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Abstract: Although cisplatin is a first-line chemotherapy drug for head and neck squamous cell
carcinoma (HNSCC), its therapeutic efficacy is limited owing to serious side effects and acquired
drug resistance. This study determined whether combining pentagalloyl glucose (PGG) and cisplatin
enhanced their anti-tumor activities on HNSCC cell lines. We investigated the anticancer effect of
PGG combined with cisplatin in 2D and 3D multicellular spheroid cell culture. The results revealed
that PGG combined with cisplatin inhibited cell viability and produced synergistic effects. PGG
potentiates the anticancer effect of cisplatin by promoting apoptosis and inhibiting cell migration. The
western blot and molecular docking analysis revealed that the synergistic effect of the combination
treatment may be related to the PGG-mediated reduced expression of phosphorylated STAT3 and
phosphorylated Akt. Furthermore, we found that the combined treatment of PGG and cisplatin’s
effect on 3D multicellular spheroid size was more potent than the monotherapies. Our findings
indicated that the combination therapy of PGG and cisplatin synergistically inhibited HNSCC cancer
cell viability and induced apoptosis in 2D and 3D models. The present results suggested that PGG
may be a promising adjunct drug used with cisplatin for a practical therapeutic approach to head
and neck cancer.

Keywords: pentagalloyl glucose; combination therapy; cisplatin; head and neck cancer; signal
transducer and activator of transcription 3; synergic effects; apoptosis; anticancer; chemosensitizer;
tumor spheroids

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer
worldwide and has a poor prognosis with a high mortality rate [1]. Locoregional recurrence
at primary and regional lymph nodes due to treatment resistance is the main cause of
morbidity and the contributing factor to poor survival outcome of HNSCC. Despite ad-
vances in therapeutic approaches, including minimally invasive surgery, precisely targeted
radiotherapy, chemotherapy, and monoclonal antibody therapy, only a slight improvement
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has been achieved in the overall survival rates for HNSCC patients over the last two
decades [2]. Cisplatin is a well-known chemotherapeutic drug used to treat various solid
tumors, including head and neck squamous cell carcinoma. Its mode of action has been
linked to its ability to crosslink with the purine bases on the DNA, leading to DNA damage
and impairing DNA repair mechanisms, subsequently inducing apoptosis in cancer cells [3].
Combining radiotherapy with cisplatin is the standard treatment for HNSCC. Because of
the radio-sensitizing role of cisplatin, concurrent radiotherapy and cisplatin significantly
improve local and regional control rates [4]. However, this regimen is associated with
developing chemotherapeutic drug resistance and severe toxicities with devastating effects,
including kidney toxicity, oral mucositis, decreased immunity to infections, and gastroin-
testinal disorders, which significantly narrow the therapeutic ratio and limit the clinical
usage [5,6]. Therefore, there is an urgent need to develop new treatments that include more
effective and less toxic novel targets for improving the clinical outcome of this fatal disease.

Because of the molecular complexity of cancer, a treatment modality that combines
two or more therapeutic agents with different mechanisms of action, so-called combination
therapy, has proven more effective in successful treatment [7]. It can target critical pathways
in a synergistic or additive manner. This approach potentially reduces drug resistance and
the chemotherapeutic drug doses in the regimen, helping to circumvent the severe side
effects while providing anti-cancer benefits [7,8]. Increasing evidence has suggested that
plant polyphenols might be combined with conventional therapy (chemo/radiotherapy)
to sensitize tumor cells to the treatment by inhibiting the pathway that leads to treatment
resistance [9–11]. Pentagalloyl glucose (1,2,3,4,6-Penta-O-galloyl-β-D-glucose, PGG; molec-
ular weight = 940.67 g/mol) (illustrated in Figure 1a), a naturally occurring polyphenolic
water-soluble gallotannin, is the main biologically active metabolite found, isolated, and
purified in Bouea macrophylla [12,13]. PGG exhibits anti-cancer and anti-metastasis activity
toward several types of cancer cells, including breast [14,15], leukemia [16], HNSCC [13],
and prostate [17,18]. The anti-cancer mechanisms of PGG are different from those of
chemotherapeutic drugs. Its anti-cancer effect is strongly associated with the inactivation of
the signal transducer and activator of transcription 3 (STAT3). Lee et al. reported that PGG
inhibited triple-negative breast cancer (TNBC) growth and metastasis. In this study, PGG
exerted anti-tumorigenic effects by inhibiting STAT3 activation, which further inhibited
angiogenesis and proliferation, and induced apoptosis in TNBC [15]. Additionally, PGG
inhibits STAT3 phosphorylation, resulting in the downregulation of downstream target
Bcl-XL and Mcl-1, induces caspase-mediated apoptosis in prostate cancer cells in vitro, and
decreases in vivo tumor xenograft growth [19]. Our previous study showed that pretreat-
ment with Maprang (Bouea macrophylla) seed extract (MPSE), which contains PGG as an
active compound, before irradiation of breast cancer cells inhibits the radiation-induced
epithelial-to-mesenchymal transition (EMT) process and confers radiosensitivity [20]. In
addition, Kantapan et al. recently reported that PGG isolates from the extraction of Bouea
macrophylla seeds suppress tumor-sphere formation and decrease the protein expression of
cancer stem cell markers in the HNSCC cell line [21]. Interestingly, PGG has been shown to
enhance the sensitization to radiotherapy and chemotherapy and enhance the anti-cancer
effect in renal and hepatocellular cancer cells [21,22]. Considering its sensitizing potential
and relatively low toxicity profile, we wished to test PGG as a chemosensitizing drug
for cisplatin chemotherapy in HNSCC cells. Using the 2D and 3D tumor models with
HNSCC cell lines, we aimed to determine whether the combination of cisplatin and PGG
isolated from Bouea macrophylla seeds resulted in an enhancement of their in vitro (2D and
3D cultured) anti-tumor activities on HNSCC cell lines compared to the single compounds.
Moreover, we also evaluated the molecular mechanisms of PGG-induced STAT3 pathway
inactivation by protein expression assay. The molecular interactions between PGG and
STAT3 were further investigated in silico using molecular docking, molecular dynamic
simulation, and Molecular Mechanics Poisson–Boltzmann Surface Area (MM-PBSA) ap-
proaches. In the present study, we found that in the 2D and 3D cultures of HNSCC cells,
the combination of cisplatin and PGG exerted a synergistic cytotoxic effect and provided
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experimental evidence that the mechanism of their synergism was related to PGG-induced
inactivation of STAT3.

Figure 1. The cell proliferation inhibitory effect of PGG and cisplatin in monotherapy and in combi-
nation on HNSCC cancer cells in the 2D culture determined by the MTT assay. (a) Chemical structure
of pentagalloyl glucose (PGG). (b,c) A dose–response curve of the cytotoxic effect of cisplatin (b) and
PGG (c) alone on CAL27 and FaDu cell viability after 48 h treatment. (d,e) Effect of the combination
therapy of 10, 20, and 30 µg/mL PGG and serial concentrations of cisplatin on CAL27 (d) and FaDu
(e) cell viability after 48 h treatment, determined by MTT assay. (f,g) Fa-CI plot analysis of the
combination treatment of 10, 20, and 30 µg/mL PGG and cisplatin on CAL27 and FaDu cell viability.
PGG, pentagalloyl glucose; Fa, fraction effect; CI, combination index.
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2. Results
2.1. The Combination of PGG with Cisplatin Synergistically Inhibits Cell Proliferation and
Clonogenic Survival of CAL27 and FaDu Cells in 2D Culture

