven to be a
powerful and versatile ligand-based NMR technique to elucidate crucial aspects in the investigation
of protein-ligand complexes. Novel STD NMR approaches relying on “multi-frequency” irradiation
have enabled us to even elucidate specific ligand-amino acid interactions and explore the binding of
fragments in previously unknown binding subsites. Exploring multi-subsite protein binding pockets
is especially important in Fragment Based Drug Discovery (FBDD) to design leads of increased
specificity and efficacy. We hereby propose a novel multi-frequency STD NMR approach based on
direct irradiation of one of the ligands in a multi-ligand binding process, to probe the vicinity and
explore the relative orientation of fragments in adjacent binding sub-sites, which we called Inter-
Ligand STD NMR (IL-STD NMR). We proved its applicability on (i) a standard protein-ligand system
commonly used for ligand-observed NMR benchmarking: Naproxen as bound to Bovine Serum
Albumin, and (ii) the biologically relevant system of Cholera Toxin Subunit B and two inhibitors
adjacently bound within the GM1 binding site. Relative to Inter-Ligand NOE (ILOE), the current state-
of-the-art methodology to probe relative orientations of adjacent ligands, IL-STD NMR requires about
one tenth of the experimental time and protein consumption, making it a competitive methodology
with the potential to be applied in the pharmaceutical industries.

Keywords: saturation transfer difference NMR; multi-frequency STD NMR; multi-subsite binding
pockets; protein-ligand interactions; ligand-based NMR; Fragment Based Drug Discovery

1. Introduction

In the last two decades, ligand-based NMR techniques have been proven to be potent
tools to study protein-ligand interactions in drug design [1]. Among them, saturation
transfer difference NMR (STD NMR) stands out as one of the most versatile, as it allows not
only to efficiently screen fragments libraries, but also to gain structural information on the
ligands binding modes, as well as on protein-ligand affinities [2—4]. In recent years, novel
developments have emerged that expand the standard STD NMR approaches to access
further layers of structural information, beyond the classical binding epitope mapping of
the ligand, exploiting the inherent inhomogeneity in the process of spin diffusion during
the saturation of the protein proton signals [5,6]. This has given rise to the novel concept of
multi-frequency STD NMR (i.e., the use of multiple on-resonance frequencies to achieve
different outcomes regarding protein saturation), which has proven to be a very efficient
way to identify which ligands protons are close to those directly irradiated sources of
saturation in the protein binding pocket (e.g., different types of a.a. side chains, irradiated
at different on-resonance frequencies in the STD NMR experiments) [7]. Like for standard
STD NMR, the concept of multi-frequency STD NMR can be employed to different types of
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receptor-ligand systems beyond typical protein-ligand interactions, as it has been shown
for the interactions of antibiotics with biofilm forming exopolysaccharides [8].

As a paradigmatic example of a multi-frequency STD NMR approach, DiffErential
EPitope mapping STD NMR (DEEP-STD NMR) [5] demonstrated its ability to provide
information about the nature of the amino-acids lining the binding site that are surrounding
the ligand in the bound state, whether or not the location of the binding site in the protein
surface is already known. If the geometry of the binding pocket is known, the orientation
of the ligand within the binding sub-site can be readily inferred. Examples of the strong
potential of this novel approach in drug discovery are the application of a DEEP-STD
NMR approach to generate an NMR-validated 3D molecular model of a WWP2-inhibitor
complex, for the first time [6], and the implementation of a DEEP-STD NMR fingerprinting
approach, which allowed to efficiently explore the binding subsites of Cholera Toxin B
(CTB), gaining information on the orientation of some novel promising CTB inhibitors in
the receptor binding pocket, as well as identifying a hitherto unknown cryptic binding
subsite adjacent to the binding pocket of its natural ligand (GM1) [7].

Here, we expand the concept of multi-frequency STD NMR further, by developing
a novel tool, Inter-Ligand STD NMR (IL-STD NMR), to investigate relative orientation
of ligands or molecular fragments bound to multi-subsite binding pockets in protein-
ligand ternary complexes. This is particularly relevant for pharmaceutical industry settings
implementing Fragment Based Drug Discovery (FBDD) approaches. The initial stages of
FBDD focus on binding detection of weak-affinity fragments in adjacent binding subsites of
the therapeutic target; their binding affinities and relative orientations are then investigated
to build larger, high-affinity binders that would simultaneously occupy all sub-sites. IL-STD
NMR relies on a concept similar to selective 1D inter-molecular NOE, yet in the context of
a large molecular assembly, and hence with a significant contribution from spin diffusion,
comparably to DEEP-STD NMR. For instance, in DEEP-STD NMR, irradiation of different
protein protons sitting on different locations within the architecture of the binding pocket,
makes ligand protons close to directly irradiated protein protons to show a relative increase
in saturation transfer compared to other irradiation frequencies where those protein protons
are not directly irradiated [5].

