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Abstract: A new family of pyrazole-based compounds (1–15) was synthesized and characterized
using different physicochemical analyses, such as FTIR, UV-Visible, 1H, 13C NMR, and ESI/LC-
MS. The compounds were evaluated for their in vitro antifungal and antibacterial activities against
several fungal and bacterial strains. The results indicate that some compounds showed excellent
antibacterial activity against E. coli, S. aureus, C. freundii, and L. monocytogenes strains. In contrast,
none of the compounds had antifungal activity. Molecular electrostatic potential (MEP) map analyses
and inductive and mesomeric effect studies were performed to study the relationship between the
chemical structure of our compounds and the biological activity. In addition, molecular docking and
virtual screening studies were carried out to rationalize the antibacterial findings to characterize the
modes of binding of the most active compounds to the active pockets of NDM1 proteins.

Keywords: synthesis; pyrazole; antibacterial; antifungal; ADME-Tox; molecular docking

1. Introduction

Resistance to antibiotics pushes researchers to discover new antibacterial candidates
as prospective treatments for different infectious diseases with another class of antibiotics
with specific mechanisms of action.

Beta-lactam antibiotics [1,2], commonly known as penicillin-binding proteins (PBPs),
act as mechanism-based inhibitors by targeting the cell wall-modifying DD-transpeptidases,
susceptible to nucleophilic attack from long-lived acylated complexes. PBPs are responsible
for the formation and integrity of the membrane surface’s rigid mesh-like peptidoglycan
layer exterior. However, there is a mechanism of resistance to beta-lactam due to beta-
lactamases. Where Ampicillin was selected as an example for this study, the selection was
because it has an amine and carbonyl function similar to our first target compound (Figure 1)
that binds to the penicillin-binding proteins. Commonly used broad-spectrum antibiotics
are streptomycin [3–9] and cefotaxime [10,11], a third-generation cephalosporin [5,12–14]
with less susceptibility to beta-lactamase [15–17] than ampicillin [5,18–20].
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Infectious diseases are the main threat, especially in developing countries [21], and
include listeriosis [4,22–24] caused by L. monocytogenes, septicemia, and meningitis caused
by E. coli [8,25], bloodstream infections, and meninges caused by C. freundii [26–29]. These
diseases commonly affect healthy, sensitive individuals, such as older people, pregnant
women, and the immunosuppressed [11]. In addition, however, candidiasis and related
fungal bloodstream infections are caused by Saccharomyces cerevisiae [30], Candida albicans,
and Candida glabrata [31].

Pyrazole-based heterocyclic ligands have multiple biological applications. Many
compounds prepared in our research group already have high efficiencies [32–43] as
antibacterial or antifungal candidates [34,38,44–46] due to their nitrogen electron and
proton acceptor abilities [32]. With limited facilities to investigate more experimental
properties, molecular docking [43,47–57] becomes crucial for studying the binding modes
and affinities between the prepared compounds and selected biological targets using the
lock and key concept. In our study, various tripodal pyrazole ligands were prepared and
characterized using FTIR, UV-visible, 1H, and 13C NMR, and then their toxicity predictions
and the Lipinski rule of five agreement were determined. Finally, the molecular ligand-
protein docking, through the New Delhi metallo β-lactamase hydrolysis of β-lactams
antibiotics [17,54,58,59], was studied in two different active sites to investigate our studied
compounds’ binding susceptibility to the hydrolase enzyme.

2. Results and Discussion
2.1. Antibacterial and Antifungal Activities

The antibacterial potential of the compounds against two Gram-negative bacterial
strains (Escherichia coli and Citrobacter freundii) and two Gram-positive bacteria (Staphylo-
coccus aureus and Listeria monocytogenes) was evaluated as described in the materials and
methods section, and the results are displayed in Table 1. Only compounds 12 and 14
showed antibacterial activity when tested at 500 µM. Compound 12 was active against
E. coli, S. aureus, and C. freundii but inactive against L. monocytogenes, whereas compound
14 was only active against L. monocytogenes.

Table 1. The antibiotic activity of the active synthesized pyrazole ligands was determined using the
broth macro dilution assay and the phenol red indicator.

Compound L. monocytogenes S. aureus E. coli C. freundii

12 − − − + + + + + + + + +
14 + + + − − − − − − − − −

Streptomycin + + + + + + + + + + + +
The compounds and the positive control (streptomycin) were used at 500 µM and 50 mg/L concentrations. All
experiments were repeated three times, and the result obtained for each time is presented. (−): no inhibition of
bacterial growth; (+): inhibition of bacterial growth.

The MICs of compounds 12 and 14 were then determined as described in the ma-
terial and methods (Table 2). The MIC of compound 12 was 134.9 mg/L against E. coli,
168.7 mg/L against S. aureus, and 168.7 mg/L against C. freundii. For compound 14, the
MIC against L. monocytogenes was 134.6 mg/L. Interestingly, the determination of the MBC
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of these compounds showed that they are bactericidal, as demonstrated by the ratio of
MBC/MIC ≤ 2 (Table 2).

Table 2. MIC and MBC values in mg/L of the studied compounds 12 and 14 against the used
bacterial strains.

12 14

L. monocytogenes
MIC - 134.6 ± 0
MBC - 242.3 ± 0

MBC/MIC - 1.2

S. aureus
MIC 168.7 ± 0 -
MBC 202.4 ± 0 -

MBC/MIC 1.2 -

E. coli
MIC 134.9 ± 0 -
MBC 134.9 ± 0 -

MBC/MIC 1 -

C. freundii
MIC 168.7 ± 0 -
MBC 236.2 ± 0 -

MBC/MIC 1.4 -
MIC: Minimum inhibition concentration; MBC: Minimum bactericidal concentration.

Regarding the antifungal activity, all the compounds were tested for toxicity against
Saccharomyces cerevisiae and two species of Candida, Candida glabrata and Candida albicans,
as described in Section 3.3.3. All compounds showed no antifungal activity against all three
strains used. Together with the antibacterial activity analysis, these results suggest that
compounds 1 to 15 lack antifungal activity, and only compounds 12 and 14 act specifically
as antibacterial agents.