To determine whether PGG enhanced the efficacy of cisplatin, the cytotoxicity of
PGG and cisplatin to CAL27 and FaDu HNSCC cells in 2D cultures was investigated
by applying both compounds individually and in combination. We first determined
the appropriate experimental doses for PGG and cisplatin in HNSCC cell lines. PGG
inhibited the proliferation of CAL27 and FaDu cells in a concentration-dependent manner
with IC50 values of 23.7 ± 2.3 and 29 ± 5.3 µg/mL, respectively. Moreover, PGG has
less cytotoxicity toward normal fibroblast L929 cells, as evidenced by the IC50 of more
than 100 µg/mL at 48 h of incubation time (Supplementary Figure S1). Cisplatin showed
IC50 values of 5.4 ± 0.4 and 7.6 ± 1.4 µg/mL against CAL27 and FaDu cells, respectively
(Figure 1b,c). Doses of the combination treatment were selected based on their cytotoxic
effects in monotherapy, and only concentrations above IC50 were included in the study.
Next, we tested the selected doses in the non-constant ratio drug model study on both
cell lines. The combination treatment significantly inhibited the proliferation of both cell
lines in a dose-dependent manner (Figure 1d,e). The growth inhibitory rates of cisplatin
were significantly increased in the presence of 10, 20, and 30 µg/mL PGG, with the IC50 of
cisplatin reduced from 5.4 ± 0.4 to 4.0 ± 0.1, 1.4 ± 0.2, and 0.8 ± 0.6 µg/mL, respectively,
for CAL27 cells and reduced from 7.6 ± 1.4 to 5.4 ± 0.9, 3.6 ± 1.7, and 1.2 ± 0.6 µg/mL,
respectively, for FaDu cells (Table 1). The Chou–Talalay combination index (CI) revealed
that the combined PGG and cisplatin treatment resulted in even antagonist, additive, and
synergistic effects, depending on the concentration of PGG. When PGG concentrations at
10 µg/mL were combined with any tested cisplatin doses (2.5–15 µg/mL), only additive or
antagonist effects were observed in FaDu cells, while with high concentrations (12.5 and
15 µg/mL) of cisplatin, a synergistic response was achieved in CAL27 cells. In contrast,
20 or 30 µg/mL of PGG combined with any tested doses of cisplatin caused a synergistic
cytotoxic effect in both cell lines (Figure 1f,g). The CI values at different concentrations of
PGG determined at 50% cell kill exhibited either an antagonist or synergistic effect between
PGG and cisplatin against both HNSCC cell lines. The combinations exhibited synergism
in both cell lines with PGG at 20 and 30 µg/mL and CI values at 0.64 and 0.51, respectively,
in CAL27 cells and CI values of 0.81 and 0.62, respectively, in FaDu cells. Furthermore, the
dose reduction index (DRI) exhibited considerable dose reduction for cisplatin owing to
synergistic behavior; in CAL27 cells, the IC50 of cisplatin was decreased 1.35-, 3.86-, and
6.75-fold for PGG at 10, 20, and 30 µg/mL, respectively. FaDu cells were reduced 1.4-, 2.1-,
and 6.33-fold for PGG at 10, 20, and 30 µg/mL, respectively (Table 1). The dose reduction
levels were specific to each cell line, considering that the effect of the combination therapy
was more potent in the CAL27 than in the FaDu cell line. Next, we evaluated the combined
effects of PGG and cisplatin on cell survival using colony-formation assays. In the CAL27
and FaDu cells, both cisplatin and PGG inhibited colony formation, while the combined
treatments significantly suppressed colony formation (Figure 2).

Table 1. Summary of cisplatin IC50 (µg/mL), combination index (CI) values, and dose reduction
index (DRI) of PGG and cisplatin combination treatment in HNSCC cells.

Treatment CAL27 FaDU

IC50 (µg/mL) CI at IC50 DRI IC50 (µg/mL) CI at IC50 DRI

Cisplatin alone 5.4 ± 0.4 7.6 ± 1.4
Cisplatin with 10 µg/mL PGG 4.0 ± 0.1 1.2 1.35 5.4 ± 0.9 1.13 1.41
Cisplatin with 20 µg/mL PGG 1.4 ± 0.2 0.64 3.86 3.6 ± 1.7 0.81 2.11
Cisplatin with 30 µg/mL PGG 0.8 ± 0.6 0.51 6.75 1.2 ± 0.6 0.62 6.33

Different concentrations of PGG were employed to study the effect on IC50 of cisplatin. Drug interactions were
calculated by variable ratios of drug concentrations and mutually non-exclusive equations using Calcusyn. The
CI value >1 indicates antagonism, CI value = 1 indicates additive, and CI value < 1 indicates synergism. DRI was
measured by comparing the doses when used as a single treatment or combination. PGG, pentagalloyl glucose;
CI, combination index; DRI, dose reduction index; IC50, half-maximal inhibitory concentration.
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Figure 2. PGG enhances the role of cisplatin in survival of HNSCC cancer cells. Clonal survival
analysis showed the number of colonies of CAL27 (a) and FaDu (b) cells after treatment with PGG
(10, 20 µg/mL), cisplatin (2 µg/mL), or the combination of two drugs. Representative images are
shown in the left panel, and quantification graphs are shown in the right panel. Data are expressed as
(mean ± SD) of three independent experiments. * p < 0.05: significantly different from control, and
# p < 0.05: significantly different from PGG and cisplatin treatment alone. PGG, pentagalloyl glucose;
Cis, cisplatin.

2.2. PGG Enhanced the Apoptosis Induction Effect of Cisplatin in CAL27 and FaDu Cells

Next, we further assessed whether the mechanisms underlying the synergistic interac-
tion of PGG and cisplatin in cellular growth inhibition were related to apoptosis. Double
staining annexin V-FITC/PI apoptosis detection was performed to compare control, PGG
alone, cisplatin alone, and combined PGG and cisplatin groups by flow cytometry. We
chose two doses at approximately IC20 and IC50 (2 and 5 µg/mL) of cisplatin for apop-
tosis induction experiments based on the above results. PGG and cisplatin as single drug
treatments induced cellular apoptosis in a dose-dependent manner in CAL27 and FaDu cells.
Notably, treatment of cancer cells with a sub-lethal dose of cisplatin (2 µg/mL) resulted
in only a mild apoptosis rate while, when combined with PGG, a sub-lethal dose of cis-
platin significantly increased apoptosis in both cell lines compared to the single treatment
(Figure 3a–c). The enhanced apoptosis of the combined treatment was approximately 3-fold
higher than 2 µg/mL cisplatin alone and appeared to be higher than treatment with a
high concentration of cisplatin (5 µg/mL). Thus, these results demonstrated that cisplatin
synergizes with PGG to promote potent apoptosis in HNSCC CAL27 and FaDu cells. Fur-
thermore, we could reduce the dose of the chemotherapeutic drug while preserving the
anti-tumor activity by using it in combination with PGG. Then, we explored the mechanism
of the combined PGG + cisplatin treatment promoting apoptosis from the molecular level.
Specifically, we investigated the expression of apoptotic-related proteins caspase-3 and its
downstream factor poly ADP ribose polymerase (PARP), which is the hallmark of apoptosis
induction. In this study, we selected only the sub-lethal dose of cisplatin (2 µg/mL) to
test its effects in combination with PGG. We selected 10 and 20 µg/mL PGG to sensitize



Pharmaceuticals 2022, 15, 830 6 of 24

the sub-lethal dosage of anticancer drug-induced apoptosis. We could not collect protein
from the high concentration of PGG (30 µg/mL) group owing to the cells’ near-death.
The Western blot results showed that the sub-lethal dose of cisplatin treatment partially
activated caspase-3 and PARP cleavage expression levels in CAL27 and FaDu cells. On
the other hand, when combined with cisplatin, PGG significantly enhanced the apoptotic
induction ability of sub-lethal dosage cisplatin (Figure 3d,e), which strongly suggested that
PGG can enhance the anti-tumor effect of cisplatin by promoting apoptosis.

Figure 3. Effect of PGG and cisplatin monotherapy or in combination therapy on apoptosis of HNSCC
cancer cells. (a) Representative dot plots represent apoptosis responses to therapy with the indicated
compound(s) for CAL27 cells and FaDu cells. The quantification data represent the percentage of total
cell death in (b) CAL27 and (c) FaDu cells determined by flow cytometry. Western blot analysis of
apoptosis marker, caspase-3, and PARP, the relative density values of related proteins were quantified,
and their protein levels were normalized to the loading control GAPDH for (d) CAL27 and (e) FaDu
cells (uncropped images are provided in the Supplementary Figures S4 and S5). All data are expressed
as (mean ± SD) of three independent experiments. * p < 0.05: significantly different from control, and
# p < 0.05: significantly different from PGG and cisplatin treatment alone. PGG, pentagalloyl glucose;
Cis, cisplatin; PARP, poly ADP ribose polymerase.
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2.3. PGG Inhibits Migration and Promotes the Anti-Migration Effect of Cisplatin in CAL27 and
FaDu Cells

The effects of PGG combined with cisplatin on the cancer cell migration of CAL27
and FaDu cells were evaluated by scratch wound healing and Transwell migration assays.
As shown in Figure 4a,b, the scratch wound-healing assay showed that cells migrated
more quickly to heal the open wound area in the control and sub-lethal dose of cisplatin
(2 µg/mL) groups, indicating that a sub-lethal dose of cisplatin did not affect the wound
healing ability of CAL27 and FaDu cells. Meanwhile, 20 µg/mL PGG effectively suppressed
the migration of cells toward the scratch wound, leaving a large gap area of the open wound.
In addition, we found no significant difference after 10 µg/mL PGG treatment alone, but
the combination of 10 or 20 µg/mL PGG with 2 µg/mL cisplatin enhanced the inhibitory
effects on the migration of CAL27 and FaDu cells compared to the control or cisplatin alone
group. This result indicated that combined PGG plus cisplatin treatment enhanced the
inhibitory effects on the migration of CAL27 and FaDu cells. Furthermore, the Transwell
migration assay results showed a similar trend for 10 and 20 µg/mL PGG combined with
2 µg/mL cisplatin, which significantly inhibited the invasion of CAL27 and FaDu cells
compared to the control group or cisplatin-only group (Figure 4c,d). The results further
confirmed that PGG combined with cisplatin could inhibit the migration and invasion of
CAL27 and FaDu cells. Nevertheless, we found that the combination of 20 µg/mL PGG and
2 µg/mL cisplatin was excellent in delaying wound healing and inhibiting cell migration,
but the difference between 20 µg/mL PGG monotherapy was not statistically significant.