The aim of IL-STD NMR proposed here is to confirm in a quick way the spatial contacts
between adjacent ligands binding to a multi-subsite binding pocket of a given protein based
on multi-frequency STD NMR experiments. It does so by elucidating if there are significant
changes in the binding epitope mapping of a ligand of interest, comparing its STD NMR
outcomes from the use of two different irradiation frequencies: (i) a frequency &° to achieve
a selective protein saturation (standard STD NMR approach), and (ii) a second frequency
0* to achieve a selective saturation on an adjacent reporter ligand (simultaneously saturating
the protein), as schematically represented in Figure 1.

This idea originated while investigating the effect of direct irradiation on the determi-
nation of a ligand binding epitope mapping from STD NMR, using the Naproxen/Bovine
serum albumin (NPX/BSA) complex as a benchmark system. During that study we ob-
served changes in the binding epitope mapping of NPX upon direct ligand irradiation that
were not compatible with a simple intra-ligand spin diffusion process in the bound state.

We here aimed to study thoroughly the causes behind those changes, and demonstrate
that inter-ligand saturation transfer across adjacent binding sites can be observed. We have
next applied the proposed IL-STD NMR method to a much more complex and biologically
relevant system: the binding of cholera toxin subunit B (CTB) to two adjacent ligands.
We prove that IL-STD NMR allows to obtain similar information that can be obtained by
Inter-Ligand NOEs (ILOEs) [8] yet in a small fraction (~10%) of the experimental time and
protein consumption.
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Figure 1. Cartoon representing the IL-STD NMR approach. (a) STD NMR with selective irradiation
(69 on protein protons. (b) STD NMR with selective irradiation (6* ) on “reporter ligand” proton y
(supposed to be close to proton C of the adjacent “ligand of interest”) as well as on protein protons.
The analysis of the IL-STD NMR experiment is focused exclusively on the protons of the ligand of
interest (A, B, C in the cartoon). Significant differences in binding epitope mapping on the ligand of
interest will indicate proximity between both ligands.

2. Results
2.1. Observation of IL-STD NMR in a Binary Protein-Ligand Interaction: Naproxen Binding to
Bovine Serum Albumin

Noticeably, our first evidence of IL-STD between adjacent subsites in a protein, rather
than coming from a protein binding to two ligands, came from a single-ligand one-protein
interaction: the binding of Naproxen (NPX) to bovine serum albumin (BSA). The physi-
ological importance of serum albumins and their remarkable ability to bind endogenous
and exogenous compounds have determined the usefulness of BSA as a model for the
study of protein-ligand interactions [9]. In fact, the complex of BSA with NPX, a non-
steroidal anti-inflammatory (Figure Sla), seems to be a very good benchmark system as it
has been previously used for optimization of many experimental techniques, particularly
ligand-observed NMR experiments [10,11].

We first were using the BSA/NPX system to carry out a simple STD NMR investiga-
tion into the impact of direct irradiation of a ligand signal (simultaneously with protein
irradiation) on the final binding epitope mapping. To that aim, we ran two STD NMR
experiments on the BSA /NPX complex, one irradiating at 8° = 0.60 ppm (standard selective
protein saturation), and the other with 6" = 1.46 ppm, i.e., irradiating right at the signal
of the CHj3 group at position « to the carbonyl group. The results demonstrate that direct
irradiation of a ligand signal in an STD NMR experiment can have a significant impact on
the determined binding epitope mapping, with ligand protons spatially close to the irradi-
ated proton showing up to close to 80% increase in relative STD factors (i.e., in the binding
epitope; Figure S2). To make a quantitative comparison of the binding epitope mappings at
the two frequencies (8%, 5*), we define the “multi-frequency STD NMR factor” as:

. STD* —STD’

where “*” means “direct ligand irradiation” and “0” means standard conditions (selec-
tive protein saturation). n(mf — STD); measures the relative changes in binding epitope
between the two different irradiation frequencies, i.e., what changes occur in the lig-
and binding epitope when one of its protons is directly saturated simultaneously with
the protein.

The n(mf — STD)é:gg results represented as a bar graph in Figure 2, left, can be con-
sidered arising from a combination of inter-molecular protein-ligand NOEs and intra-
molecular ligand NOEs. While the first only takes place in the bound state, the latter occurs
in both, the bound and the free state of the ligand. However, the fast chemical exchange
required for STD NMR observation leads to very efficient accumulation of saturation in the
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free state, so that the resulting binding epitope is effectively dominated by the contribution
from the bound state (Figure S2b). In this way, irradiation of the chosen methyl signal of
NPX leads to significant increases in relative STDs for protons spatially close to that methyl
group in the molecule, i.e., protons Hx, a4 and a6 (Figure 2, left).

