
Citation: Meqbil, Y.J.; van Rijn, R.M.

Opportunities and Challenges for In

Silico Drug Discovery at Delta

Opioid Receptors. Pharmaceuticals

2022, 15, 873. https://doi.org/

10.3390/ph15070873

Academic Editor: Osvaldo

Andrade Santos-Filho

Received: 23 June 2022

Accepted: 13 July 2022

Published: 15 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceuticals

Review

Opportunities and Challenges for In Silico Drug Discovery at
Delta Opioid Receptors
Yazan J. Meqbil 1 and Richard M. van Rijn 2,3,*

1 Department of Medicinal Chemistry and Molecular Pharmacology, Computational Interdisciplinary Graduate
Program, Purdue University, West Lafayette, IN 47907, USA; ymeqbil@purdue.edu

2 Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery,
Purdue Institute for Neuroscience, Purdue University, West Lafayette, IN 47907, USA

3 Septerna Inc., South San Francisco, CA 94080, USA
* Correspondence: rvanrijn@purdue.edu; Tel.: +1-765-494-6461

Abstract: The delta opioid receptor is a Gi-protein-coupled receptor (GPCR) with a broad expression
pattern both in the central nervous system and the body. The receptor has been investigated as
a potential target for a multitude of significant diseases including migraine, alcohol use disorder,
ischemia, and neurodegenerative diseases. Despite multiple attempts, delta opioid receptor-selective
molecules have not been translated into the clinic. Yet, the therapeutic promise of the delta opioid
receptor remains and thus there is a need to identify novel delta opioid receptor ligands to be
optimized and selected for clinical trials. Here, we highlight recent developments involving the
delta opioid receptor, the closely related mu and kappa opioid receptors, and in the broader area
of the GPCR drug discovery research. We focus on the validity and utility of the available delta
opioid receptor structures. We also discuss the increased ability to perform ultra-large-scale docking
studies on GPCRs, the rise in high-resolution cryo-EM structures, and the increased prevalence of
machine learning and artificial intelligence in drug discovery. Overall, we pose that there are multiple
opportunities to enable in silico drug discovery at the delta opioid receptor to identify novel delta
opioid modulators potentially with unique pharmacological properties, such as biased signaling.

Keywords: mutagenesis; artificial intelligence; computer-aided drug design; molecular dynamic
simulation; biased signaling; G protein-coupled receptor

1. Introduction

The δ opioid receptor (δOR) is a Gi-protein-coupled receptor with a broad expression
pattern both in the central nervous system and the periphery. The endogenous agonists for
the δOR are pentapeptide enkephalins, particularly Leu5-enkephalin, but other peptides
that originate from plants and other species, like frogs can also bind and activate the
δOR [1,2]. Similar to the µ opioid receptor (µOR), which is activated by small molecules
from natural products like opium and kratom and fully synthetic small molecules like
fentanyl, the δOR can be activated by a variety of naturally occurring and (semi-) synthetic
small molecules [3–6].

The δOR has been a potential candidate to treat a variety of diseases and disorders.
Front and center have been the ability of δOR selective agonists to reduce chronic pain,
be it inflammatory, neuropathic, or migraine [7]. δOR agonists have shown promise in
preventing cardiac and cerebral ischemia [8], as a potential treatment for neurodegenerative
diseases [9–13], and both δOR agonists and antagonists have been proposed as mechanisms
for the treatment of alcohol use disorder [5,14–16]. Outside the central nervous system, δOR
antagonism and positive allosteric modulation of δOR has been proposed as a treatment
for gastrointestinal motility disorders, such as irritable bowel syndrome [17,18].

Early attempts by SmithKline Beecham to synthesize δOR agonists to suppress cough
(SB 227122), or to treat inflammatory pain without causing seizure activity (SB 235863) [19–21]
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did not progress to clinical trials. While δOR-selective agonists, including ADL5859 and
AZD2327, have previously entered clinical trials for the treatment of pain and depres-
sion, no δOR selective drugs have ultimately been approved for human use. [22–24] Both
ADL5859 and AZD2327 failed to advance beyond phase II clinical trials, which are de-
signed to establish efficacy in patients within the therapeutic indication space. ADL5859
and AZD2327 are part of a class of diethylbenzamides that include the prototypical δOR-
selective agonist SNC80. However, SNC80 and multiple other δOR agonists have been
reported to reduce seizure threshold and induce convulsions [25–27], and this has reduced
enthusiasm for δOR agonists as a therapeutic area of research.