2.4. Combined Treatments of PGG and Cisplatin Abolished STAT3 and Akt Activation and
Enhanced Drug Sensitivity of HNSCC Cells

Previous studies have demonstrated that STAT3 plays an important role in tumori-
genicity and drug resistance and is aberrantly expressed in HNSCC cancer cells [23,24]. We
evaluated whether cisplatin-induced STAT3 activity could be reversed by PGG and could
increase the cell sensitivity to cisplatin. We found that both CAL27 and FaDu cells exhibited
high levels of phosphorylated STAT3 expression, and treatment with cisplatin for 48 h
resulted in a slight increase in phosphorylated STAT3. Moreover, cells treated with PGG
alone markedly suppressed the phosphorylation of STAT3 at Tyr705 in a dose-dependent
manner, while no apparent changes in total levels of STAT3 were observed in both CAL27
and FaDu cells. The combination of PGG plus cisplatin had an additive effect and reduced
STAT3 phosphorylation. Importantly, we found that cisplatin-stimulated active STAT3 was
dramatically inhibited by the combination treatment with PGG at 20 µg/mL (Figure 5).
Furthermore, the expression of Bcl-2 and VEGF, a critical mediator in cell survival and
migration and a downstream target of STAT3, were also decreased in the PGG and the
PGG plus cisplatin treatment groups compared to cisplatin alone. Akt is a well-known
serine/threonine kinase that plays a crucial role in cell proliferation, survival, and migra-
tion [25]. Since PGG and cisplatin inhibited cell proliferation and migration, we wished to
determine the Akt phosphorylation status upon these treatments. Phosphorylated Akt was
inhibited with the combined treatments of PGG and cisplatin. Total Akt expression levels
were not changed (Figure 5). Our data suggested that the PGG and cisplatin combination
efficiently inhibited the critical kinase Akt and transcription factor STAT3. These results
were consistent with our apoptosis and migration assay, showing reduced cell survival and
migration caused by PGG plus cisplatin in both CAL27 and FaDu cells. Since we found
that PGG inhibited the phosphorylation of STAT3 in the Western blot analysis, we further
elucidated the atomistic binding mechanisms of PGG against the target protein (STAT3)
using multiple computational modeling techniques.
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Figure 4. Effects of PGG combined with cisplatin on the migration and invasion of HNSCC cancer
cells. Representative microscopic images of wound healing (a) and quantification of the percentage
of wound closure (b) showing the effect of PGG (10, 20 µg/mL) or cisplatin (2 µg/mL) alone, or PGG
and cisplatin combined treatment. (c) Transwell chamber images of cell migration after treatment
with PGG (10, 20 µg/mL) or cisplatin (2 µg/mL) alone or a combination of PGG and cisplatin.
Scale bar = 100 µm. (d) The quantitative number of migrant cells. All data are expressed as the
mean ± SD of three independent experiments. * p < 0.05: significantly different from control, and
# p < 0.05: significantly different from PGG and cisplatin treatment alone. PGG, pentagalloyl glucose;
Cis, cisplatin.

2.5. Molecular Docking

According to the structure of STAT3, the phosphorylation of STAT3 at the Tyr705
residue is important for dimerization and transactivation. The dimerization of STAT3
occurs through the binding of phosphopeptide-containing pTyr705 from one monomer to
the Src-homology 2 (SH2) domain of another monomer [26]. The key amino acid for peptide
binding affinity was located at Arg609. This residue contributed to the binding between
STAT3 and the phosphorylated peptide [27]. Therefore, compounds that can be bound at
the SH2 domain and interact with Arg609 will prevent the dimerization of STAT3, leading to
inhibition of the STAT3 signaling pathway. Herein, we applied molecular docking to dock
PGG to the SH2 domain of STAT3 to clarify the inhibition of this compound. The validation
of the docking protocol was achieved by redocking of a co-crystalized ligand to the active
site at the SH2 domain, which showed a binding energy value of –8.6 kcal/mol. The
interactions of the docked and co-crystallized ligands were identical. Superimposition of
docked and co-crystallized ligands indicated an RMSD value of 0.887 Å (see Supplementary
Figure S2). The redocking of the ligand showed the very low RMSD values, indicating
good validation of docking protocols. PGG was docked to the SH2 domain of STAT3 with
a binding energy value of −6.6 kcal/mol. The interactions generally comprised hydrogen
bonding and van der Waals interactions. PGG showed the hydrogen bonding interaction
with the key residue Arg609 and other residues in the SH2 domain. For the binding poses
and protein-ligand interactions from the molecular docking see Supplementary Figure S3.
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Figure 5. The effect of PGG and cisplatin alone or in combination on STAT3/Akt signaling proteins in
HNSCC cancer cells. Representative images from Western blot analysis of the expression of p-STAT3,
total STAT3 and p-AKT, total Akt, Bcl-2, VEGF and GAPDH following treatment with either PGG
(10, 20 µg/mL) or cisplatin (2 µg/mL) alone, or their combination for 48 h in CAL27 cells (a) and FaDu
cells (c)(uncropped images are provided in the Supplementary Figures S6 and S7). The bar diagram
showing the fold change of protein expressions. The relative density values of related proteins were
quantified, and their protein levels were normalized to the loading control GAPDH (b,d). All data are
expressed as the mean ± SD of three independent experiments. * p < 0.05: significantly different from
the control, and # p < 0.05: significantly different from cisplatin treatment alone. PGG, pentagalloyl
glucose; Cis, cisplatin; Akt, serine/threonine kinase; STAT3, signal transducer and activator of
transcription 3; p, phosphorylated; t, total; GAPDH, glyceraldehyde 3-phosphate dehydrogenase;
VEGF, vascular endothelial growth factor.

2.6. Molecular Dynamic Simulation

The binding pose from molecular docking further underwent molecular dynamic
simulation to establish the stability, flexibility, and conformation changing of the protein-
ligand complex. In this study, the dynamic of the PGG-STAT3 complex was simulated for
50 ns. The protein-ligand complex stability was evaluated by calculating the root mean
square deviation (RMSD) of both protein and ligand, as depicted in Figure 6a. As a result,
PGG bound highly stably to the SH2 domain of STAT3. The backbone of STAT3 became
stable around 3 ns after simulation and remained stable thereafter with the RMSD values
ranging from 3 to 5 Å compared with the initial structure. The PGG became stable around
10 ns and remained stable during the simulation with an RMSD value of around 2 Å. Based
on the RMSD values, the fluctuation of both ligand and protein was sightly (RMSD < 2 Å)
indicative of the high stability of the protein-ligand complex. The binding pose in the
last frame of the molecular dynamics simulation of the STAT3–PGG complex is depicted
in Figure 7.
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Figure 6. (a) Root mean square deviations (RMSDs) of protein backbone in black and ligand in red
and (b) number of hydrogen bonds between protein and ligand with respect to 50 ns molecular
dynamic simulation.

Figure 7. The predicted binding mode in 2-dimension (2D) and 3-dimension (3D) formats of
PGG at the binding pocket of STAT3 was obtained from the last frame of the 50 ns molecular
dynamic simulation.