2.2. MEP Analysis of the Compounds 12, 14, Ampicillin, and Cefotaxime

Molecular electrostatic potential (MEP) maps of compounds 12, 14, Ampicillin, and
cefotaxime have been generated (Figure 2) to determine and predict the reactive sites
(nucleophilic or electrophilic) on the molecular system of the studied compounds.
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As presented in Figure 2, the positive electrostatic potential areas (in blue) are con-
centrated over the hydroxyl group of the drugs cefotaxime and Ampicillin with 1.570 and
1.801 eV (at an iso value of 0.0004 electrons/Å3). For compound 14, the highest value was
about 1.790 eV (located on the hydroxyl group substituent on the phenyl ring), while a low
value of 0.040 eV was estimated for compound 12.
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The negative electrostatic potential areas are located over the carbonyl group of
the acidic function of the drugs cefotaxime and Ampicillin, with values of −1.028 and
−0.946 eV, respectively, with a higher value for the compound 12, with the value of
−1.521 eV. In comparison, it was −0.832 eV for compound 14.

To sum up, compound 12 only has a higher negative charge value over the carbonyl.
In contrast, compound 14, similar to the antibiotics cefotaxime and Ampicillin, has lower
negative–positive (δ+-δ−) charge values over the hydroxyl and the acidic function. These
results, which agree with the experimental results, give us information about the possible
sites for binding modes to the biological targets that need molecular docking investigations.

In general, and in the light of these observations, we can postulate that the substitution
by groups with different electronic effects (withdrawing-donating) is more beneficial in
improving the antibacterial potency than the substitution by one group (Figure 3).
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Regarding the R1 (substituent on the phenyl ring) and R2 (substituent at positions
3 and 5 of the pyrazole moiety) substituents, the inductive and mesomeric effect study
revealed that the presence of the formyl (CHO) group (electron-withdrawing effect (-M)) on
the phenyl ring and the methyl (CH3) groups (electron-donating effect (+I)) on the pyrazole
moieties at positions 3 and 5 (12) is highly favorable for the inhibitory potency against
E. coli, S. aureus, and C. freundii strains. In contrast, the presence of the hydroxyl (OH) group
(electron-donating effect (+M)) on the phenyl ring with non-substituted pyrazole moieties
(14) resulted in selective antibacterial activity against L. monocytogenes.

2.3. ADME and Toxicity Predictions
ADME Predictions

For the ADME predictions, the physicochemical properties (MW: molecular weight
expressed in Daltons; logP: octanol/water partition coefficient characterizing Lipophilicity;
HDO: number of hydrogen bond donors; HAC: number of hydrogen bond acceptors;
NRO: number of rotatable bonds; TPSA: total polar surface area) were calculated and are
presented in Table 3 for the compounds 12 and 14 and the drugs streptomycin, Ampicillin,
and cefotaxime as references.

Table 3. The physicochemical properties of the compounds 12, 14, and the drugs streptomycin,
Ampicillin, and cefotaxime.

Compound MW logP HDO HAC NRO TPSA (Å2)

12 337.42 3.09 0 3 6 55.95
14 269.30 1.22 1 3 5 59.11

streptomycin 581.57 −6.65 14 15 11 331.43
ampicillin 349.40 0.26 3 5 5 138.03
cefotaxime 455.47 −0.73 3 9 9 227.05

In Table 4, compounds 12 and 14 have no violations of Lipinski’s rule of five [58,59],
with MW = 337.42 and 269.30 < 500, logP value of 3.0933 and 1.227 < 5, H donor of 0 and
1 < 5, H acceptor of 3 and 3 < 10, number of rotatable bonds of 6 and 5 < 10 and TPSA value
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of 55.95 and 59.11 Å2 < 140 Å2. This comparison highlights that the two compounds 12 and
14 have better oral bioavailability than Ampicillin and are better than streptomycin.

Table 4. The binding affinity values of the compounds 12, 14, and ampicillin within the two NDM1
chains A and B.

Compound NDM1 (A) NDM1 (B)
Binding Affinity in kcal/mol Binding Affinity in kcal/mol

12 −6.0075 −6.6776
14 −5.5411 −5.6752

ampicillin −6.9737 −6.7344

These results make compound 12 a better antibacterial candidate than cefotaxime
with the same selective multitarget activity, but further toxicity predictions are required to
validate these propositions.

2.4. Molecular Docking and Virtual Screening Studies

Ligand–protein docking simulations were carried out to determine the binding mode
of the studied compounds with the catalytic sites of the selected receptors. Flexibility was
allowed in all the rotatable bonds of the ligand; the protein was used as a rigid structure.

2.4.1. Docking against the NDM-1 β-lactamase (NDM1) Protein

NDM-1 β-lactamase hydrolysis docking study of the compounds 12 and 14 compared
to Ampicillin.

The three-dimensional structure of New Delhi metallo-β-lactamase (NDM1) [17,58,59] is
represented in Figure 4, where two sequences, A and B, were co-crystalized with Ampicillin;
so in this part, we studied the binding affinity of the compounds 12 and 14 compared
to Ampicillin.
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The protein preparation was performed by removing all the water, zinc, and
OH molecules.

As previously mentioned in the docking study of the transpeptidase inhibition study,
the NDM1 hydrolysis followed the same parameters, and the binding affinity results of
both active sites are collected in Table 4.

From Table 5, compound 12 had a better affinity than compound 14 in both selected
active sites, NDM1 A and B, with a binding affinity of −6.0075 and −6.6776 Kcal/mol,
respectively. In addition, compared to Ampicillin, with −6.9737 and −6.7344 Kcal/mol,
compound 12 was more readily hydrolyzed than compound 14.

Table 5. Docking results of the compounds 12, 14, and ampicillin in the two NDM1 chains A and B.