Around the same time that ADL5859 and AZD2327 were in clinical trials, John-
son and Johnson developed the anti-hyperalgesic δOR agonists, JNJ-20788560 and RWJ-
394674 [28,29], but they did not take these into clinical trials, potentially due to the failure
of the aforementioned clinical trial compounds. Prior to becoming insolvent, Ardent Phar-
maceuticals, also produced multiple δOR agonists, with mixed µOR activity in their DPI
series (DPI-221, DPI-125, DPI-289) in hopes of producing an analgesic drug with fewer
adverse effect liabilities relative to the clinically used µOR agonists [12,30,31].

Recent studies suggest that β-arrestins, multifunctional proteins that can promote
receptor desensitization and intracellular signaling, are involved in the mechanism of
seizure activity of SNC80 [26]. This insight has spurt efforts to develop G-protein-biased
δOR agonists to reduce adverse effects including seizures, paralleling similar efforts for
increasing the therapeutic window through G-protein-biased agonism at other GPCRs,
including the µOR. These endeavors have generated a multitude of peptides with reduced
β-arrestin recruitment potency/efficacy [3,32–35]. Similarly, small molecule biased agonists
have also been developed including TAN-67, KNT-127, TRV250, and most recently PN6047.
Indeed, these G-protein-biased δOR agonists appear to suffer less from detrimental side
effects including no seizure activity, no hyperlocomotion, and no rewarding effect [36–39].
Positive and negative allosteric modulators (PAM, NAM) and bitopic opioids that act
as ‘Ago-PAM’ or ‘Ago-NAM’ have been identified and modeled in the δOR binding
pocket. The benefit of pure allosteric modulators is that they are inert in the absence
of enkephalin and only amplify (PAM) or inhibit (NAM) δOR signaling and/or binding
when, for example, enkephalins are synaptically released. Allosteric modulators may
promote a particular signaling conformation and bias the endogenous peptide; such a
strategy could reduce the risk of tachyphylaxis, off-target effects, and even on-target side
effects. Less than ten years ago now, Bristol Meyers Squibb identified a number of µOR and
δOR Ago-PAMs [40–42] and more recently, novel δOR agonists lacking a basic nitrogen,
including a novel chemotype and bitopic ligand, were also identified [43,44]. As these
molecules are very recent their clinical utility has not been explored in much depth, but
δOR PAM activity may, for example, aid the treatment of irritable bowel syndrome [18].

Still, except for TRV250, which has undergone phase I clinical trials for migraine, no
real progress has occurred towards the production of δOR-based clinical candidates. Thus,
there both remains a need and a large opportunity for discovering and developing novel
δOR agonists as potential therapeutic agents. Here, we present a summary of current
structural data that has been generated for the δOR; we first will provide an overview
of available resolved structures and insights gained from mutagenesis studies and MD
simulations. We will then discuss the limitations of the current structural knowledge. We
conclude this review by presenting exciting opportunities for computer-aided drug design
at the δOR.