n(mf — STD)§2s

1.60

1.20

0.80

Figure 2. (Top left): n(mf — STD)} 48 histogram for the system BSA/NPX at 500 MHz, determined
using the initial slopes of the build-up curves acquired at 8 = 0.60 ppm (standard STD NMR), and
5* =1.46 ppm (on-ligand methyl group irradiation). The arrows highlight the trend along the NPX
molecule (blue indicate decreases in 1(mf — STD)%:%S, and red increases). The n(mf — STD)(l):ég bar for
the methoxy protons has been boxed in a dotted square with an asterisk, to highlight the unexpected
increase in 1(mf — STD)(l):gg for the methoxy group, as this is the furthest group from the irradiated
moiety. The results report on the proximity of the two bound NPX molecules in the binding sites
NPS2 and NPS3, as observed in the crystal structure of the complex (PDB ID: 4OR0, Figure Sla) [12].
In the absence of inter-ligand saturation transfer from NSP2 and NSP3, the n(mf — STD)(l):gg values
would monotonically decrease from the irradiated methyl group to the furthest methoxy group.
(Bottom left): n(mf — STD)(l):gg values represented on the NPX chemical structure circles of sizes
proportional to the 1(mf — STD)(l):ég values. Spectra and raw data are reported in the Supplementary
Materials, Figure S4 and Table S1. (Right): NPX binding sites NPS2 and NPS3 in the crystal structure
of the BSA/NPX complex, PDB ID: 40RO [12]. In the cartoon, red rays indicate the position of the
a-methyl protons directly irradiated in the STD NMR experiment (§¢,y = 1.46 ppm).

The trend of n(mf — STD)tl)ég values along the molecule (arrows in Figure 2, left) are

globally indicative of a reduced effect of the direct irradiation of the methyl group as a
function of the distance to the methyl group. Unexpectedly, we observed a disruption in
that trend in the form of an increase of the n(mf — STD)(lJ:gg value in the protons of the
methoxy group which is well remote from the irradiated methyl protons, both from a
spatial point of view and from the point of view of chemical shifts (the methoxy group
resonates at 3.91 ppm, while we are irradiating at 1.46 ppm). This observation is not
justifiable by intra-ligand spin diffusion: indeed, the histogram in Figure 2, left, clearly
show that the n(mf — STD)(l):‘ég values decrease from protons a4 and a6 to protons al and a3,
in accordance to their distances from the directly irradiated methyl group in c.. Therefore,
the methoxy group, which is the furthest from the directly irradiated proton should show
the smallest n(mf — STD)(l)ég value. The fact that this is not true can be only explained by
inter-ligand spin diffusion from an adjacently bound ligand, as explained below.

This is indeed what it is observed when inspecting the architecture of the binding
pockets for NPX in BSA. Previous structural studies have demonstrated that BSA has three
NPX binding sites (NPS1, 2, and 3; Figures S1 and S3) [12,13]. Consequently, the observed
STD signals can carry structural information on the binding of NPX to three different
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sites, which would make very difficult to quantitatively interpret the STD NMR binding
epitope. However, all the sites are reported to show different kinetics and affinities (see
Supplementary Information and [10,14,15]), so that not all the binding sites will contribute
similarly to the intensities of the STD NMR signals. What is more, the observed epitope
pattern (Figure Slc) strongly supports that the major contribution indeed comes from the
NPX occupying drug site 1 (NPS3 in Figure 2, right). This is the only site in which BSA
establishes close hydrophobic contacts with NPX all along the ligand molecule (Figure S3),
with both methyl groups showing the lowest amount of saturation transfer, in very good
agreement with the NMR observations. In NPS3, the ligand is homogeneously buried
within the protein, while the binding modes of Naproxen in NPS1 and NPS2 do not agree
with the observed binding epitope (Figure Slc).

In summary, although NPX might be binding to all the three binding sites, the STD
NMR responses are mostly reporting on its binding to site NPS3, due to its most favourable
fast exchange kinetics between the free and bound states. In Figure 2, right, an expansion
around sites NPS2 and NPS3 of the crystal structure of the BSA/NPX complex [16] shows
that site NPS3 is adjacent to the NPS2 site. The presence of both ligand molecules in both
sites makes the methoxy group of the NPS3-bound NPX molecule account for a very short
distance to the a-methyl group of the NPS2-bound NPX molecule (4.4 A between respective
carbon atoms, making all their respective protons to fall within strong NOE distance).

Accordingly, in the STD NMR experiment with direct irradiation of the o-methyl
protons of NPX (5" = 1.46 ppm), in addition to the intramolecular NOEs in the bound
state of NPX leading to strong STD increases in protons «, a4 and a6, the protons of
the ax-methyl group of the NPS2-bound NPX molecule can very efficiently become extra
sources of saturation to the methoxy group of NPS3-bound NPX (Figure 2, right). This is
in excellent agreement with the observed pattern of perturbed binding epitope mapping
(Figures 2 and S2). Accordingly, the observed relative increase in STD of the NPX methoxy
proton does not have an intra-molecular origin, but it is the result of an inter-molecular
NOE with the methyl protons of the adjacent ligand molecule in NPS2 (i.e., result from an
ILOE). To test the reliability of these observations, we carried out the experiments on the
BSA/NPX complex at three different magnetic fields: 500 MHz, 600 MHz and 800 MHz
(Figure S5). The inter-molecular NOE character of the observation in the context of the
proposed occupancy of adjacent subsites (NPS2 and NPS3) was further confirmed by
observation of an intense ILOE between the protons of the methyl and methoxy groups of
NPX in a 2D NOESY experiment (Figure S6).