NDM1 (A) NDM1 (B)

Compound Interaction L-AA Bond Length (Å) Interaction L-AA Bond Length (Å)

12 O47—ND1 His 122: H-acceptor 3.08 O47—NZ Lys211: H-acceptor 2.98
O47—NE2 His 189: H-acceptor 2.9 5-ring—r-ring His 122: pi-pi 3.62

14 6-ring—N Asn 220: pi-H 3.9 6-ring—N Asn220: pi-H 3.89
5-ring—5-ring His 122: pi-pi 3.6 5-ring—5-ring His 122: pi-pi 3.64

ampicillin

OXT45—OD1 Asp124: H-donor 2.9
O1 1—NZ Lys211: H-acceptor 3.37
O2 3—NZ Lys211: H-acceptor 2.98 OXT45—OD1 Asp124: H-donor 2.99
O3 28—N Asp124: H-acceptor 3.55 O1 1—NZ Lys211: H-acceptor 2.88
C16 12—5-ring His 250: H-pi 4.07 O3 28—N Asp124: H-acceptor 3.38

6-ring—N Gln 123: pi-H 4.08
6-ring—CB Gln 123: pi-H 3.78

First, compound 12 has two H-acceptors, bond 3.08 and 2.90 Å, respectively, between
the carbonyl and the nitrogen ND1 and NE2 of His122 and His 189, as shown in Table 5
and Figure 5.
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Contrary to compound 12, compound 14, as represented in Figure 6, has only weak
van der Waals bonds with Asn 220 and His 122, with a distance range of 3.60–3.90 Å,
making this compound more stable against NDM1 hydrolysis.

As penicillin β-lactam antibiotics reported in the literature, Ampicillin seems to interact
with more residues at the site (A) than at the site (B) of NDM1 protein, as represented
in Table 5 and Figure 7. In the active pocket A, the compound forms seven bonds: one
H-donor and one H-acceptor (of 2.90 and 3.55 Å, respectively) with Asp124 residue, two
H-acceptor bonds with Lys211 amino acid with distances equal to 2.98 and 3.37 Å, one
H-pi interaction (4.07 Å) between the carbon (C16 12) atom and 5-ring of His250, and two
pi-H interactions between the 6-ring and the nitrogen and carbon atoms of Gln123 (4.08
and 3.78 Å). In contrast, Ampicillin was found to bind into the active pocket B of NDM1
only with three interactions: two by H-donor and H-acceptor bonds with Asp124 (2.99 and
3.55 Å) and one by an H-acceptor bond with Lys211 with a distance of 2.88 Å involving its
oxygen atom (O1 1).
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Figure 7. Three-dimensional presentations of the binding modes between Ampicillin and NDM1.

From the docking study results, compound 12 is more sensitive to NDM1 hydrolysis,
which inactivates its antibacterial activity against Listeria monocytogenes due to the common
carbonyl function in all β-lactam antibiotics. Although otherwise, compound 14 has
listericidal activity due to its weak binding with the selected NDM1, its specific mechanism
needs more computational studies and biological assays for prediction.

2.4.2. Blind Docking/Virtual Screening against the NDM-1 β-lactamase (NDM1) Protein

As presented in Figure 8, the B-chain has considered the active site with all the docking
poses. At the same time, there is good alignment between the ligand 12 and ampicillin
docking poses with smooth variation, while ligand 14 is so far in a different site.
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Table 6 shows that the mode of binding interaction is the same as that of LYS216, which
is bound with the nitrogen of pyrazole for the ligand 12 and the oxygen for Ampicillin
with the same binding affinity of −7.1 Kcal/mol. On the other hand, ligand 14 has a lower
−7.0 Kcal/mol value with amino acids such as ILE203 and LYS242.

Table 6. Binding affinity and L–AA interaction of the ligands 12 and 14 and ampicillin with the
chosen target, NDM1.

Compound Binding Affinity in kcal/mol Interaction L–AA
(Hydrogen Bonds Only)

12 −7.1 N(pyrazole)—LYS216

14 −7.0 OH—-ILE203
N(pyrazole)—LYS242

ampicillin −7.1
NH2—SER251
NH2—HIS250

O—LYS216

3. Materials and Methods
3.1. Analytical Procedures

A Bruker DPX 800 MHz Spectrometer recorded the 1HNMR (500 MHz, DMSO-d6)
and 13CNMR (125 MHz, chloroform-d) spectra. Chemical shift (δ) values were stated in
parts per million (ppm) using internal standard tetramethylsilane, according to the D2O
exchange. Chemical shift (d) values were stated in parts per million (ppm) using internal
standard tetramethylsilane. The D2O exchange confirmed the exchangeable protons (OH
and NH). The FTIR analyses were performed using an FTIR 8400S spectrophotometer
recorded in KBr pellets.

Many different pyrazole derivatives were synthesized and indexed.

3.2. Chemistry

The pyrazole derivatives (Figure 9) investigated in this work were prepared following
the experimental procedure of the N-alkylation reaction described previously in the liter-
ature [43,46,60–77]. First, all the compounds were prepared by condensation of primary
amines with (3,5-dimethyl-1H-pyrazole-1-yl)methanol or (1H-pyrazole-1-yl)methanol in
acetonitrile as a polar aprotic solvent that promotes SN2 reaction; after that, the compounds
were purified either by diethyl ether or a DCM:water (3:1) mixture to obtain the final
products, with yields varying from 15.22 to 99.41%.
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solvent was evaporated, then recrystallized in diethyl ether, and then filtrated to obtain the
final product (1.28 g, 47.4%), mp > 250 ◦C (diethyl ether); FTIR (KBr, cm−1): 3348 (-OH); 3149
(C-H); 1684 (C=C); 1560 (C-C); 1455 (C-N); 1266 (C=N); 1067 (N-N); 779 (=C-H); 1H NMR
(DMSO-d6, 500 MHz) δ ppm: 6.47 (s, 4H, H-CH2); 5.76 (s, 4H, H-OH and Hpyrz-4)); 5.25 (s,
1H, Hpyrm); 2.14 (s, 12H, Hpyrz), 13C NMR (DMSO-d6, 125 MHz) δ ppm: 105.46 (Cpyrz);
70.38 (CH2); 10.75 (Cpyrz-5); 10.19 (Cpyrz-3). The elemental Analysis was calculated for
C16H21N7O2 (M.wt 384.13); C-55.96; H-6.16; and N-28.55 were the % calculated. C-55.81;
H-6.06; and N-28.55 were the % found.