According to the data of the SH2 domain amino acid, most amino acids constructed
in the binding site were polar amino acids, including Arg609, Ser61, Glu612, Ser613,
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Thr620, Ser636, Val637, Glu638, Pro639, Tyr640, Gln644, Tyr657, Lys658, and Ile659. PGG
possessed a great number of hydroxy groups that interacted with these polar amino acids
through hydrogen bonding. Analysis of hydrogen bonding between receptor and ligand
showed that PGG formed stable hydrogen bonding with STAT3 as averaged around 11 H-
bonding (Figure 6b). This ability is assumed to be the abundance of hydrogen bonding that
encouraged the stability of the protein-ligand complex. We further investigated the stability
of the formed hydrogen bonds by measuring the distance and percentage of occupancy
as determined with a distance cut-off value of 3.5 Å. The stably formed hydrogen bonds
are shown in Table 2. As a result, Glu612 residue played a critical role in hydrogen
bonding interaction. This residue contributed four hydrogen bonds, with the percentage
of occupancy ranging from 80.14 to 92.91%. The distances between H-bond donor and
acceptor atoms were quite short, ranging from 1.6 to 1.7 Å. In addition, the residues Ser636
and Glu638 stably formed hydrogen bonding with PGG by reacting with carbonyl and
hydroxy groups. The key amino acid Arg609 formed moderate stable hydrogen bonds with
PGG. The interactions occurred when the amino group of guanidine moiety on Arg609
reacted with an oxygen atom of the hydroxy group on PGG at a very short bond distance.
However, some hydrogen bonds were unstable, with a percentage of occupancy less than
1%, such as in Glu594 and Ser613. Consequently, a great number of formed hydrogen
bonds influenced the strong binding between STAT3 and PGG, and the interaction on the
Arg609 residue prevented the binding of phosphorylated protein, leading to inhibition of
the STAT3 signaling pathway.

Table 2. Most contributed hydrogen bonding interactions between PGG and STAT3.

No. Hydrogen Bonding * Distance (Å) Occupancy (%)

1 Glu612-C=O····HO-PGG 1.758 ± 0.181 92.91
2 Glu612-C=O····HO-PGG 1.669 ± 0.152 88.62
3 Glu612-C=O····HO-PGG 1.674 ± 0.156 85.43
4 Glu612-C=O····HO-PGG 1.665 ± 0.156 80.14
5 Ser636-NH····O=C-PGG 2.416 ± 0.404 60.08
6 Ser636-C=O····HO-PGG 2.463 ± 0.870 40.92
7 Glu638-C=O····HO-PGG 2.785 ± 0.538 23.15
8 Arg609-NH·····O-PGG 2.450 ± 0.382 19.66
9 Arg609-NH····O-PGG 2.653 ± 0.597 18.56
10 Arg609-NH····O-PGG 2.486 ± 0.372 10.58
11 Ile634-C=O····HO-PGG 2.706 ± 0.549 3.49

* Hydrogen bonds are determined by the donor-acceptor angle > 120◦ and distance of < 3.5 Å.

2.7. Free Binding Energy Calculation

The free binding energy of STAT3 in complex with PGG was calculated using the
MM-PBSA methodology. The last 10 ns of trajectory with snapshots every 10 ps from the
molecular dynamic simulation was used for calculation. This method utilized the dynamic
of the protein-ligand complex to calculate the binding energy, which was more reliable
than the single conformation-based score from the molecular docking technique. The
free binding energy with its components, including van der Waals (∆Evdw), electrostatic
(∆Eelect), polar solvation (∆Epolar), and solvent-accessible surface area (SASA) or (∆ESASA),
are depicted in Table 3. The binding energy (∆Gbind) was −27.938 ± 5.224 kcal/mol and
was contributed predominantly by van der Waal and electrostatic interactions with energy
values of −46.858 ± 4.360 and −47.356 ± 4.681, respectively.

Table 3. Molecular energetic terms of interactions between PGG and STAT3 receptor.

Terms Energy (kcal/mol)

van der Waals (∆Evdw) −46.858 ± 4.360
electrostatic (∆Eelect) −47.356 ± 4.681

polar solvation (∆Epolar) 72.616 ± 7.008
SASA (∆ESASA) −5.861 ± 0.3566

binding energy (∆Gbind) −27.938 ± 5.224
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Analysis of the free energy contribution per residue revealed the amino acids that
played a crucial role in the binding of PGG at the SH domain of STAT3. The free binding
energy per residue and its 12 major amino acid components are shown in Table 4. As a
result, PGG bound tightly with Lys531, Lys557, Arg609, Ser613, Lys615, Thr620, Thr622,
Trp623, Ile634, Ser636, Val637, and Pro639 residues. The ∆EMM contributed favorably,
resulting in an overall binding of PGG on STAT3, except on Lys531 and Arg609. Polar
solvation energies (∆Epolar) were mostly unfavorable for binding except on Lys531, which
contributed a predominantly negative energy value indicating the easy solvation of PGG.
The residues Lys557, Ser636, Val637, and Pro639 mainly contributed potential energy
(∆EMM). The residue Lys557 promoted ∆EMM = −1.522 ± 0.036 kcal/mol by a van der
Waals interaction between the methylene group (CH2) with an aromatic ring of PGG. The
primary free binding energy residues contributed were Val637 and Pro639 with the binding
energies of −1.402 ± 0.014 and −1.372 ± 0.007 kcal/mol, respectively, through the van
der Waals interactions with PGG. Residue Val637 interacted with PGG through π-stacked,
π-alkyl interactions of carbonyl and isopropyl moieties, respectively. The pyrrolidine ring
of Pro639 interacted with the carbonyl group and aromatic ring of PGG through a carbon-
hydrogen bond and π-alkyl interaction. In addition, analysis of the binding energy of key
amino acid Arg609 showed that these residues demonstrated the favored and negative
binding energy of −0.518 ± 0.043 kcal/mol, contributed predominantly by polar solvation
energy. All computational simulations supported the inhibition of STAT3 by PGG.

Table 4. Per residue energy contribution of PGG interacting with the binding site of STAT3.

Residue
Energy (kcal/mol)

Potential Energy
(∆EMM)

Polar Solvation
(∆Epolar)

SASA
(∆ESASA)

Binding Energy
(∆Gbind)

Lys531 −0.916 ± 0.017 −1.721 ± 0.024 −0.001 ± 0.000 −0.806 ± 0.015

Lys557 −1.522 ± 0.036 1.023 ± 0.075 −0.075 ± 0.002 −0.574 ± 0.057

Arg609 0.515 ± 0.025 −0.890 ± 0.052 −0.142 ± 0.001 −0.518 ± 0.043

Ser613 −0.091 ± 0.014 −0.258 ± 0.017 −0.146 ± 0.002 −0.495 ± 0.016

Lys615 −0.882 ± 0.014 0.034 ± 0.011 −0.001 ± 0.000 −0.848 ± 0.010

Thr620 −0.928 ± 0.008 0.457 ± 0.009 −0.054 ± 0.001 −0.525 ± 0.010

Thr622 −0.327 ± 0.005 −0.588 ± 0.006 −0.009 ± 0.000 −0.923 ± 0.006

Trp623 −0.735 ± 0.007 0.288 ± 0.004 −0.068 ± 0.001 −0.514 ± 0.007

Ile634 −0.793 ± 0.009 0.435 ± 0.010 −0.075 ± 0.001 −0.433 ± 0.009

Ser636 −4.245 ± 0.021 4.300 ± 0.019 −0.349 ± 0.001 −0.296 ± 0.023

Val637 −2.886 ± 0.012 1.632 ± 0.013 −0.147 ± 0.001 −1.402 ± 0.014

Pro639 −1.269 ± 0.007 0.015 ± 0.002 −0.118 ± 0.001 −1.372 ± 0.007

2.8. The Combination of PGG and Cisplatin Exerts a Strong Cytotoxic Effect on HNSCC Cancer
Cell Lines in the 3D Cell Culture