In summary, this study of the single-ligand BSA/NPX system constitutes a solid
proof-of-concept of the ability of the novel IL-STD NMR approach to detect inter-ligand
proximity in the bound state. Importantly, our study on different magnetic fields strongly
supports that this effect is independent from By, so, if resolution allows, the method do not
need the use of very high magnetic field spectrometers.

2.2. IL-STD NMR to Study Multi-Ligand Binding: Definitions

We next decided to explore the applicability of IL-STD NMR to study multi-ligand
binding systems, which have high relevance for fragment-based drug discovery approaches.
Based on the previous results, our hypothesis was that, in a ternary complex of a protein
with two weak-affinity ligands binding to adjacent subsites (one so-called “reporter ligand”
in, let’s call it subsite-I, and the other the “ligand of interest” in subsite-II), a particular
multi-frequency STD NMR protocol can be followed to reveal inter-ligand contacts in the
bound state, as sketched in Figure 3.

The protocol involves running a total of 4xSTD NMR experiments (two pairs), each
one at a distinct saturation frequency: one pair of experiments are run with selective
protein irradiation (6O ; black cartoons in Figure 3a,b), and the other pair with selective
irradiation (6*) on some frequency corresponding to a specific proton on the reporter ligand
(expected to be close to protons of the ligand of interest). In the 6 experiment, saturation
is simultaneously generated on protein protons, due to the typically large chemical shifts
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range and broad signals of a protein (red cartoons, Figure 3c,d). At each frequency, STD
NMR experiments are carried out on 2 different samples: a sample containing only the
protein and our ligand of interest in subsite-II (Figure 3b,d; “binary complex” or “—* system),
and another sample additionally containing the reporter ligand whose orientation in the
binding pocket is known (in subsite-I; Figure 3a,c; “ternary complex” or “+” system).

Frequency &° Frequency §* . .
Only protein Protein + 2" Ligand Subsitel  Subsite Il
irradiation irradiation
[ LS 1
a)! AP | c) %4
' [ i |
' o 1 \9 ' W Ligand of
' ! known
! A | Ternary complex (+) | orientation
s b "o
.stoy MO A ¢ stoi A LR
b . d) o |
! I ! , : _ _ ASTD, —ASTD_
:7 1\ : BOTRE (AL = STD) ="
| A | Binary complex (-) | ! Inter-Ligand CONTACTS
! ? : B i
: ¢ ¢ ASTD_
| STD? i STD ! -

Figure 3. Cartoon representing the IL-STD NMR approach for a system consisting of two ligands
binding to a protein in adjacent subsites. (a,b) In black, STD NMR experiments with selective
irradiation (5°) on protein protons, where the experiments are run with the protein containing either

“

both ligands (a), ternary complex, “+” giving rise to STD(_)H or just the ligand of interest (b), binary

u_n

complex, “—", giving rise to STD". The “+” or sign refers to the presence or absence of the
reporter ligand of known orientation in the binding subsite-I adjacent to the ligand of interest (subsite-II).
(c,d) In red, STD NMR experiments with selective irradiation (5*) on both, the reporter ligand proton
v (expected to be spatially close to proton/s of the ligand of interest, e.g., proton C), as well as the

protein protons, again with the samples of protein containing either both ligands (c), ternary complex,

“+”, giving rise to STD?,, or just the ligand of interest (d), binary complex, “—*, giving rise to STD* .

Delta-STD values (ASTD = STD* — STDY. or ASTD_ = STD* — STD? ) identify differences in
STD intensities of the ligand of interest as a consequence of irradiating at the frequency * of the
reporter ligand in the adjacent subsite, in comparison to 80, whether the reporter ligand is present or not,
respectively. 1(IL — STD) additionally removes potential contributions from the presence or absence
of the reporter ligand and normalizes values against variations in the binding epitope of the ligand of
interest simply due to to different levels of protein saturation between 8° and &*, readily unveiling the
existence of inter-ligand contacts in the bound state.

For the analysis of IL-STD NMR experiments, the 4 resulting STD NMR outcomes are
termed as: STD", resulting from any of the 2 experiments with on-resonance irradiation at
the frequency of the reporter ligand protons, and STD?, resulting from any of the 2 experi-
ments with on-resonance irradiation solely on the protein protons. Additionally, both STD*
and STD® will include subscripts to distinguish the experiments carried out either on the
binary (—) or the ternary (+) complex. It is important to highlight that under 6* irradiation
most of the protons of the reporter ligand will show significant changes in saturation as a
consequence of the intra-ligand spin diffusion process in the bound state, as well as the
intra-ligand NOE in the free state and, as a consequence, STD intensities on protons of
the irradiated ligand will be of no value. In IL-STD NMR experiments, relevant structural
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information will only be reported for the ligand of interest in the ternary complex, by the
values of what we now call it the Inter-ligand STD NMR factor, n(IL-STD), obtained as:

ASTD, — ASTD_

n(IL=STD) = =315~

where ASTD_ and ASTD_ are defined as:
ASTD, = STD — STDY.