2-(Bis((1H-pyrazol-1-yl)methyl)amino)-6-methylpyrimidin-4-ol (2)
2-Amino-6-methylpyrimidine-4-ol (1 g, 7.99 mmol) and (1H-pyrazol-1-yl)methanol

(1.57 g, 15.98 mmol) were mixed together in acetonitrile (20 mL) under reflux for 4 h,
and the solvent was evaporated, then recrystallized in diethyl ether, and then filtrated to
obtain the final product (3.8 g, 91.22%): mp > 250 ◦C (diethyl ether); FTIR (KBr, cm−1):
3328 et 3069 (O-H Free and linked); 2925 (C-H); 1656 (C=C); 1493 (C-C); 1383 (C-N); 1172
(C=N); 1049 (N-N); 763 (=C-H); 1H NMR (DMSO-d6, 400 MHz) δ ppm: 10.53 (s, 1H, H-
OH); 7.61 (d, 2H, Hpyrz-5, JH-H = 4–6 Hz); 7.30 (d, 2H, Hpyrz-3, JH-H = 4–6 Hz); 6.10 (m,
Hpyrm-4); 4.82 (s, H-CH2 and Hpyrm); 1.91 (s, CH3); 13C NMR (DMSO-d6, 100 MHz)
δ ppm: 137.65 (Cpyrz-3); 128.99 (Cpyrz-5); 104.67 (Cpyrz-4); 104.59 (Cpyrm); 73.69 (CH2);
21.59 (CH3).).The elemental Analysis was calculated for C9H9N3O4S (M.wt 255); C-54.73;
H-5.30; and N-34.37 were the % calculated. C-54.65; H-5.21; N-34.29 were the % found.

N,N-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)pyridin-4-amine (3) [61]
4-Aminopyridine (0.5 g, 5.31 mmol) and (3,5-dimethyl-1H-pyrazol-1-yl)methanol

(1.34 g, 10.62 mmol) were mixed together in acetonitrile (20 mL) under reflux for 4 h, and
the solvent was evaporated, then recrystallized in diethyl ether, and then filtrated to obtain
the final product (0.48 g, 29.04%): mp 100–102 ◦C (diethyl ether); FTIR (KBr, cm−1): 2359
(C-H); 1648 (C=C); 1559 (C-C); 1454 (C-N); 1310 (C=N); 1071 (N-N); 807 (=C-H); 1H NMR
(CDCl3, 500 MHz) δ ppm: 7.66 (d, 1H, Hpyrn-3, JH-H = 5–6 Hz); 7.24 (d, 1H, Hpyrn-2,
JH-H = 5–6 Hz); 6.24 (s, 1H, Hpyrz-4); 5.66 (s, 2H, H-CH2); 2.34 (s, 3H, CH3

−5); 2.09 (s, 3H,
CH3-3); 13C NMR (CDCl3, 125 MHz) δ ppm: 167.73 (Cpyrn-1); 156.11 (Cpyrn-2); 140.41
(Cpyrz-3); 138.13 (Cpyrz-5); 113.78 (Cpyrn-3); 105.50 (Cpyrz-4); 57.61 (2H, CH2); 14.02
(Cpyrz-3); 10.96 (Cpyrz-5).

N,N-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)pyridin-2-amine (4) [78,79]
2-Aminopyridine (0.5 g, 5.31 mmol) and (3,5-dimethyl-1H-pyrazol-1-yl)methanol

(1.34 g, 10.62 mmol) were mixed together in acetonitrile (20 mL) at room temperature
for 4 days, and the solvent was evaporated, then recrystallized in diethyl ether, and then
filtered to obtain the final product (1.51 g, 92.13%): mp 88–90 ◦C (diethyl ether); FTIR
(KBr, cm−1): 1609 (C=C); 1530 (C-C); 1423 (C-N); 1291 (C=N); 1067 (N-N); 772 (=C-H); 1H
NMR (CDCl3, 500 MHz) δ ppm: 8.01 (d, 1H, Hpyrn-3, JH-H = 5–6 Hz); 7.31 (d, 1H, Hpyrn-4,
JH-H = 4–6 Hz); 6.54 (dd, 1H, Hpyrn-5, JH-H = 4–6 Hz and JH-H = 5–6 Hz); 6.45 (d, 1H,
Hpyrn-2, JH-H = 4–6 Hz); 6.38 (d, Hpyrn-6, JH-H = 5–6 Hz); 5.67 (s, 1H, Hpyrz-4); 5.50 (s,
2H, CH2); 2.35 (s, 3H, CH3-5); 2.27 (s, 3H, CH3-3); 13C NMR (CDCl3, 125 MHz) δ ppm:
156.65 (Cpyrn-1); 148.42 (Cpyrn-2); 147.41 (Cpyrz-3); 139.81 (Cpyrz-5); 137.49 (Cpyrn-4);
114.17 (Cpyrn-3); 109.03 (Cpyrn-2); 106.16 (Cpyrz-4); 54.33 (2H, CH2); 13.43 (Cpyrz-3);
11.12 (Cpyrz-5).