We applied the multicellular spheroid technique to determine whether combination
therapy exerted its cytotoxic potential in the 3D cell culture; spheroid models were proposed
as mimics of the in vivo tumors. Initial spheroid sizes evaluated after 48 h of cell seeding
were 200 ± 11 and 300 ± 15 µm (n = 100) for CAL27 and FaDu cells, respectively. On the
same day, the selected spheroids were treated with (approximately 2IC50 of 2D culture
system) 50 µg/mL PGG, 10 µg/mL cisplatin, or a combination of PGG and cisplatin.
Treatment efficacy was assessed based on spheroid size by measuring at the three different
time points (72, 144, and 216 h), and the acridine orange (AO) and propidium iodide (PI)
dual-staining assay was used to determine the treatment-induced cell death in the spheroid
72 h after treatment. Moreover, after 9 days of culturing, spheroids were collected and
examined for their viability using an ATP determination assay. As expected, the spheroids
of both cell lines were less sensitive to drug doses that were effective in the 2D cell culture.
Thus, the doses selected for 3D culture were higher than those used in the 2D system.
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The results revealed that treatment with PGG or cisplatin alone exerts a more negligible
effect on tumor spheroids as indicated by the unchanged size in CAL27 cell spheroids. In
contrast, in FaDu cell spheroids treatment with PGG or cisplatin alone reduced the growth
rate of the spheroids as indicated by the reduced spheroid size, while the combination of
PGG with cisplatin resulted in a higher reduction in the spheroid size and cell debris in the
surrounding spheroid in both CAL27 and FaDu cell spheroids (Figure 8a,b). Interestingly,
FaDu cell spheroids were sensitive to PGG or cisplatin monotherapy, whereas a significant
effect was obtained in CAL27 cell spheroids only after combination treatment. The same
tendency was observed in the ATP content of the tumor spheroids in the cell viability assay;
the combination treatment of PGG with cisplatin led to a significant reduction in the ATP
content compared to monotherapy (Figure 8d). In the next step, the effect of treatment-
induced cell death in the 3D tumor spheroid was evaluated by AO/PI dual staining. AO is
a vital dye that stains both live and dead cells, and PI stains only cells with lost membrane
integrity. Therefore, viable cells appeared uniformly green; dead cells incorporated PI and
were consequently stained orange. The results are shown in Figure 8c. A total of 50 µg/mL
PGG or 10 µg/mL cisplatin treatment slightly induced apoptosis in tumor spheroids as
indicated by spheroid nuclei that turned fluorescent orange from the propidium iodide
stain, indicating compromised membrane integrity, and these spheroids also exhibited
decreased green cytoplasmic fluorescence. The combined PGG and cisplatin treatment
resulted in higher cell death induction in tumor spheroids; we observed an increase in
isolated single cells and smaller spheroids, indicating the loss of well-circumscribed edges
on the otherwise compact spheroids (especially CAL27 cell spheroids). In addition, an
increase in the fluorescent intensity of the PI stain resulted in dead cells becoming orange.
All indicated apoptosis and necrosis induction in treated tumor spheroids.

Figure 8. Effects of PGG combined with cisplatin on cell viability in the 3D HNSCC cancer cell
culture. The effect of 50 µg/mL PGG, 10 µg/mL cisplatin, and their combination on CAL27 and FaDu
multicellular spheroids after 72, 144, and 216 h of treatment. (a) Typical images of CAL2 and FaDu
multicellular spheroids after 216 h of control or treatment with PGG, cisplatin, and their combination.
Scale bar = 100 µm. (b) The spheroid size was calculated from three independent experiments
(n = 3) measuring the size of eight spheroids for each condition. Data are expressed as mean ± SD.
(c) AO/PI staining revealed the apoptosis induction in 3D spheroids treated with 50 µg/mL PGG,
10 µg/mL cisplatin, and their combination on CAL27 and FaDu multicellular spheroid for 72 h.
Scale bar = 100 µm. (d) Relative ATP content (% of control) at day 9 of CAL27 and FaDu multicellular
spheroid. All data are expressed as the mean ± SD of three independent experiments. * p < 0.05:
significantly different from control, and # p < 0.05: significantly different from PGG and cisplatin
treatment alone. PGG, pentagalloyl glucose; Cis, cisplatin.
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3. Discussion

This study demonstrated for the first time the ability of PGG to synergize the anti-
cancer effects of cisplatin in HNSCC cancer cell lines. Based on the current challenges in
HNSCC cancer treatment, cisplatin was combined with radiotherapy in the organ preserva-
tion protocol for HNSCC patients. Although the combination of cisplatin and radiotherapy
can significantly improve the prognosis of HNSCC patients, the severe side effects of
platinum drugs are also a non-negligible fact in clinical applications [6,28]. Therefore, it is
essential to find new drugs or novel combination strategies that are more effective against
HNSCC and can alleviate the side effects of chemotherapy drugs. An accumulating body of
evidence has suggested that therapies having multiple targets result in more dramatic ben-
efits than single-targeted therapies, because each agent has a different target or mechanism
of action against cancer cells. Thus, the combination treatment could either enhance the
clinical responses while decreasing the drug concentrations required for efficacy, leading to
lowering the side effects and the incidence of drug resistance [7].

Combining naturally occurring phytochemicals with chemotherapeutic drugs has re-
ceived heightened attention. Several compounds from natural products have been reported
to improve the therapeutic outcomes of cancer patients when used in combination with
chemotherapeutic drugs. Combining these treatments can induce synergetic effects, inhibit
side effects, or overcome drug resistance [7,8,11]. Previous studies have suggested the syn-
ergistic action of PGG with the traditional chemotherapeutic drug 5-FU in hepatocellular
carcinoma. This combination induced apoptosis by increasing the proportion of Bax/Bcl-2
and promoting the activation of caspase-9 and caspase-3. Moreover, the combination also
had synergistic effects on aggressive phenotypes of HepG2 cells by downregulating mul-
tidrug resistance protein 1 (MDR1) and low-density lipoprotein receptor-related protein 1
(LRP1), suggesting the potential to reverse the resistance to 5-FU of PGG [22]. In this study,
we first found that the combination of PGG with cisplatin had a much stronger cell prolifer-
ation inhibitory effect on CAL27 and FaDu HNSCC cancer cells in the 2D culture compared
with the effect observed in monotherapy experiments. The Chou–Talalay analysis revealed
that the drugs acted synergistically. We found that the combination of 20 µg/mL PGG
and cisplatin was an effective synergistic dose (CI < 1) (Figure 1f,g and Table 1). This com-
bination reduced the dose of cisplatin required to achieve the same growth inhibitory
rate in CAL27 and FaDu cells by 3.9- and 2.1-fold, respectively. Moreover, the dose of
20 µg/mL PGG used in the combination treatment did not induce any cytotoxicity as eval-
uated on normal mouse fibroblasts L929 cells, indicating that the PGG compound caused
cytotoxicity preferentially to cancer cells. Thus, this combination concentration was used
in the following experiments. A colony-formation assay was performed to validate the
effect over a long-term period. We found that the combination dose of PGG and cisplatin
significantly reduced the colony-forming ability of CAL27 and FaDu cells compared to
corresponding monotherapy doses and untreated control (Figure 2). Moreover, in this study,
we provided evidence that either PGG or cisplatin inhibits the proliferation and induces
apoptosis of HNSCC cell lines in a dose-dependent manner. The combination of PGG and
cisplatin potentiated the apoptotic effect of cisplatin. A combination sub-lethal dosage of
cisplatin (2 µg/mL) and PGG (20 µg/mL) effectively induced apoptosis in HNSCC cell
lines. The apoptotic rates obtained with the PGG + cisplatin allowed a reduction in the dose
of cisplatin required to achieve the same apoptotic rate in HNSCC cell lines by 2.5 times
(Figure 3b,c). The PGG and cisplatin combination compared to cisplatin alone increased
PARP proteolytic cleavage and induced the activation of the effector caspase-3, which
activated the apoptotic pathways. The model of interaction between PGG and cisplatin,
when used in combination in HNSCC cell lines, indicated the onset of the sensitizing effect
of the two compounds compared with the associated single treatment after a decrease
in their concentrations. Interestingly, the combination treatment with PGG allowed for
lowering the dose of cisplatin required to achieve the anti-cancer effect. This will provide an
experimental basis for the practical application of PGG in vivo since cisplatin has objection-
able side effects such as severe mucositis and nephrotoxicity [28]. Suppressing the growth
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of HNSCC cells can be achieved using a lower dose of cisplatin when combined with the
nontoxic natural product PGG, allowing for reduced toxicity and a vastly improved patient
quality of life. In agreement with our result, a previous study revealed the protective effect
of PGG against cisplatin-induced cytotoxicity and apoptosis in normal human primary
renal epithelial cells. PGG attenuated reactive oxygen species (ROS) production medi-
ated by cisplatin treatment and significantly blocked cisplatin-mediated cytotoxicity [21].
Other studies have shown that PGG inhibits the migration and invasion of several cancer
cells [15,18]. Meanwhile, in our study, we found that a combination of PGG and cisplatin
can enhance cisplatin’s inhibitory ability in HNSCC cells to migrate and invade. This result
was consistent with the study by Ding et al., who reported that a combination of 5-FU
and PGG effectively inhibited the migration and invasion of HepG2 cells [22]. However,
in this study, we used a sub-lethal concentration of cisplatin (2 µg/mL); at this concen-
tration, we observed little inhibitory effect on the wound healing and migration ability
of CAL27 and FaDu cells, as well as this concentration being without any impact on cell
killing. Moreover, it has been reported that the cancer cells treated with sub-lethal doses
of cisplatin take an adaptive mechanism to escape from the stress condition induced by
cisplatin by triggering the epithelial-to-mesenchymal transition (EMT) process and toward
increased expression of migratory-related proteins, subsequently facilitating cancer cell
migration [29,30]. Interestingly, the combination therapy of sub-lethal dose cisplatin with
10 and 20 µg/mL is more potent for the cell migration inhibition than 2 µg/mL cisplatin
monotherapy. An effect likely caused by PGG-mediated suppression of cisplatin-induced
EMT process and, consequently, inhibits cell migration, paradoxically in monotherapy with
20 µg/mL PGG seems to have a higher efficacy to impede the migration of both HNSCC
cell lines than the combination therapy (Figure 4). This phenomenon may explain that PGG
20 µg/mL indeed affected the inhibition of the rate of cell migration and cell proliferation.
In contrast, cisplatin did not, thus indicating a reduction in migration due to an impaired
migration and the reduced proliferation effect, which was not the case for combination
therapy. The effect of PGG on inhibiting the EMT process has been reported previously.
The combination treatment of PGG from Maprang seed extract (MPSE) with radiation can
inhibit the radiation-induced EMT process and further confer its radiosensitizing effect [20].
These results encourage the potential of utilizing PGG in combination with conventional
therapy to enhance the efficacy of cancer treatment.