ASTD_ = STD* — STD?

For the sake of simplicity, a more detailed description of this equation is not included
here, but in the Supplementary Materials (see also Tables S2 and S3). Large positive 1(IL-
STD) values on the ligand of interest will indicate protons receiving inter-ligand saturation
from the irradiated protons of the reporter ligand (excluding protons receiving intra-ligand
NOE or direct irradiation), thus reporting on proximity between two regions of two bound
ligands and confirming that they are occupying adjacent subsites.

As mentioned above, similar information is available from tr-NOESY experiments on
ternary complexes, through the “ILOEs” (Inter-Ligand NOEs) methodology developed
by Pellecchia et al. [8]. However, the main advantage of IL-STD NMR compared to ILOE
is time efficiency, a major concern for pharmaceutical companies. The long experimental
times of tr-NOESY experiments and the complications arising from the acquisition of 2D
spectra indeed has made ILOE the least popular among ligand based NMR methods in
pharmaceutical companies in a recent poll [16]. Thus, in order to test IL-STD NMR on a
biologically and pharmaceutically relevant system, for the next part of this study we chose
to prove it on the ternary complex of cholera toxin subunit B (CTB) with two adjacent lead
fragments (Figure 4), a protein-ligand system that has been approached by FBDD [17].

a) HOOH

HO
HO
(¢}

Figure 4. (a) Chemical structure and nomenclature of the CTB ligands 3NPG and 1. (b) 3D model of
the 3BNPG/CTB/1 ternary complex.

2.3. IL-STD NMR Applied to Fragments Inhibitors of Cholera Toxin Subunit B (CTB)

We recently carried out a structural study on the binding of several fragments to
different subsites of the GM1 binding pocket of CTB [7]. By a combination of DEEP-STD
NMR (DEEP-STD fingerprinting), STD NMR competition experiments and computational
tools, we unveiled a hitherto unknown binding site adjacent to the two well-known GM1
binding subsites (i.e., the galactose and sialic acid subsites). We demonstrated that CTB
is able to form a ternary complex with 3-nitrophenyl-o-D-galactopyranoside (3NPG) and
a new inhibitor, 1 (Figure 4a) [17], as proven by the observation of an ILOE cross peak
correlating proton He,d of 3NPG with proton Htriaz of 1 (Figure S7) [7]. A 3D molecular
model of the ternary complex (Figure 4b) was then obtained by superposition of the XRD
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structure of the CTB/3NPG complex (PDB ID: 1EEI) [18], with a 3D structure of CTB/1,
obtained by MD simulations validated by CORCEMA-ST [19].

We tested our proposed IL-STD NMR experiments on the 3NPG/CTB/1 ternary
complex. In this case, the orientation of 3NPG in the galactose subsite is known, and hence
3NPG was considered the reporter ligand. To probe proximity between protons Hc,d of
3NPG and Htriaz of 1 by IL-STD NMR we then carried out the STD* experiments with
irradiation of 3NPG at &* = 7.27 ppm (Hc,d signal) and the STD? experiments at 8° = 0 ppm,
to check if IL-STD NMR could reproduce the information previously obtained by ILOE [7]
(Figure 5).

STD+(3NPG/CTB/1 ternary complex)

34 ppm
7.7 73 7.2 71 6.3 5.0 3.8 3.7 314 Ppm
&* irradiation (7.27 ppm) 8o irradiation (0.60 ppm)

Figure 5. IL-STD difference spectra of (Top): the ternary complex 3NPG/CTB/1 (STD?. and STDY.
) and (Bottom): the control binary complex CTB/1 in the absence of 3NPG (STD* and STD? ),
with irradiation at 8° = 0.6 ppm (in black) and at §* = 7.27 ppm, on resonance at the frequency of
protons He and Hd of 3NPG (in red). The assignment of all peaks is given and the signal of Htriaz is
squared in turquoise and magnified on the left, showing the increased intensity when irradiating
at * = 7.27 ppm, whereas all the other protons (with the exceptions discussed in the main text)
decreased their intensities. A saturation time of 2 s was employed, and a line broadening factor of
0.3 Hz was applied to the FID before FT.