2. Current Structural Insight in δOR Binding Pocket and Activation Mechanism

Early mutagenesis studies following the cloning of the δOR [45,46] hypothesized
the involvement of certain amino acids in ligand recognition, selectivity, and overall
receptor activation. One of the earliest mutagenesis studies investigated the role of Asp2.50
(Ballesteros-Weinstein numbering, [47]) in regulating ligand binding at the δOR where
they demonstrated that Asp2.50Asn diminishes binding of peptide agonists with minimal
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effects on alkaloid agonists and antagonist [48]. Additionally, the authors hypothesized
that Asp2.50 is in close proximity to the Na+ binding site [48]. This was followed by
another study, where Asp3.32 was investigated due to its conservation across many GPCRs
that are activated via cationic neurotransmitters (protonated amines) [49]. The removal
or replacement of that residue affects the binding of several δOR modulators. Unlike
the alanine scanning mutations, the replacement of Asp3.32 with Asn3.32 resulted in
modifications to the receptor’s pharmacology and affected the binding potency of alkaloid
and peptide-agonists. The authors hypothesized that the main reason for such dramatic
change may be attributed to the increase in the size of the Asn3.32 side chain compared to
the WT residue. Asp3.32 acts as a proton donor only whereas Asn3.32 can act as a hydrogen
donor or acceptor. Additionally, the authors noted that the “Na+ -induced low-affinity
state” lowered the affinity of δOR peptide agonists such as DTLET and DADLE but did
not affect the binding affinity of SNC-80 or BW373U86 (SNC-86) in agreement with the
work by Kong et al. [48]. Interestingly, when the authors tested the δOR agonists DTLET,
DADLE, and SNC-86 in the presence of sodium chloride, the binding affinity was reduced
dramatically indicating a role for Asp2.50 in receptor activation to counteract the negative
allosteric effects of the Na+.

The same group later used single-point mutagenesis to investigate the involvement of
aromatic amino acid residues (Tyr, Trp, and Phe) in transmembrane helices III–VI in ligand
recognition [50]. To identify which aromatic residues to target, they used computational
modeling to construct a 3D homology model for the δOR based on the human rhodopsin
and hamster β2-adrenergic receptors. They showed that mutations Tyr mutations (Tyr3.33,
Tyr7.42) had the most impact on the binding of deltorphin II [50]. They concluded that each
ligand-receptor complex has unique binding and conformation where mutations do not
have the same effect equally across various δOR ligands [50].

Another research team created a chimeric protein, DMDD, by replacing the area
around the 1st extra-cellular loop 1 (ECL1) with the corresponding residues of µOR which
significantly enhanced DAMGO binding to δOR [51]. A subsequent study replaced seven
non-conserved residues in transmembrane domain (TM2) and TM3 with the corresponding
residues in µOR and found that one residue only, Lys2.63 (replaced by Asn2.63) showed
a high affinity for DAMGO. Replacement of Lys2.63 with nineteen different amino acid
residues resulted in fourteen mutant receptors that could bind to DAMGO with comparable
affinity to the DMDD chimera indicating a role for Lys2.63 to act as a recognition switch for
δOR agonists [52]. A similar approach of using chimeric constructs for δOR in a different
study demonstrated the importance of the ECL3 in the binding of selective peptide and
small molecule agonists to the δOR. In the same study, the authors showed that three
residues, Trp6.58, Val7.30, and Val7.31 are necessary for the binding of δOR agonists [53].

These mutagenesis studies have provided valuable insight into ligand recognition and
receptor selectivity of the δOR some of which have been verified in recent structural studies
(discussed below). However, these studies did not provide insight into the effect that the
investigated mutations have on downstream signaling cascades at δOR. More importantly,
there is a gap in knowledge with respect to the impact of most of these mutations on
biased agonism.

Over the past decade, several moderate to high-resolution structures of the δOR have
been produced and have confirmed older evaluations of the δOR binding pocket performed
by mutagenesis and computational modeling (Figure 1, Table 1) [49,54,55]. In the first
such structure (3.4Å, PDB:4EJ4), δOR was bound to the antagonist naltrindole [56]. The
structure confirmed the important interaction between Asp3.32 with the protonated amine
of naltrindole, which mimics the amine of Tyr1 in endogenous OR peptides. As mentioned,
this Asp3.32 was already known to be crucial for opioid affinity from mutagenesis stud-
ies [49]. In this structure, anchors are provided by hydrogen bonds (potentially including
water molecules) with His6.52 and Tyr3.33 [56]. Additional amino acids surrounding the
binding pocket were Met3.36, Trp6.48, Ile6.51, Val6.55, Trp6.58, Leu7.35, and Tyr7.43 [56].
A higher resolution structure (1.8Å, PDB:4N6H) of naltrindole-bound δOR was able to
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resolve an allosteric binding site for a sodium ion (Figure 2B) [57]. The sodium site consists
of Asp2.50, Asn3.35, Asn7.45, and Asn7.49 and sits below the conserved ‘message’ site
[‘message’ = part of the molecule that recognizes ORs, ‘address’ = part that renders the drug
subtype selective] of the opioid receptor binding pocket [58]. In 2015, a third δOR struc-
ture (2.7Å, PDB:4RWD) was resolved, but this time bound to the δOR peptide antagonist
Dmt1-Tic2-Phe3-Phe4 (DIPP-NH2, Dmt = 2,6,-dimethyl-l-tyrosine) (Figure 2D) [59].
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Figure 1. Resolved structures of the δOR in complex with small molecules and peptides. Schematic
depiction of the small molecule agonist DPI-287 and antagonist naltrindole and the peptide agonist
KGCHM07 and antagonist DIPP-NH2 bound to the δOR (Top panels; active-like structures in yellow
and inactive structures in sea green). The difference in TM domain positions between the antagonist-
and agonist-bound structures (Lower panels; antagonist-bound in grey and agonist bound in hot
pink). TM domain positions produced using the structure comparison tool from GPCRdb.