2-(Bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)amino) nicotinic acid (5)
3-Amino-4-methylnicotinic acid (1 g, 7.24 mmol) and (3,5-dimethyl-1H-pyrazol-1-

yl)methanol (1.82 g, 14.48 mmol) were mixed together in acetonitrile (20 mL) under reflux
for 4 h, and the solvent was evaporated, then recrystallized in diethyl ether, and then
filtrated to obtain the final product (0.37 g, 52.1%): mp 78–80 ◦C (diethyl ether); 1H NMR
(DMSO-d6, 400 MHz) δ ppm: 7.87 (s, 2H, Hpyrn-4 and 6); 6.69 (s, 5H, Hpyrn-5, 2 CH2); 5.37
(s, 2H, Hpyrz-4); 2.12 (s, 12H, Hpyrz-3, 5); 13C NMR (DMSO-d6, 100 MHz) δ ppm: 164.32
(COOH); 163.09 (Cpyrn-1); 154.75 (Cpyrn-4, Cpyrz-3); 110.89 (Cpyrn-5, COOH, Cpyrz-4);
54.24 (2 CH2); 20.67 (4 CH3). The elemental Analysis was calculated for C18H22N6O2
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(M.wt 354.43); C- C-61.00, H-6.26, and N-23.71 were the % calculated. C-61.00; H-6.26; and
N-23.71 were the % found.

N,N-bis((1H-pyrazol-1-yl)methyl)-6-methylpyridin-2-amine (6) [61]
2-Amino-6-methylpyrimidine (0.5 g, 4.75 mmol) and (1H-pyrazol-1-yl)methanol (0.93 g,

9.51 mmol) were mixed together in acetonitrile (20 mL) at room temperature for 4 days,
and the solvent was evaporated, then recrystallized in diethyl ether, and then filtrated to
obtain the final product (0.19 g, 15.22%): mp 78–80 ◦C (diethyl ether); FTIR (KBr, cm−1):
3300 (N-H); 1614 (C=C); 1532 (C-C); 1473 (C-N); 1281 (C=N); 1082 (N-N); 747 (=C-H); 1H
NMR (CDCl3, 500 MHz) δ ppm: 7.66 (d, 2H, Hpyrz-5, JH-H = 4–6 Hz); 7.42 (d, 2H, Hpyrz-3,
JH-H = 5–6 Hz); 7.19 (dd, 1H, Hpyrn-2, JH-H = 6–8 Hz and JH-H = 8–10 Hz); 6.45 (d, 1H,
Hpyrn-3, JH-H = 4–6 Hz); 6.24 (dd, 2H, Hpyrz-4, JH-H = 4–6 Hz and JH-H = 5–6 Hz); 2.33
(s, 3H, Hpyrn-CH3); 6.13 (d, 1H, Hpyrn-6, JH-H = 4–6 Hz); 5.63 (s, 2H, H-CH2); 13C NMR
(CDCl3, 125 MHz) δ ppm: 156.49 (Cpyrz-5); 156.09 (Cpyrn-3); 132.46 (Cpyrn-6); 73.79
(Cpyrz-4); 59 (CH2); 57.8 (Cpyrn-2); 23.76 (Cpyrn-CH3).

N,N-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)-6-methylpyridin-2-amine (7) [61]
2-Amino-6-methylpyridine (0.5 g, 4.62 mmol) and (3,5-dimethyl-1H-pyrazol-1-yl)methanol

(1.17 g, 9.24 mmol) were mixed together in acetonitrile (20 mL) at room temperature for
4 days, and the solvent was evaporated, then recrystallized in diethyl ether, and then
filtrated to obtain the final product (1.03 g, 68.7%): mp 96–98 ◦C (diethyl ether); FTIR
(KBr, cm−1): 3288 (N-H); 1612 (C=C); 1537 (C-C); 1433 (C-N); 1336 (C=N); 1072 (N-N); 774
(=C-H); 1H NMR (CD2Cl2, 500 MHz) δ ppm: 7.33 (dd, 1H, Hpyrn-3, JH-H = 4–6 Hz and
JH-H = 5–7 Hz); 6.53 (d, 1H, Hpyrn-2, JH-H = 4–6 Hz); 6.38 (d, Hpyrn-6, JH-H = 9–10 Hz);
5.88 (s, 1H, Hpyrz-4); 5.41 (s, 2H, H-CH2); 2.48 (s, 3H, Hpyrn-CH3); 2.39 and 2.35 (s, 3H,
Hpyrz-5); 2.20 and 2.18 (s, 3H, Hpyrz-3); 13C NMR (CD2Cl2, 125 MHz) δ ppm: 156.15
(C-N); 148.33 (Cpyrz-3); 139.56 (Cpyrz-5); 137.56 (Cpyrn-3); 113.25 (Cpyrn-6); 106.96
(Cpyrz-4); 104.69 (1H, Cpyrn-2); 70.67 (2H, CH2); 23.90 (3H, Cpyrn-CH3); 13.90 (Cpyrz-3);
10.85 (Cpyrz-5).

N,N-bis((1H-pyrazol-1-yl)methyl)thiazol-2-amine (8) [80]
2-Aminothiazole (1 g, 9.98 mmol) and (1H-pyrazol-1-yl)methanol (1.96 g, 19.97 mmol)

were mixed together in acetonitrile (20 mL) under reflux for 4 h, and the solvent was
evaporated, then recrystallized in diethyl ether, and then filtrated to obtain the final product:
(2.58 g, 99.41%): mp 84–86 ◦C (diethyl ether); FTIR (KBr, cm−1): 3025 (C-H); 1560 (C=C);
1540 (C-C); 1386 (C-N); 1159 (C=N); 1050 (N-N); 754 (=C-H); 692 (C-S); 1H NMR (CD2Cl2,
500 MHz) δ ppm: 7.79 (d, 2H, Hpyrz-5, JH-H = 4–6 Hz); 7.55 (s, 1H, Hthi-2); 7.17 (d, 2H,
Hpyrz-3, JH-H = 6–7 Hz); 6.62 (1H, Hthi-5); 6.28 (dd, 2H, Hpyrz-4,); 5.56 (s, 4H, H-CH2); 13C
NMR (CD2Cl2, 125 MHz) δ ppm: 167.75 (C-N); 139.80 (2H, Cpyrz-3); 138.79 (1H, Cthi-2);
129.53 (Cpyrz-5); 109.76 (1H, Cthi-5); 105.42 (Cpyrz-4); 59.81 (CH2).