The simple visual inspection of the STD” and STD* spectra in Figure 5 is already very
informative. First, in the experiment with irradiation at the aromatic region (6* = 7.27 ppm),
a general decrease of the STD signals was evident, due to the lower number of irradiated
protein protons, in comparison with the experiment with aliphatics irradiation. An expected
increase was observed for the STD intensities of the Hc,d peak at 7.27 ppm (directly
irradiated) and of the aromatic signals of 1 within 0.15 ppm high-field from it (7.21 ppm,
7.16 ppm, 7.12 ppm). Also, the intensity of the Hb proton (7.69 ppm) increased when
irradiating the adjacent Hc,d, due to intra-ligand NOE. Notably, proton Htriaz (7.67 ppm)
of the ligand of interest, 1, was the only signal from 1 with an increase in STD intensity, not
justifiable by direct irradiation or intra-ligand NOE (blue square, Figure 5). This inter-ligand
transfer of magnetization between Hc,d and Htriazole results from their proximity (within
NOE distance) in the bound state. The control experiment in the absence of 3NPG (binary
CTB/1 sample), at the bottom section of Figure 5, clearly shows that, in the absence of
3NPG, the signal intensity of Htriaz decreases when irradiating at 7.27 ppm. This is a proof
that the increase in STD intensity observed for this proton in the ternary complex, upon
irradiation of the reporter ligand, 3NPG, does not arise from any artefact (e.g., neither from
direct irradiation of ligand 1, nor direct irradiation of some protein protons adjacent to 1),
but it is a genuine effect of inter-ligand saturation transfer taking place in the bound state.
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STD NMR outcomes from the 4xSTD NMR experiments on the CTB system are shown
in the top of Figure 6, along with a schematic representation of the experimental config-
uration of the 4 different experiments sketched on the bottom. Phenyl protons of 1 were
excluded from the analysis as direct irradiation could not be fully discarded. Interestingly,
just the presence of 3NPG seems to slightly affect the binding epitope of 1, even when
irradiation is selective on the protein (STD? values). However, the variations are small,
although, noticeably, only the Htriaz of 1 seemed to increase its STD intensity just as a
mere consequence of 3NPG being present in the adjacent subsite. We interpret this result
as reinforcing the existence of an ILOE that is able to transfer part of the saturation at 5*
irradiation from Hc of 3NPG to Htriaz of 1.

12 5 12 =
STD STD;
8 8
*
4 4 *
0 0
Htriazol H-4"b H-3" H-2" H3" Me Htriazol H4"b H-3" H-2" H3" Me
Novel Novel
cryptic cryptic

subsite Protein subsite

» »
s, .

-y '~ .

. .

e

- ‘ I
° Protein i i
Galactose " L Protein ” 5
.

subsite Saturation

Saturation
0 Novel 9 Novel
. cryptic . cryptic
% subsite Protein subsite

xxxxx
,,,,,

*
Galactose®,

subsite .

0
»
Galactose™  protein

. "
subsite % Saturation Dlrec't .
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Figure 6. Quantitation of the STD? and STD* results (left and right panels, respectively; §° = 0 ppm
(in black) and at 6* = 7.27 ppm (in red)) for the IL-STD NMR study of the binding of 3NPG and 1
to CTB. Dark and light black bars show the STD? values in samples containing the binary (STD? ,
3NPG absent) or the ternary complex (STDY., both ligands present), whereas dark and light red
bars show the STD* values in samples containing the binary (STD* ) or the ternary complex (STD? ).
Asterisks mark the STD intensities significantly increased under direct irradiation of 3NPG. Panels at
the bottom represent schematically the 4xSTD NMR experiments. n(IL — STD) values are reported in
Table S4. *: direct irradiation.

The detection and quantitation of inter-ligand STDs was carried out through the
determination of the n(IL — STD) factor, as defined previously (Figure 3). Monitoring
the n(IL — STD) factors of the different protons of 1 clearly showed inter-ligand contacts
of protons Htriaz, 4”b, 3”, and 2” with proton Hc of the 3NPG molecule in the adjacent
galactose subsite (Figure 7, left).
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Figure 7. (Left): (IL — STD) factors of protons of 1, indicating spatial proximity of protons Htriaz,
3”,2” and 4”b with proton Hc of 3NPG bound in the adjacent galactose subsite. (Right): 3D molecular
model of the 3NPG/CTB/1 ternary complex highlighting the H-H spatial correlations observed by
IL-STD NMR.

3. Discussion

The application of the novel IL-STD NMR approach to the benchmark system BSA /NPX,
where it was serendipitously detected as a single-ligand saturation transfer between adjacent
subsites, as well as to the biologically relevant system of CTB in complex with inhibitors
bound to adjacent subsites, has shown that the approach is able to confirm inter-ligand
proximity in a multi-subsite binding pocket in a highly efficient manner. This type of
information is highly relevant to pharmaceutical companies, particularly those interested
in the generation of new molecular entities based on the FBDD methodology, where
experimental determination of the relative orientations of the initial fragments within the
set of subsites in the binding pocket is fundamental to the progression of the identified
hits, by appropriately linking chemically the fragments to produce ligands of higher
affinity (leads).