Table 1. Overview of resolved x-ray crystal structures of the δOR. Table produced using the GPCRdb.

Structure Auxiliary
Protein Structure Ligand

Method PDB Resolution State Degree
Active (%) % of Seq Fusion Name Type Function

X-ray 6PT2 2.8 Active 76 78 BRIL KGCHM07 peptide Agonist

X-ray 6PT3 3.3 Active 76 78 BRIL DPI-287 small-
molecule Agonist

X-ray * 4RWD 2.7 Inactive 7 79 BRIL DIPP-
NH2 peptide Antagonist

X-ray 4RWA 3.3 Inactive 7 77 BRIL DIPP-
NH2 peptide Antagonist

X-ray 4N6H 1.8 Inactive 7 81 BRIL Naltrindole small-
molecule Antagonist

X-ray 4EJ4 3.4 Inactive 7 76 T4-
Lysozyme Naltrindole small-

molecule Antagonist

* 4RWD structure was obtained using the XFEL method.
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(PDB: 6PT3) (B) δOR-NTI (PDB: 4N6H (C) δOR-KGCHM07 (PDB: 6PT2) (D) δOR-DIPP-NH2 (PDB:
4RWD). Figures made in ChimeraX 1.1.

The DIPP-NH2 binding pocket utilized the same ‘message’ binding pocket residues as
naltrindole with slight movements of Val6.55 and Trp6.58. As expected, the Dmt1 residue
interacted with Tyr3.33, Ile6.51, and Val6.55 with the N-terminal amine forming a salt
bridge with Asp3.32 [57]. The Tic2 side group resided in a hydrophobic pocket made up of
Ile6.51, Val6.55, Trp6.58, Leu7.35, and Ile7.39. Importantly, the larger surface of DIPP-NH2
extended further into the ‘address’ portion of the δOR binding pocket, with Phe3 interacting
with Leu3.29, Asp3.32, and Tyr3.33. Phe4 interacted with a Met and Leu in ECL2. In the
µOR, the corresponding amino acids are charged/polar, making this a possible region
important for selectivity [59,60] (Table 2).

In 2019, two agonist-bound X-ray crystal structures produced novel insight into δOR
in the active-like state: the δOR bound to the peptide KGCHM07 (PDB:6PT2) and bound
to the SNC80-like small molecule DPI-287 (PDB:6PT3) [61] (Figure 2A,C). Relative to the
naltrindole-bound structure, the agonist structure shows the movement of TM6 (Figures 1
and 2), particularly, Phe6.44, Cys6.47, and Trp6.58, all of which had been previously linked
to δOR activation [55,61]. Arg291 in ECL3 changes location in the KGCHM07 structure and
forms a lid on the binding pocket and is part of a hydrophobic pocket that also includes,
Ile6.51, Phe6.54, Val6.55, Trp6.58, and Leu7.35, which fits the benzyl moiety of KGCHM07
(Figure 2). Three water molecules interacted with Dmt1 of KGCHM07 through Tyr3.33,
Lys5.39 and His6.52. Water molecules also aid in forming a water-mediated salt-bridge
between D-Arg2 and Asp5.35. Slight differences were observed between the peptide and
small molecule structures particularly in relation to the polar network, involving Thr2.56,
Glu2.60, and Tyr7.43 the latter being part of a hydrophobic pocket that fits Phe3 in the
peptide-bound structure. Tyr7.43 stabilizes the primary amine of KGCHM07 but does not
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interact with DPI-287. On the other hand, Thr2.56 stabilizes the polar network for DPI-287
but not KGCHM07 [61]. Overall, the antagonist structures confirmed many predicted and
experimentally established key amino acids within the δOR binding pocket. Paired with
the addition of the agonist-bound structures this provides new avenues and opportunities
for in silico drug discovery at the δOR.