HNSCC cells frequently overexpress EGFR and ErbB2 receptors, which activate
STAT3 [24,31]. The dysfunctional regulation of the STAT3 oncogene contributes to tumor
development and progression in several cancers, including HNSCC [32,33]. The associa-
tion of STAT3 hyperactivation with poor prognosis, resistance to therapies, and immune
escape makes it a tempting target in HNSCC, particularly in HPV-negative HNSCC, where
treatment targeting this pathway may be effective [34]. This study chose the HPV-negative
HNSCC cell lines, CAL27, and FaDu cells, as a model to test the ability of PGG to synergize
the anti-cancer effects of cisplatin. Several studies have demonstrated that PGG can inhibit
STAT3 phosphorylation and suppress tumor growth and metastasis in breast and prostate
cancer cells [15,18]. Our previous study showed that PGG inhibited the activation of STAT3
in HPV-negative HNSCC cell lines, resulting in the suppressed self-renewal activity of
cancer stem cells and inhibiting the tumor spheroid formation. Moreover, the combination
treatment with PGG sensitized HPV-negative HNSCC cell lines to the effect of radiation-
induced cell death, which may be at least partially mediated by the inhibition of the STAT3
pathway [13]. When activated, STAT3 is capable of mediating several critical signaling
pathways, including proliferative, survival, and metastasis, and can modulate a variety of
genes involved in the cell cycle (c-Myc and cyclin D1), anti-apoptosis (Bcl-2 and survivin),
angiogenesis (VEGF), and metastasis (MMP-9, EMT) [35]. Here, we observed that PGG
mediated the inhibition of STAT3 phosphorylation as evidenced by the suppression of the
STAT3-regulated gene products, including the VEGF and Bcl-2, in PGG-treated CAL27 and
FaDu cells. In addition, in the present study, we found cisplatin-induced STAT3 activation,
but PGG blocked the activation dose-dependently when combined with cisplatin in both
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CAL27 and FaDu cells. These results agreed with the fact that DNA adduct is a molecular
mechanism for cisplatin [3]. It is essential that the PGG and cisplatin action mechanisms
are not overlapping, which is a desirable characteristic of synergistic combination therapy.
We already studied the interactions of PGG on the SH2 domain of STAT3 receptor by
computational simulation with molecular docking, molecular dynamic, and MM-PBSA
techniques. The computational results strongly correlated with the Western blot experiment,
showing that PGG can stably bind to the SH2 domain. The binding stability is mostly
contributed by hydrogen bonds, especially Glu612, Ser636, Glu638, and Arg609 residues,
and van der Waals interaction of Val637 and Pro639. In addition, energy decomposition
per residue demonstrated the favored interaction of PGG with key amino acid residue
Arg609, preventing the activation of STAT3 by phosphopeptide-containing pTyr705 peptide.
These findings suggested that PGG inhibits the activation of STAT3 and is responsible for
inhibiting cell proliferation and apoptosis induction induced by treatment with PGG and
PGG plus cisplatin. The phosphatidylinositol-3 kinase (PI3K)/Akt pathway plays a crucial
role in survival when cancer cells are exposed to different kinds of apoptotic stimuli and are
also associated with cancer progression, migration, and involvement in drug resistance [36].
The Akt activation may lead to cell survival and inhibit apoptosis via the phosphorylation
of the Bcl-2-associated agonist of cell death (Bad) and the caspase cascade pathway [37].
PGG has been reported to inhibit breast cancer cell growth by directly inhibiting Akt kinase
activity [38]. In our study, PGG alone effectively suppressed Akt phosphorylation, and
the combination of PGG and cisplatin potentiated the effect of cisplatin-induced Akt phos-
phorylation. Therefore, Akt inhibition was suspected of having a mechanism to promote
cisplatin sensitivity in HNSCC. The contribution of Akt pathway inhibition to apoptosis
with PGG was determined from the enhancement of cisplatin-induced apoptosis with PGG
plus cisplatin. These findings suggested that PGG might inhibit the activation of the Akt
pathway, leading to the acceleration of cisplatin-induced apoptosis. In addition, PGG can
inhibit tumor metastasis and multiple signal pathways involved in the metastasis of breast
and prostate cancers [15,18]; a future study will investigate the effects and mechanisms of
PGG combined with cisplatin on tumor metastasis.

In order to approach the tumor situation in vivo more closely, a 3D tumor spheroid
model and viability protocol were established. Tumor spheroids represent the architecture
of solid tumors in vivo, mimicking the tumor microenvironment observed in different
tumor heterogenic cells [39]. Our study agreed with other studies that 3D tumor spheroids
were more resistant to treatment than 2D monolayers [40,41]. Our results showed that
combination therapy of PGG and cisplatin maintained a strong cytotoxic effect in the 3D
cell culture and was significantly more potent than the results of both monotherapies
(Figure 8). These data demonstrated that the novel combination of PGG and cisplatin was
effective against the monolayer culture of HNSCC and in 3D tumor spheres. Moreover, it
is known that tumor-surrounding cells, including fibroblasts and immune cells, impact
the response of tumor cells to treatment, which is a point that is usually not considered
in 2D cultures [42]. However, adding different cell types and thus heterogeneity to 3D
models would also add complexity, making it difficult to answer the question. Therefore,
we decided here to focus on culturing conditions only (2D vs. 3D) to investigate the ability
of PGG to synergize the anti-cancer effects of cisplatin in HNSCC cancer cell lines. Thus,
if these novel combination treatment results are transferred to the clinical setting, it will
become necessary to work with models as close to the patient’s situation as possible.

4. Materials and Methods
4.1. Chemicals and Reagents

Eagle’s Minimum Essential Medium (EMEM), Roswell Park Memorial Institute (RPMI)
1640 medium and Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 (DMEM/F-
12) were purchased from Caisson Lab (Smithfield, UT, USA). The cell culture products,
including Trypsin-EDTA, fetal bovine serum (FBS), penicillin, and streptomycin, were pur-
chased from Gibco Thermo Fisher Scientific (Waltham, MA, USA). 3-(4,5-dimethylthiazol-2-
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yl)-2,5-diphenyltetrazolium bromide (MTT), bovine serum albumin (BSA), and standard
Penta-galloyl-β-D-glucose hydrate (PGG) were purchased from Sigma-Aldrich (St. Louis,
MO, USA). The additional growth factors for cell culture, such as human insulin, epidermal
growth factor, basic fibroblast growth factor, and hydrocortisone, were obtained from
Sigma-Aldrich (St. Louis, MO, USA). The annexin V-FITC/propidium iodide (PI) apoptosis
detection kit was also purchased from Sigma-Aldrich (St. Louis, MO, USA). PMSF and
cocktail protease inhibitors were purchased from Hi Media Laboratories (Marg, Mumbai,
India). Primary antibodies against total Akt, phosphorylated Akt (Ser473), total STAT3,
phosphorylated STAT3 (Tyr705), cleaved-caspase 3, Bcl2, cleaved-PARP, and GAPDH, as
well as horseradish peroxidase-labeled secondary antibodies, were purchased from Merck
(Merck, Darmstadt, Germany).