It must be highlighted here that similar relevant structural information can be ob-
tained from ILOE experiments though, at this point, it is relevant to make some important
comparisons between the two techniques. First, considering experimental time and protein
amounts implied by the two approaches (as summarized in Table 1). The IL-STD NMR
data acquired for the CTB complexes in this study comprised 4 standard STD NMR experi-
ments, at two frequencies (8° and §*) for the ternary complex 3NPG/CTB/1, and the binary
complex CTB/1, each 30 min long, for a total duration of 2 h. The samples contained a
protein-to-ligand ([P]:[L]) ratio of 1:40, with 5 uM of CTB (corresponding to 25 uM binding
site concentration, as CTB is a homo-pentamer with one binding site for each sub-domain)
and 1 mM of ligand. With 5 pM protein concentration over the 2 x 500 uL IL-STD NMR
samples, that accounts for 0.3 mg of protein (CTB is ca. 60 kDa). On the other hand,
the ILOE experiments performed on the ternary and the two binary complexes, plus the
experiment with the protein alone, took 22 h each, accounting for a total of 88 h (more than
3 days and a half) experimental time in total. Also, the ILOE approach typically implies a
low protein to ligand ratio (e.g., 1:10 [P]:[L]), here achieved with 20 uM of CTB (100 uM
CTB binding sites) and 1 mM ligand. With 3 x 500 uL ILOE samples, this accounts for
1.8 mg of protein (the 500 pL sample of pure protein used as a control could be re-used
for further experiments so it is not included in the protein expenditure calculation). The
significant reduction in experimental time and protein consumption put forward IL-STD
NMR as a technique of choice for confirmation of inter-ligand proximity in order to validate
structural knowledge from theoretical 3D molecular models of protein-ligand ternary com-
plexes (e.g., from docking calculations or MD simulations), especially for systems showing
non-overcrowded spectra.
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Table 1. Comparison between the experimental time and protein investment needed for the IL-STD
vs. ILOE approach for the study of relative orientation of fragments bound to CTB.

Experimental Time Protein Amount
IL-STD NMR 2h 0.3 mg
ILOE 88 h (ca. 3.5 days) 1.8 mg

On the other hand, it should be considered that the greatest advantage of ILOE over
IL-STD NMR, on the contrary, is that the former does not need any preliminary structural
knowledge on the binding of one of the two fragments. In IL-STD NMR, if no structural hint
is available, it will be necessary to irradiate all the isolated protons of the spectra to probe if
and where any inter-ligand saturation transfer is available, while tr-NOESY experiments
do not rely on selective irradiation at all. Still, if STD NMR responses are of high intensity,
the IL-STD NMR approach might well be worth it in terms of experimental time. In any
case, in comparison with ILOE experiments, the main restriction of IL-STD NMR (and of
multi-frequency STD-NMR in general) is that direct irradiation must be avoided on the
ligand of interest, something that can be especially problematic for crowded spectra.

With the BSA/NPX system we were also interested in answering the question on
whether these IL-STD NMR effects need the use of very high field NMR spectrometer
(e.g., 800 MHz in this study) to be observed, or the method is equally feasible at lower
magnetic fields. The availability of very high field is not always granted, particularly in
pharmaceutical industry settings, where most likely medium magnetic fields (e.g., 400,
500 MHz) are more common. The results of the IL-STD NMR experiments carried out at
3 different instruments (500 MHz, 600 MHz and 800 MHz), show that the IL-STD effects are
observable with independence of the By magnetic field, as results were comparable across
different instruments.

Finally, the 3NPG/CTB/1 ternary complex has shown to be a good example of how
IL-STD NMR can be carried out also on systems showing highly crowded spectra. Some
discussion on technical issues for crowded spectra are however needed. Ideally, on well
resolved NMR spectra, IL-STD could be carried out through selective irradiation of protons
on any of the two ligands, as long as the selected irradiated proton is spatially close to
other protons in the adjacent ligand. In our case, that would mean that irradiation of any
of the protons of ligand 1 that showed spatial proximity in the IL-STD NMR experiment
with irradiation of Hc,d signal of 3NPG, should equally lead to observation of IL-STD
effect on that He,d proton of 3NPG in a reverse IL-STD NMR approach (i.e., looking for the
inter-ligand saturation from ligand 1 to 3NPG instead). However, for ligand 1, protons
Htriaz, H2”, H3” and H4” could not be selectively irradiated to test the reverse IL-STD
experiment because their NMR signals are in very close proximity to chemical shifts of
3NPG protons (Figure 5). In this case, irradiation on these protons of ligand 1 would
lead to contamination of the IL-STD NMR results, due to undesired simultaneous direct
irradiation of both ligands. Nevertheless, a control experiment saturating a proton of ligand
1 relatively far from 3NPG, like proton H3'” (see Figure 7 right), demonstrated no impact
on the relative STD NMR intensities of 3NPG (i.e., it did not affect the binding epitope
mapping). This demonstrates that IL-STD NMR effects can only be observed for short
inter-ligand distances (see Figure S9). In this way, the 3ANPG/CTB/1 system has shown that
information on ligand proximity by IL-STD NMR is feasible even in the presence of such
high overlap of signals, just by running the selective ligand irradiation on the fragment
that shows well isolated signals in the NMR spectrum.