Table 2. Receptor-ligand interactions of the δOR in complex with peptide and small-molecule agonists
and antagonists. Table produced in part using the GPCRdb. [62,63]. This table does not reflect the
full extent of receptor-ligand interactions, especially with regards to the involvement of the amino
acid residues forming hydrophobic sub-pockets of the orthosteric site that are necessary for ligand
binding. Additional amino acid residues such as Asp2.50, Asn3.35, and Ser3.39 which form the
sodium binding site are also not included in this table.

Agonist Antagonist

6PT2 6PT3 4RWD 4RWA 4N6H 4EJ4

Amino
Acid

Sequence
Number

Generic
Number Segment KGCHM07 DPI-287 DIPP-NH2 Naltrindole

A 98 2.53 TM2
1-10 L 125 3.29 TM3
1-10 D 128 3.32 TM3
1-10 Y 129 3.33 TM3
1-10 M 132 3.36 TM3
1-10 M 199 ECL2 ECL2
1-10 L 200 ECL2 ECL2

D 210 5.35 TM5
1-10 K 214 5.39 TM5
1-10 V 217 5.42 TM5
1-10 W 274 6.48 TM6
1-10 I 277 6.51 TM6
1-10 H 278 6.52 TM6
1-10 V 281 6.55 TM6
1-10 W 284 6.58 TM6
1-10 R 291 ECL3 ECL3
1-10 L 300 7.35 TM7
1-10 I 304 7.39 TM7
1-10 Y 308 7.43 TM7

Color legend: Hydrophobic Aromatic (face to edge) Aromatic (face to face) Accessible
polar (charge-assisted hydrogen

bond) polar (charge-charge) polar (hydrogen bond) polar (hydrogen bond with
backbone)

3. Limitations of Current δOR Structures

All the current δOR structures have been resolved using X-ray crystallography (Table 1).
The nature of X-ray crystallography relies heavily on producing a receptor that is stable and
does not show a lot of movement. On the other hand, cryo-electron microscopy (cryo-EM)
is more forgiving in this regard, and thereby provides more opportunities to generate a
structure of a wild-type/non-thermostabilized receptor to overcome the current hurdle
that the available δOR agonist structures are mutated. Importantly, the Sexton group at
Monash University has made significant improvements in the workflow for generating
cryo-EM structures, such that structures with resolutions below 3Å can now be routinely
resolved [64].

Another limitation for in silico drug discovery at the δOR is that none of the δOR
structures were co-crystallized with an effector protein. The ability of cryo-EM to determine
the structures of large complexes of macromolecules gained attraction over the past decade
following advancements in electron detectors and data software used to reconstruct the 3D
structures from the 2D images [64]. For GPCRs in complex with downstream effector pro-
teins, such as G-protein, β-arrestin, or GRKs, cryo-EM is increasingly becoming the method
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of choice for structure determination. This is in part because protein structures obtained
using cryo-EM overcome some of the limitations such as thermostabilizing mutations and
fusion proteins which are commonly introduced in X-ray crystallography structures [65].
The increasing number of cryo-EM structures that are being obtained in complex with
downstream effector proteins can provide valuable insight into the molecular basis of
GPCR signaling, potentially biased signaling, which then informs the structure-based drug
discovery process.