1-(Bis((1H-pyrazol-1-yl)methyl)amino)propan-2-ol (9) [81–83]
3-Amino propan-2-ol (1 g, 13.31 mmol) and (3,5-dimethyl-1H-pyrazol-1-yl)methanol

(3.36 g, 26.62 mmol) were mixed together in acetonitrile (20 mL) under reflux for 4 h,
and the solvent was evaporated, then recrystallized in diethyl ether, and then filtrated to
obtain the final product: yellow oil; 1H NMR (DMSO-d6, 400 MHz) δ ppm: 7.58 (d, 3H,
Hprop-3 and OH, JH-H = 6–7 Hz); 7.42 (p, 2H, Hpyrz-5, JH-H = 6–8 Hz); 6.24 (d, 2H, Hpyrz-4,
JH-H = 5–6 Hz); 4.89 (m, 4H, Hprop-2, JH-H = 5–6 Hz); 4.38 (s, 1H, Hprop-1); 2.46 (d, 2H,
CH2, JH-H = 4–6 Hz); 0.97 (s, 3H, H-CH3); 13C NMR (DMSO-d6, 100 MHz) δ ppm: 138.83
(Cpyrz-5); 129.64 (Cpyrz-3); 105.45 (pyrz-4); 66.08 (CH2); 65.99 (Cprop-2); 54.05 (CH2);
21.55 (CH3).

4-(Bis((1H-pyrazol-1-yl)methyl)amino)benzonitrile (10) [76,84]
4-Aminobenzonitrile (1 g, 8.47 mmol) and (1H-pyrazol-1-yl)methanol (1.66 g, 16.94 mmol)

were mixed together in acetonitrile (20 mL) under reflux for 4 h, and the solvent was
evaporated, then recrystallized in DCM:water (3:1 washed three times in 15:5 mL), and
then filtrated to obtain the final product (0.89 g, 96.64%): mp 130–132 ◦C (diethyl ether);
FTIR: 1365.65 cm−1 (CN(benzene)); 2218.42 cm−1 (C≡N); 2854.74 cm−1 (C-H(benzene));
1455.86 cm−1 (C=C(benzene)); 1277.43 cm−1 (N-N); 1609.56 cm−1 (C=N); 2922.37 cm−1



Pharmaceuticals 2022, 15, 803 11 of 19

(C-H (CH2) asym); 2854.03 cm−1 (C-H (CH2) sym); 822.486 cm−1 (H (benzene)); UV-
Visible (λ nm): 201.77 (C=N: Transition n→σ*); 206.78 (C=C: Transition π→π*); 245.24 (C=C:
Transition π→π*); 250.74 (C=C: Transition π→π*); 264.74 (C=N: Transition n→π*); 1H NMR
(300 MHz, DMSO-d6) δ ppm: 5.994 (s, 2H, H-CH2); 6.234 (t, 4H, Hpyrz-4, JH-H = 2–3 Hz);
6.9015 (d, 2H, Hbz-2, JH-H = 6.5–7.5 Hz); 7.36 (d, 2H, Hpyrz-3, JH-H = 9–10 Hz); 7.457 (d,
2H, Hbz-3, JH-H = 9.5–10.5 Hz); 7.8 (d, 2H, Hpyrz-5, JH-H = 8–9 Hz); 13C NMR (75 MHz,
DMSO-d6) δ ppm: 65.58 (C-CH2); 98.62 (Cbz-1); 105.99 (Cpyrz-4); 113.50 (Cbz-2); 119.90
(Cbz-4); 129.73 (Cpyrz-5); 133.75 (Cbz-3); 139.31 (Cpyrz-3); 150.91 (Cpyrz-5); MS [M+]
(m/z): 278.86 [M+].

4-(Bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)amino)benzonitrile (11) [61,76,84]
4-Aminobenzonitrile (1 g, 8.46 mmol) and 2 equiv. of (3,5-dimethyl-1H-pyrazol-

1-yl)methanol (2.13 g, 16.92 mmol) were mixed together in acetonitrile (20 mL) under
reflux for 4 h, and the solvent was evaporated, then recrystallized in DCM:water (3:1
washed three times in 15:5 mL), and then filtrated to obtain the final product (1.22 g,
86.93%): mp 143–145 ◦C; FTIR (KBr, ν (cm−1)): 1365,65 cm−1 (CN (benzene)); 2218.21 cm−1

(C≡N); 2854.74 cm−1 (C-H(benzene)); 1458.23 cm−1 (C=C(benzene)); 1271 cm−1 (N-N);
1610.61 cm−1 (C=N); 2924.15 cm−1 (C-H (CH2) asym); 2854.74 cm−1 (C-H (CH2) sym);
2934.24 cm−1 (C-H (CH3)); 825.56 cm−1 (H (benzene)); UV-Visible (λ nm): 207.77 (C=N:
Transition n → σ*); 247.27 (C=C: Transition π →π*); 266.73 (C=N: Transition n →π *);
1H NMR (300 MHz, DMSO-d6) δ ppm: 6.9425 (d, 2H, Hbz-1, JH-H = 8–9 Hz); 7.485 (d,
2H, Hbz-2, JH-H = 9–10 Hz); 2.26 (s, 2H, Hpyrz-3); 2.477 (s, 2H, Hpyrz-5); 5.779 (s, 2H,
Hpyrz-4); 5.33 (d, 4H, H-CH2, JH-H = 6–7 Hz); 13C NMR (75 MHz, DMSO-d6) δ ppm: 11.17
(CH3-5); 13.78 (CH3-3); 62.87 (C-CH2); 100.95 (Cbz-1); 106.15 (Cpyrz-4); 113.38 (Cbz-2);
120.02 (Cbz-4); 133.63 (Cbz-3); 139.18 (Cpyrz-5); 146.20 (Cpyrz-3); 151.20 (Cbz-1); MS [M+]
(m/z): 334.8 [M+].