4. Materials and Methods
4.1. Materials and Sample Preparation

Compounds 3-nitro-phenyl x-D-galactopyranoside (3NPG) and Naproxen sodium > 98.8%,
cholera toxin subunit B (CTB), bovine serum albumin (BSA), deuterium oxide (99.9% 2H),
disodium hydrogen phosphate (Na,HPOy), potassium dihydrogen phosphate (KH,POy),
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sodium chloride (NaCl) and potassium chloride (KCl) were purchased from Sigma (St. Louis,
MO, USA). The BSA/NPX sample was composed of 4 mM NPX and 50 uM protein, for
a [P]:[L] ratio of 1:80), and analysed at 303 K. The CTB samples were composed of 1 mM
ligands and 25 uM binding site concentration (corresponding to 5 uM CTB concentration
as CTB is a hetero-pentamer), for a [P]:[L] ratio of 1:40, and analysed at 278 K. All samples
were prepared in 10 mM PBS buffer (with 137 mM NaCl and 2.7 mM KCl) at pH 7.4.

4.2. Nuclear Magnetic Resonance

For BSA/NPX, the build-up curves were acquired with irradiation frequency of
0.60 ppm (8%) and 1.48 ppm (6%),at0.1s,0.35s,0.5s,1.0s,1.5s, 2.0 s saturation times, with
256 scans. For each proton, they were then fitted mathematically to a mono-exponential
equation (y = a*[1 — exp(b-x)]), from which the initial slopes (a-b) were obtained. The
binding epitope mapping was obtained by dividing the initial slopes by the one of proton
al, to which an arbitrary value of 100% was assigned.

For the CTB samples, STD NMR experiments were acquired with irradiation frequency
of 6% = 0.0 ppm (off-reporter ligand) and §* = 7.27 ppm (on-reporter ligand), at 2 s saturation
time, with 128 scans. For all the STD NMR experiments, an STD pulse sequence that
included 2.5 ms and 5 ms trim pulses and a 3 ms spoil gradient and water suppression
by excitation sculpting with gradients was used (stddiffesgp.3). Saturation was achieved
applying a train of 50 ms Gaussian pulses (0.40 mW) on the {2 channel, at 0.60 ppm,
1.48 ppm or 7.27 ppm (on-resonance experiments) and 40 ppm (off-resonance experiments).
The broad protein signals were removed using a 40 ms spinlock (T1,) filter (stddiff.3). Due
to the strong overlapping observed in the CTB ternary complex, CTB samples were all
analyzed at a 'H frequency of 800.23 MHz on a Bruker Avance III spectrometer equipped
with a 5 mm probe TXI 800 MHz H-C/N-D-05 Z BTO. BSA/NPX experiments were
recorded at 'H frequency of (i) 499.68 MHz on a Bruker Avance NEO spectrometer equipped
with a 5 mm iProbe PA QXI 600S3 H-C/N/F-D-05 Z, (ii) 600 MHz on a Bruker Avance
IIT spectrometer equipped with a cryoprobe QCI Cryo 5mm (1H/19F 15N /13C) for 'H,
15N, 13C, and 1°F with 2H decoupling, (iii) 800.23 MHz on a Bruker Avance III, as used for
CTB experiments.

5. Conclusions

We report hereby for the first time the proof-of-concept that Inter-Ligand saturation
transfer NMR (IL-STD NMR) is technically feasible to probe inter-ligand proximity between
bound ligands in adjacent binding sites of a given protein. This is an important proof of
principle that opens the doors to quick and easy validation of 3D theoretical molecular
models of protein-ligand ternary complexes, confirming relative orientations between
ligands binding to two adjacent subsites in a given protein binding pocket. While IL-
STD NMR is remarkably more time- and cost-efficient than ILOE, which is an important
feature for model validation in fragment-based drug discovery, data interpretation requires
consideration of potential risks (e.g., impact of direct irradiation must be pondered and
mitigated by the acquisition of control spectra). We envision that IL-STD NMR, despite
those potential limitations, can become a useful tool to confirm in a fast and efficient fashion
structural hypothesis about orientation of two bound fragments, considerably aiding the
fragment-based drug discovery process in pharmaceutical settings and proving once more
the great potential of multi-frequency STD NMR.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15081030/s1, Figure S1: BSA distribution of binding sites
and NPX build-up curves; Figure 52: Binding epitope mapping of NPX at two different irradiation
frequencies; Figure S3: NPX-BSA contacts in different binding sites; Figure S4: STD NMR spectra
NPX/BSA; Figure S5: IL-STD factors for NPX at different magnetic fields; Figure S6: NOESY
experiment of the NPX/BSA sample; Figure S7: ILOE of the binding of ligand 1 and 3NPG to CTB;
Figure S8: IL-STD NMR control experiments on binary complexes; Figure S9: negative IL-STD NMR
control in the ternary complex; Table S1: IL-STD raw data BSA /NPX; Table S2: Definitions of STD
NMR factors under different irradiation frequencies; Table S3: Definitions of IL-STD NMR factors;
Table S4: Raw STD intensities SNPG/CTB/1 ternary complex.
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