Thus far, three cryo-EM structures of the µOR and one structure for the κ-opioid recep-
tor (κOR) have been resolved [66–68]. Nonetheless, with respect to the δOR, the absence
of X-ray crystal structures or cryo-EM structure of the δOR in complex with downstream
effector proteins represents a challenge for structure-based drug discovery. Overcoming
this hurdle requires careful and extensive molecular modeling that integrates the avail-
able crystal structures of the δOR in their inactive- and active-like states (Table 1) with
the structures of other opioid receptors that are in complex with Gi-proteins, β-arrestins,
nanobodies. This is especially crucial when using the active-like crystal structures of δOR
due to the presence of thermostabilizing mutations. This method of computational structure
determination was applied at the κOR where molecular dynamics (MD) simulations and an
enhanced sampling method called meta-dynamics simulations were used to determine the
structure of the κOR in complex with the Gi-protein. To obtain the optimized active struc-
ture, the authors started with optimizing the nb39 stabilized crystal structure of the κOR
in complex with the agonist MP1104 (PDB: 6B73) then used the µOR-DAMGO-nucleotide
free Gi-protein cryo-EM structure to couple the Gi-protein to the κOR [66,67,69]. Then,
they used meta-dynamics simulations to optimize the κOR-Gi complex interactions before
examining its stability using MD simulations. Their approach was applicable to the crystal
structure of the µOR (5C1M) which they used to construct µOR-BU72-Gi and confirm the
structural determinants of G-protein coupling.

To obtain the active-like δOR x-ray crystal structures bound to a peptide agonist
and to a small molecule agonist, the δOR was thermostabilized by nine point mutations
that negatively impacted the native pharmacology [61]. This was unsurprising, as the
impact of mutations on receptor function can compound with increasing numbers [55].
Particularly, the mutations impacted the allosteric sodium binding pocket that has been
implicated in β-arrestin signaling [57,61]. Thus, the crystallized conformation may not be
optimal to identify signal-biased agonists reducing the utility of the current agonist-bound
δOR structures.

4. Opportunities for Computer-Aided Drug Discovery at the δOR

Over the last ten years, an increasing number of opioid receptors structures have been
elucidated in unbound (apo-state), antagonist bound, or agonist bound states, either stabi-
lized with thermostabilizing mutations, Gi-protein, or nanobodies. These structures, even
the antagonist-bound ones, have proven useful for performing docking studies on large
virtual libraries. For example, a screen of 3M molecules on the inactive µOR (4DKL) led to
the identification of a hit that was optimized in three steps to the novel G-biased agonist
PZM21 [70]. Recent advances in docking have enabled the screening of libraries of nearly
two magnitudes larger in size; thus far, this approach has been successfully employed to
screen 138 million compounds using an antagonist-bound dopamine D4 receptor [71], and
150 million compounds at a thermostabilized agonist-bound melatonin MT1 receptor [72].
These screens relied on the ZINC database [73] to provide decoys and screening molecules.
The ZINC database is an ever-increasing repository for accessible molecules, currently
holding about one billion compounds [74,75]. The increase in the size of the ZINC database
is largely supported by the increase in catalog size of commercially available compounds
from Enamine (https://enamine.net/news-events/press-releases/807-enamine-expands-
collaboration-with-ucsf, accessed on 12 July 2022). Indeed, commercially available make-on
demand chemical libraries such as Enamine’s REAL Space collection which comprises
22.7 billion compounds as of the time of writing this review, make it feasible to identify

https://enamine.net/news-events/press-releases/807-enamine-expands-collaboration-with-ucsf
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novel chemotypes that could induce novel pharmacology. It comes as no surprise that high
throughput virtual screening campaigns are expected to further expand the utilized ligand
chemical space which will result in the identification of an increasing number of novel hit
compounds. This expansion in the utilized chemical space can be effectively leveraged for
structure-based drug discovery using currently available, and future, structures of δOR to
virtually dock and screen more compounds than ever before.