4-(Bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)amino)benzaldehyde (12) [61]
4-Aminobenzaldehyde (1 g, 8.25 mmol) and (3,5-dimethyl-1H-pyrazol-1-yl)methanol

(2.08 g, 16.5 mmol) were mixed together in acetonitrile (20 mL) under reflux for 4 h, and
the solvent was evaporated, then recrystallized in diethyl ether, and then filtrated to
obtain the final product (1.8 g, 85%): mp 96–98 ◦C (diethyl ether); 1H NMR (DMSO-d6,
500 MHz) δ ppm: 9.69 (s, 1H, OH); 7.71 (d, 2H, Hbz-2, JH-H = 5–6 Hz); 6.81 (d, 2H, Hbz-3,
JH-H = 5–6 Hz); 5.83 (s, 2H, Hpyrz-4); 5.24 (s, 4H, H-CH2); 2.25 (s, 6H, CH3-5); 2.10 (s,
6H, CH3-3); 13C NMR (DMSO-d6, 125 MHz) δ ppm: 189.85 (C=O); 154.21 (Cbz-1); 145.91
(Cbz-3); 138.68 (Cpyrz-3); 131.52 (Cpyrz-5); 124.51 (Cbz-4); 111.05 (Cbz-2); 13.21 (CH3-3);
10.22 (CH3-5).

N,N-bis((1H-pyrazol-1-yl)methyl)-4-nitroaniline (13) [61]
4-Nitroaniline (1 g, 7.24mmol) and (1H-pyrazol-1-yl)methanol (1.42 g, 14.48 mmol)

were mixed together in acetonitrile (20 mL) under reflux for 4 h, and the solvent was
evaporated, then recrystallized in diethyl ether, and then filtrated to obtain the final product
(0.88 g, 82.05%): mp 86–88 ◦C (diethyl ether); 1H NMR (DMSO-d6, 400 MHz) δ ppm: 8.04
(d, 2H, Hbz-2); 7.88 (d, 2H, Hpyrz-5); 7.80 (Hpyrz-3); 6.96 (d, 2H, Hbz-3); 6.28 (t, 2H,
Hpyrz-4); 5.61 (s, 4H, H-CH2); 13C NMR (DMSO-d6, 100 MHz) δ ppm: 152.82 (Cbz-1);
139.02 (Cpyrz-3); 138.92 (Cbz-4); 129.44 (Cbz-2); 125.85 (Cpyrz-5); 112.13 (Cbz-3); 105.60
(Cpyrz-4); 57.86 (CH2).

4-(Bis((1H-pyrazol-1-yl)methyl)amino)phenol (14) [66,69,85–87]
4-Aminophenol (0.9g, 8.24mmol) and (1H-pyrazol-1-yl)methanol (1.62 g, 16.49 mmol)

were mixed together in acetonitrile (20 mL) under reflux for 4h, and the solvent was
evaporated, then recrystallized in diethyl ether, and then filtrated to obtain the final product
(1.8 g, 81.1%): mp 102–104 ◦C (diethyl ether), FTIR (KBr, cm−1): 3113 (O-H); 2300 (C-H);
1659 (C=C); 1509 (C-C); 1393 (C-N); 1183 (C=N); 1039 (N-N); 750 (=C-H), 1H NMR (DMSO,
500 MHz) δ ppm: 8.75 (s, 1H, OH); 7.66 (d, 2H, Hbz-5, JH-H = 4–6 Hz); 7.30 (d, 2H, Hbz-3,
JH-H = 5–6 Hz); 7.15 (d, 2H, Hpyrz-5, JH-H = 4–6 Hz); 6.96 (d, 2H, Hpyrz-3, JH-H = 5–7 Hz);
6.31 (dd, 2H, Hpyrz-4, JH-H = 4–6 Hz and JH-H = 6–7 Hz); 5.99 (s, 4H, H-CH2), 13C NMR
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(DMSO, 125 MHz) δ ppm: 167.79 (Cbz-1); 139.68 (Cbz-3); 138.99 (Cbz-1); 130.48 (Cbz-5);
129.32 (Cpyrz-5); 110.42 (Cpyrz-3); 105.91 (Cpyrz-4); 59.09 (CH2).

4-(Bis((1H-pyrazol-1-yl)methyl)amino)benzoic acid (15)
4-Aminobenzoic acid (1 g, 7.29 mmol) and (1H-pyrazol-1-yl)methanol (1.43 g, 14.58 mmol)

were mixed together in acetonitrile (20 mL) under reflux for 4 h, and the solvent was
evaporated. then recrystallized in diethyl ether, and then filtrated to obtain the final
product (1.24 g, 82.05%): mp 164–166 ◦C (diethyl ether), FTIR (KBr, cm−1): 3268 (O-H);
1699 (C=O); 1609 (C=C); 1522 (C-C); 1376 (C-N); 1182 (C=N); 951 (N-N); 764 (=C-H), 1H
NMR (CD2Cl2, 500 MHz) δ ppm: 8.02 (d, 2H, Hbz-3, JH-H = 9–10 Hz); 7.60 (d, 2H, Hpyrz-5,
JH-H = 8–10 Hz); 7.55 (d, 2H, Hpyrz-3, JH-H = 5–6 Hz); 7.28 (d, 2H, Hbz-2, JH-H = 5–7 Hz);
6.33 (dd, 2H, Hpyrz-4, JH-H = 6–8 Hz and JH-H = 14–15 Hz); 5.88 (s, 4H, H-CH2), 13C NMR
(CD2Cl2, 125 MHz) δ ppm: 140.03 (Cbz-1); 139.96 (Cpyrz-3); 132 (Cbz-2); 128.88 (Cpyrz-5);
113,74 (Cbz-4); 112.62 (Cbz-3); 106.36 (Cpyrz-4); 66.69 (C-CH2). The elemental Analysis
was calculated for C15H15N5O2 (M.wt 297.12); C-60.60, H-5.09, and N-23.56 were the %
calculated. C-60.58; H-5.12; and N-23.45 were the % found.