4.2. PGG Isolation and High-Performance Liquid Chromatography (HPLC) Quantification

PGG was isolated from the seeds of Bouea macrophylla Griffith as described previ-
ously [13]. In brief, a crude ethanolic extract of Bouea macrophylla seed (MPSE) was prepared
at 1 g/L in deionized water and stored at −20 ◦C in a freezer for 3 h, and then cooled to
4 ◦C by air exposure at room temperature for another 3 h. After that, the cold solution was
collected and filled into a 50 mL centrifuge tube and centrifuged at 2500× g for 20 min.
The pellets were washed with 50 mL cold water and centrifuged at 2500× g for 20 min
for five cycle times. Next, the PGG pellets were collected and lyophilized to powder
(weight = 0.114 g; yield = 11.4%) and kept in a desiccator at room temperature for further
study. PGG purity was 97% quantified using a Shimadzu LC-20AD Prominence Liquid
Chromatograph system equipped with an SPD-M20A Prominence Diode Array Detector
(Shimadzu, Nakagyo-Ku, Kyoto, Japan) according to a previously well-established and
validated method [43]. For the experiment, PGG was dissolved in 1 mL of deionized water
and sonicated for 30 min to make a stock solution of 1 mg/mL (1.06 mM), while cisplatin
was prepared as a 1 mg/mL (3.32 mM) stock in 0.9% sodium chloride (NaCl). Both PGG
and cisplatin were filtered through a 0.22-µm membrane, aliquoted, and stored at −20 ◦C
until further use. The drugs were then diluted in a complete medium to provide a final
working concentration.

4.3. Cell Lines and Cell Culture Conditions

Human head and neck squamous cell carcinoma CAL27 (CRL-2095™), FaDu (HTB-43™),
and normal mouse fibroblast NCTC clone 929 (L929) cell lines were purchased from
American Type Culture Collection (Manassas, VA, USA). The cancer cell lines CAL27 and
FaDu were cultured in Eagle’s Minimum Essential Medium (EMEM) containing 10% FBS,
2 mM l-glutamine, 100 U/mL penicillin, and streptomycin. L929 were maintained in
Roswell Park Memorial Institute (RPMI) 1640 medium supplemented with 10% FBS, 2 mM
l-glutamine, and 100 U/mL penicillin and streptomycin. All cell lines were cultivated at
37 ◦C in a humidified incubator with 5% CO2.

4.4. Cell Viability Assay

Cells were seeded onto 96-well plates at 5 × 103 cells/well density and allowed to
grow overnight in an incubator at 37 ◦C. Cells were treated with PGG (0–100 µg/mL
or 0–106.3 µM), cisplatin (0–15 µg/mL or 0–49.8 µM), or with a combination of the two
compounds with a fixed concentration of PGG (10, 20, 30 µg/mL or 10.6, 21.3, 31.9 µM)
and various concentrations of cisplatin (0–15 µg/mL or 0–49.8 µM). After treatment, cells
were cultured for 48 h, and cell viability was assessed by a 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay. In brief, After the treatment period, 20 µL
of the MTT solution (final concentration of 0.1 mg/mL) were added to the cells and
then incubated at 37 ◦C for 4 h. The Formazan crystal product was dissolved in 100 µL
of dimethyl sulfoxide (DMSO). The absorbance of formazan solution was measured at
560 nm using a microplate reader (BioTekTM EonTM microplate reader, Winooski, VT, USA).
The absorbance of the treated cells was divided by that of the control cells to determine
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relative cell viability. Three independent experiments were used to determine the half-
maximal inhibition concentration (IC50) using OriginPro version 2018 software (Origin
Lab, Northampton, MA, USA). The combination index (CI) was determined using the
Chou–Talalay method and the software package CompuSyn (Biosoft, Ferguson, MO, USA).
Then, we employed a Fa-CI plot (Fa–fraction affected) analysis to determine whether the
interactions between two compounds were additive, synergistic, or antagonistic. A CI
value of less than one was defined as synergism [44].

4.5. Colony-Formation Assay

Human head and neck squamous cell carcinoma CAL27 and FaDu cell lines were
seeded in 6-well plates and allowed to grow overnight, then treated with PGG, cisplatin,
or a combination of the two drugs for 48 h. Cells were maintained for 14 days to allow
colonies to form. After that, colonies were fixed in fixation solution (3:1 of methanol/acetic
acid) for 30 min at room temperature and stained with 1% crystal violet. Cell colonies with
more than 50 cells were imaged and counted using an inverted microscope (ECLIPSE Ts2,
Nikon, Tokyo, Japan).

4.6. Apoptosis Assay in Monolayer Tumor Cells by Annexin V-FITC/PI Double Staining

Cells were seeded into a 6-well plate for 24 h to allow attachment before treatment
with varying concentrations of either PGG, cisplatin, or a combination of the two drugs.

After treatment for 48 h, cells were detached with a trypsin-EDTA solution and
then washed with 1× binding buffer. The collected cells were dual stained with the
annexin V-FITC and PI for 20 min at room temperature in complete darkness, following
the manufacturer’s instructions. The stained cells were immediately analyzed by flow
cytometry (CytoFLEX, Beckman Coulter, Brea, CA, USA). The flow cytometric data was
then analyzed using the FlowJoTM software version 10 (Becton, Dickinson & Company,
Buena, NJ, USA).

4.7. Scratch Wound Healing Assay

CAL27 and FaDu cells (5 × 105 cells/well) were grown in a 6-well plate to form a
confluent monolayer. A wound was then created using a sterile 200 µL micropipette tip,
and the detached cells were removed by washing with phosphate buffer saline. The cells
were then treated with PGG, cisplatin, or a combination of the two drugs and further
incubated in EMEM medium with 0.5% FBS for 48 h. The wound gap was observed and
photographed using phase-contrast microscopy (Nikon, ECLIPSE Ts2, Tokyo, Japan). The
images were analyzed using ImageJ software 1.52v version (National Institutes of Health,
Bethesda, MD, USA) to measure the width of the scratch.

4.8. Transwell Migration Assay

Cell migration assays were performed using Transwell chambers (8 µm pore size,
Corning Co., Corning, NY, USA). CAL27 and FaDu cells were suspended in a serum-free
medium at a density of 1 × 105 cells/mL. Then, 200 µL of cell suspension containing PGG,
cisplatin, or a combination of the two drugs was added into the upper Transwell chamber.
The lower compartments were filled with 600 µL of medium with 20% FBS. After incubation
for 24 h, cells on the upper layer of the chamber were excluded with a cotton swab, and the
cells that had migrated through to the underside of the insert membranes were fixed with
4% paraformaldehyde for 10 min and stained with 1% crystal violet for 20 min. Cells in
five separate microscope fields were counted and captured under an inverted microscope
(ECLIPSE Ts2, Nikon, Tokyo, Japan).

4.9. Western Blot Analysis

After treatment, cells were lysed for 30 min on ice with CelLyticM lysis solution
(Sigma-Aldrich, St. Louis, MO, USA) and a 1% protease inhibitor cocktail to extract the
proteins from the cells. The total protein concentrations were determined by the Brad-
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ford assay (Sigma-Aldrich). An equal amount of protein samples (15 µg) was separated
on NUPAGETM 4–12% Bis-Tris Gels (Thermo Fisher Scientific, Waltham, MA, USA). The
separated proteins from the gel were transferred and deposited into a PVDF membrane
(Millipore, St. Louis, MO, USA). The whole transferred membranes were cut at the ap-
propriate molecular weight range of specific protein and blocked for 1 h in 5% nonfat dry
milk in Tris-buffered saline with Tween and incubated overnight with specific primary
antibodies against total Akt, phosphorylated Akt, total STAT3, phosphorylated STAT3,
cleaved-caspase 3, cleaved-PARP, Bcl-2, VEGF, as well as GAPDH. Then, membranes
were washed, followed by incubation with appropriate horseradish-peroxidase-labeled
secondary antibodies (at a dilution of 1:10,000) for 1 h at room temperature. Signals were
developed using the enhanced chemiluminescence assay (Millipore Corporation) and ex-
posed to film. The images were scanned, and the intensity of each band was captured using
ImageMaster 2D platinum version 5.0 (GE Healthcare Amersham Bioscience, Chicago, IL,
USA). The protein content was normalized to GAPDH.