Efforts in virtual screening of chemical libraries have used structure-based drug dis-
covery to expand the available chemical space for various GPCR targets [72,76]. This
approach has yielded many novel chemotypes across several targets that could provide
useful starting points for medicinal chemists to modify and improve selectivity among
other properties. However, in screening campaigns that aim to identify biased agonists
in-silico, this approach represents a potential bottleneck to the discovery process and might
not be sufficient to identify functionally selective ligands. Thus far, the method of choice
in identifying biased agonists at the δOR and other GPCRs has relied on the functional
characterization of known and novel binders using cell-based assays to establish pharma-
cological and SAR profiles for future hit identification and lead optimization campaigns.
However, the recent advances in computational tools and enhanced sampling methods
such as molecular dynamics simulations which enable the dynamic modeling of the δOR
and other GPCRs should be leveraged to unravel the structural determinants of biased
signaling. In other words, the structural and conformational changes induced by agonist
binding at δOR that appear in an MD simulation could be correlated with pharmacological
data and mutagenesis analyses. Such an approach could be used to generate structural
models or snapshots of the δOR in different conformational states which would increase
the ability of docking campaigns to identify novel and biased agonists (Figure 3).

Until recently, GPCRs’ structures in general, including those of the opioid receptors,
still do not appear to provide a clear picture of the underlying signaling mechanisms
given the complexity of the involved signaling network, the limited number of available
structures bound to G-proteins, β-arrestins, or GRKs, and the diversity of the chemical
space interacting with these receptors [77]. The tremendous success of cryo-EM structure
determination and the increasing number of high-resolution structures when coupled
with MD simulations could provide insights into GPCRs in action. Hence, developing
and utilizing computational methods and workflows to model ensembles of structural
conformations and then combining such methods with resolving GPCR structures in
complex with G-proteins, β-arrestins, and GRKs should provide a strong approach to
alleviate current limitations. This could also minimize the misinterpretations that stem
from comparisons and analyses that are based on static GPCR structures that suffer from
the limitations mentioned above.

A similar approach was applied recently at the µOR, where Wang et al. highlighted
how the implementation of molecular dynamics could be helpful in lead optimization
campaigns [68]. The authors implemented a structure-based lead optimization approach
to generate PZM21 analogs with improved CNS penetration and higher G-protein bias
with lower β-arrestin recruitment compared to fentanyl. In the study, the authors resolved
a high-resolution cryo-EM structure of PZM21 bound to the µOR in a complex with the
trimeric Gi-protein (PDB: 7SBF). The resolved cryo-EM structure showed that PZM21 forms
a salt bridge between its basic amine and Asp3.32 of µOR which confirmed previous find-
ings [67,78]. To confirm the stability of the PZM21′s binding pose, and characterize the
water-mediated interactions with µOR, the authors performed all-atom MD simulations
which showed that PZM21 formed water-mediated interactions with His6.52 and Lys5.39.
Intriguingly, the authors used insights from structural and dynamic analyses for lead opti-
mization, guided by MD simulations and the cryo-EM structure of µOR in complex with
Gi-protein. The resulting PZM21 analogs were µOR-selective with improved functional se-
lectivity. Translating such an approach at the δOR will allow for more successful hit-to-lead
and lead-optimization campaigns. Recently resolved cryo-EM structures of mitragynine
pseudoindoxyl, which has very low arrestin recruitment, and lofentanil, a potent arrestin
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recruiter demonstrate the involvement of distinct orthosteric sub-pockets in determining
arrestin recruitment at the µOR. The authors demonstrated that each agonist has distinct
moieties that bind in two distinct sub-pockets while sharing a central binding pocket with
DAMGO [79]. Such findings support previous predictions and lead optimization strategies
that have been applied to modulate biased agonism at the µOR and κOR [80,81].

Another promising area that has been on the rise recently is using machine learning
and artificial intelligence in protein structure prediction and drug discovery. These ad-
vances present an exciting avenue for the discovery of novel and potential therapeutic
agents at the δOR. Undeniably, the integration of machine learning and deep learning with
current computational and pharmacological approaches presents a valuable opportunity to
accelerate drug discovery campaigns at δOR. Machine learning models could be trained
using high-quality datasets to predict drug properties, toxicity, target selectivity, and poten-
tially ligand-receptor interactions. This has been made possible in part due to the GPCR
community’s efforts to provide access to curated datasets such as GPCRdb.org [62,82] and
open-source machine learning packages such as DeepChem and AMPL, which allows
researchers to build, train and deploy machine learning models for drug discovery [83].
Additionally, the rapid increase in high-performance cloud computing, improved Graphics
Processing Units (i.e., GPUs), and increasingly efficient machine learning algorithms pro-
vide an opportunity to expand the screening of ultra-large chemical libraries or the de-novo
drug design in a more efficient manner.

The significant improvement in structure prediction provided by AlphaFold 2 [84],
may provide avenues for obtaining a wild-type thermostable δOR structure, that could
be used for docking studies. There are significant limitations, in particular the current
lack of Alphafold to predict how a protein will change conformation upon binding of a
specific ligand [85]. Future machine learning algorithms may learn how to do this and
further reduce the initial requirement of wet-lab science to obtain potent and selective novel
molecules for a receptor target including the δOR.

MD simulations are another area that is expected to benefit from recent advances in
machine learning and artificial intelligence. In fact, work is already underway to develop
machine learning force fields that could increase the accuracy of MD simulations while
reducing the computational cost [86]. Deep learning frameworks such as TorchMD [87] and
neural networks such as graph convolutional neural networks (GCNNs) have been used
for geometry optimization [88], acceleration of MD simulations, or even in improving force
fields [89]. Such advances should be carefully utilized and expanded to complement the
available structural and experimental data and accelerate the identification of therapeutic
agents at the δOR.

To accelerate future large-scale drug discovery efforts at the δOR, well-trained and val-
idated machine learning models should be combined with physics-based scoring functions
to reduce the computational cost of docking and screening ultra-large chemical libraries. In
this instance, a machine learning model could serve as a filter that could be incorporated
into a docking workflow to prioritize which molecules move on to the next phase and
ultimately which molecules are to be tested pharmacologically. Moreover, this approach
allows the incorporation of structural and pharmacological parameters to build, train, and
deploy multi-task learning models that could increase the selectivity and novelty of the
identified compounds.

Despite the optimistic outlook and promising advances in computer-aided drug de-
sign, it is important to know the limits of the utilized tools. Furthermore, it is worth noting
that there are numerous challenges and potential pitfalls associated with the incorporation
of machine learning or deep learning models, especially with respect to the availability of
large and high-quality datasets for the drug target [90,91]. For the δOR and other GPCRs,
the diversity of cell-based assays that are used to characterize their pharmacology and
the inconsistent practices between different research labs, or in some instances within
the same lab, are two major limitations that need to be addressed before we can reliably
use machine learning in GPCR drug discovery. Hence, future efforts should also focus
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on the standardization of experimental data collection and computational data curation
and modeling.
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Figure 3. Proposed workflow for screening large chemical libraries to identify G-protein biased
agonists at the δOR and other GPCRs. A similar workflow could be applied to identify GRK- or β-
arrestin-biased small molecules given that high-quality crystal or cryo-EM structures are available. In
cases where distinct interactions or sub-pockets specific to biased agonists or in cases where we know
that an allosteric site/pocket could lead to biased effects, we could restrict ligand docking to that
specific site to screen a given chemical library. The most accurate way to confirm such interactions
would be to resolve high-quality structures and/or perform mutagenesis studies. Alternatively,
enhanced sampling computational modeling to model receptor-effector complexes could be useful if
computational cost is not a limiting factor.
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5. Conclusions

For the identification of novel, functionally selective, and potentially therapeutic
agonists at δOR, future efforts should aim to expand our understanding of the effect of
various mutations on the structure and function of δOR utilizing the constantly improving
in-vitro and in-silico approach. Additionally, producing multiple wild-type agonist-bound
high-resolution structures of δOR will allow for a more efficient expansion of its chemical
space in virtual screening campaigns or in computer-aided lead optimization. Consequently,
these efforts will provide high-quality datasets that could allow for the incorporation of ML
and DL tools in opioid drug discovery. Overall, we think there are more opportunities than
that there are challenges to carry out a high yield in silico screen at the δOR to generate
novel chemical matter that hopefully can be translated into meaningful therapeutics.
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