4.10. Three-Dimensional (3D) Tumor Model and Drug Response Assays

Human head and neck squamous cell carcinoma CAL27 and FaDu cell lines were grown
in 3D cultures to form multicellular tumor spheroids. First, single cells at 1 × 103 cells/well
were suspended in spheroid media (serum-free DMEM/F-12 media supplemented with
1% BSA, 5 µg/mL insulin, 25 ng/mL basic fibroblast growth factor, 25 ng/mL epidermal
growth factor, and 0.5 µg/mL hydrocortisone) and plated in a Matrigel Matrix Growth
Factor Reduced (BD Biosciences) precoated 96-well ultra-low attachment culture plate for
48 h at 37 ◦C in 5% CO2 to form spheroid tumors. Next, spheroids were treated by applying
monotherapy and combination therapy. Pictures of spheroids were taken with an inverted
phase-contrast microscope (ECLIPSE Ts2, Nikon, Tokyo, Japan) every other day for 9 days.
Spheroid dimensions were quantified using ImageJ 1.52v software (National Institutes of
Health, USA). After 9 days of growth, spheroids were moved separately to a single well of
a 96-well plate and cell viability was determined using an ATPliteTM luminescence assay
(PerkinElmer, Waltham, MA). The luminescence signal was measured using a luminescent
microplate reader (SpectraMax® i3x multi-mode microplate reader, Molecular Devices,
LLC, San Jose, CA, USA).

4.11. Cell Viability (Live/Dead) in 3-Dimensional Tumor Model by Propidium Iodide (PI)/Acridine
Orange (AO) Staining

Multicellular tumor spheroids were treated with PGG, cisplatin, or a combination of
the two drugs for 96 h. Then, spheroids were washed with PBS, after which a solution
containing PI/AO was added and incubated for 30 min. The stained cells were immedi-
ately visualized and imaged under an inverted fluorescence microscope (ECLIPSE Ts2,
Nikon, Tokyo, Japan). The differentiation between viable and dead cells was based on the
difference in dye permeability into the intact cell membrane. Green cells represented viable
cells and were stained only with AO; green and orange cells with condensed chromatin
represented an apoptotic cell and were stained with AO and PI; finally, necrotic cells were
red and stained with PI. Six spheroids per treatment were imaged to ensure that the data
obtained were representative. All images were equally processed, adjusting the contrast
and saturation associated with each fluorescence channel.

4.12. Molecular Docking

The signal transducer and activator of transcription 3 (STAT3) play important roles
in the multidrug resistance of cells. This protein was utilized to clarify the mechanism
of action of pentagalloyl glucose in the drug combination study. The protein structures
of STAT3 in complex with inhibitor SI109 (PDB ID: 6NUQ) were retrieved from a protein
databank (https://www.rcsb.org/, accessed on 30 November 2021). Protein structures
were prepared with BIOVIA Discovery Studio 2020 software (BIOVIA Discovery Studio
Visualizer, version 21.1.0.20298, San Diego, CA, USA). The water molecules, ions, and
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ligands were removed. Missing residues were added using the Modeller 10 package [45],
and the standard protonation state was calculated at pH 7.4 with the ProPka server [46].
3D structures of ligands were generated by GaussView 6 software [47]. The structures were
optimized via DFT calculation using B3LYP/6-311G++(d, p) as the basis set for calculation
with the Gaussian 16 package [48]. Ligands were further prepared using the AutoDock
Tool 1.5.6 package by merging non-polar hydrogens, assigning Gasteiger charges, and
converting to pdbqt format. All molecular docking experiments were performed on the
HP Z8 G4 workstation with an Intel® Xeon® Scalable Processor comprising 20 physical
processors running on the Ubuntu 20.04 operating system. AutoDock Vina software was
used for docking simulation [49]. The docking methods were validated by redocking of the
co-crystalized ligand into the binding pocket. The grid parameters were generated using
the AutoDock Tool 1.5.6 package. The grid size was defined as 40 × 58 × 40 (x, y, z) with
a grid spacing of 0.375 Å. The grid box was generated by covering the active site of the
SH2 domain on chain A at 13.619, 54.024, −0.083 along x, y, and z dimensions. The best
binding pose was visualized, and protein-ligand interactions were analyzed with BIOVIA
Discovery Studio 2020.

4.13. Molecular Dynamic Simulations

All molecular dynamic simulations were conducted on an HP Z8 G4 workstation and
were accelerated by NVIDIA® Quadro® P4000 GPU. The simulations of protein-ligand
complexes were achieved via the GROMACS 5.1.4 package [50] using GROMOS 54A7
force field [51] for the generation of topology and coordinate files. The best binding poses
of ligands on receptors were selected to further investigate their dynamic. Topologies of
ligands were generated by Automated Topology Builder (ATB) and the Repository Version
3.0 server, available at https://atb.uq.edu.au/, accessed on 12 December 2021 [52]. The
protein-ligand complex was placed in the dodecahedral box, maintaining a distance of
1.0 nm between the solutes and the side of the box, followed by the solvation of water
molecules using the SPC model. Sodium (Na+) and chloride (Cl−) ions were added for
neutralization. The system minimized the energy using the steepest descent algorithm
with a tolerance value of 10 kJ/mol/nm. Equilibration of the system was restrained by a
constant number of particles, volume, and temperature (NVT) and a constant number of
particles, pressure, and temperature (NPT) ensemble for 1000 ps. In the equilibration steps,
only the solvent molecules were allowed free movement while other atoms were restrained.
Long-range electrostatic interactions were calculated with the particle mesh Ewald method
with a 12 Å cut-off. Temperature and pressure couplings were calculated with the Modified
Berendsen thermostat and Parrinell–Rahman barostat, respectively. Finally, the equilibrated
systems were entered into a production state without restraints for 50 ns at 310 K and
1 bar atmospheric pressure. Root mean square deviation (RMSD) was calculated using a
generated trajectory of the simulation. Hydrogen bonds were analyzed using a built-in
script on GROMACS software.

4.14. Free Binding Energy Calculations

Dynamic profiles of protein-ligand complexes were further investigated through the
binding energies between protein and ligand. The Molecular Mechanic Poisson–Boltzmann
Surface Area (MM-PBSA) method of the g_mmpbsa package as developed by Kumari et. al.
was used for calculation [53]. Then, 1000 snapshots from the equilibrated region of trajectory
were extracted every 10 ps. The total free binding energy (∆Gbind) was calculated according
to the following equations:

∆Gbind = ∆Gcomplex − (∆Gprotein − ∆Gligand), (1)

∆Gbind = ∆EMM + ∆Epolar + ∆ESASA - T∆S, (2)

∆EMM = ∆Eelect + ∆Evdw. (3)

https://atb.uq.edu.au/


Pharmaceuticals 2022, 15, 830 21 of 24

The vacuum potential energy (∆EMM) was calculated by the molecular mechanic
(MM) force field to provide electrostatic (∆Eelect) and van der Waals (∆Evdw) energies
based on Coulomb potential and Lennard–Jones potential functions, respectively. Polar
solvation energy (∆Epolar) was calculated based on the Poisson–Boltzmann equation. Non-
polar solvation energy (∆ESASA) was calculated based on the solvent-accessible surface
area (SASA) function. Decomposition energy terms were computed by python scripts
MmPbSaDecomp.py and MmPbSaStat.py as available in the g_mmpbsa package.

4.15. Statistical Analysis

Data obtained from at least three independent experiments are expressed as the
mean ± standard deviations (SDs). The data were analyzed for differences in the mean
values by one-way ANOVA followed by post-hoc analysis using IBM® SPSS® Statistics
Subscription software (IBM Corp. in Armonk, NY, USA). A value of p < 0.05 was considered
statistically significant.

5. Conclusions

In summary, our findings indicated that the combination therapy of PGG and cisplatin
produced a synergistic effect on the inhibition of HNSCC cancer cell viability and induced
apoptosis in 2D and 3D models. Moreover, this combination also enhanced the inhibition
of HNSCC cancer cell migration and invasion. The mechanism of the anti-cancer effects of
combined PGG and cisplatin was demonstrated to occur, at least partially, via inhibiting
the STAT3/Akt signaling pathway. The computational approaches strongly supported the
inhibition of STAT3 by PGG. The present results suggested that PGG may be a promising
adjunct drug when used with cisplatin for a practical therapeutic approach to head and neck
cancer. Although the combined therapy of PGG and cisplatin had an apparent inhibitory
effect on HNSCC cancer cell proliferation and growth in vitro and ex vivo, these effects have
not yet been confirmed in animal models. Further research and clinical trials are warranted
to fully elucidate the effects of this combined therapy on the HNSCC cancer model.
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