3.3. Biological Evaluation
3.3.1. Antibacterial Assay

The microdilution method with phenol red [88] evaluated the antibacterial effect
against four bacterial strains: Listeria monocytogenes, Escherichia coli, Staphylococcus au-
reus, and Citrobacter freundii. First, the bacterial isolate was cultivated in liquid Luria–
Bertani medium (LB) overnight at 37 ◦C under aeration. Then, a suspension containing
106 CFU/mL of bacteria cells was prepared. Next, an aliquot from this bacterial suspension
was added to test tubes containing phenol red medium and the compound to be tested.
After an incubation of 24 h at 37 ◦C, the color of the culture remains red in the absence of
growth, indicating that the tested compound has antibacterial activity against the tested
strain. However, if there is bacterial growth, the culture becomes yellow due to the acidifi-
cation of the medium and indicating that the tested compound lacks antibacterial activity
against the tested strain. All the experiments were repeated twice for each drug, including
the antibiotic streptomycin as a positive control, and means were calculated.

3.3.2. Determination of the Minimum Inhibitory Concentration (MIC) and the Minimum
Bactericidal Concentration (MBC)

The MIC (the lowest drug concentration that inhibits bacterial growth after incubation
at 37 ◦C for 24 h) and the MBC (the lowest drug concentration that kills 99% of bacteria
after 24 h of incubation) were obtained as described in the literature [89,90].

3.3.3. Antifungal Assay

The prepared ligands were evaluated for their antifungal activity using liquid cell
culture against Saccharomyces cerevisiae and Candida species: Candida glabrata and Candida
albicans. The growth rate of fungal cells in liquid culture was monitored by absorbance
measurements at 600 nm (OD600) using a V-1200 spectrophotometer (Shanghai Mapada In-
struments Co., Ltd., Shanghai, China). The antifungal activity was described (Bouchal et al.,
2019 [88]). Briefly, cells were cultured in the presence and absence of 500 µM of each
compound for 24 h, and OD600 measurements were then used to monitor the growth
rate. Growth in the presence of a compound was expressed as a percentage relative to the
untreated control. All experiments were repeated at least twice, and means were calculated.

3.4. Computational Studies
3.4.1. In Silico ADME-Tox Predictions

In silico screening was performed to predict the studied compounds’ properties
(absorption, distribution, metabolism, excretion) of the ADME [9,88,91–104]

Additionally, using the SwissADME web tool (www.swissadme.ch/, accessed on
20 April 2022) [105–107], lipophilicity (logP) was calculated using the Marvin sketch

www.swissadme.ch/
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program, while the toxicity predictions were made using the PROTOX online tool (http:
//tox.charite.de/protox_II/, accessed on 20 April 2022) [108–113] based on the functional
group similarity of the existing molecules tested in vitro and in vivo in the database. The
three most similar compounds were taken for toxicity prediction.

3.4.2. DFT, Molecular Ligand–Protein Docking, and Virtual Screening Studies

The chemical structures of the studied molecules were sketched using Gaussview
6.0, then optimized using the DFT/B3LYP method with 6-31G(d,p) basis sets in the
Gaussian 09W software [114]. The docking study performed with New Delhi metallo-
β-lactamase was conducted in two different active sites of the crystal structure of NDM-1 at
pH 5.5 (Bis-Tris) in a complex with hydrolyzed Ampicillin (PDB: 5ZGE) with a resolution
of 1.00 Å.

Blind docking/virtual screening was considered to target the previous protein (5ZGE),
which was prepared in Autodock 4 [115] default parameters, and the whole protein was
used for the grid box (Table S1), with Perl as a launcher for all the ligands in Autodock
Vina [116–120].

4. Conclusions

Fifteen compounds based on pyrazole derivatives were prepared with good yield and
characterized using different physicochemical analyses, such as FTIR, UV-Visible, 1H and
13C NMR, and MS. These compounds were evaluated for their antifungal and antibacterial
activities against several fungal and bacterial strains. None of the compounds had antifun-
gal activity. Interestingly, compounds 12 and 14 displayed intense antibacterial activity. In
addition, compound 12 presented excellent antibacterial activity against E. coli, S. aureus,
and C. freundii, with inactivity against L. monocytogenes and cephalosporins antibiotics. In
contrast, compound 14 showed tremendous antibacterial potential against L. monocytogenes,
with no effect against the other bacterial strains.

Compound 14’s listericidal activity could be due to the presence of the hydroxyl as a
substituent on the phenyl ring, an electron donor group (+M) that causes oxidative stress
to the bacterial strain the production of hydroxyl radicals. In contrast, compound 12 has
carbonyl as an electron-withdrawing group (-M), methyl as an electron donor group (+I),
and a bulky substituent. Furthermore, from the MEP surface analysis, compound 12 only
has a higher negative charge value over the carbonyl. In contrast, compound 14, similar
to the antibiotics cefotaxime and Ampicillin, has a close negative-positive (δ+-δ−) higher
charge value over the hydroxyl and the acidic function.

From ADME and toxicity predictions, compounds 12 and 14 have no violations of
Lipinski’s rule of five, better than streptomycin, with three violations, and cefotaxime, with
one offense. In contrast, compounds 12 and 14 have lower predicted LD50 than Ampicillin
and cefotaxime, with less toxicity (class 4) than streptomycin (class 3), even though they are
both active as carcinogens with mutagenic activity for compound 14 and have no binding
probability with all the toxicity targets better than Ampicillin and cefotaxime, which have
probable binding with toxicity targets.

From the docking results, compound 12 has a better affinity with both active protein
sites, which have an H-acceptor bond, than compound 14, with ligand exposure. However,
Ampicillin and cefotaxime still have the best values, with more H-donors and H-acceptors;
otherwise, compound 12 is hydrolyzed by NDM1 hydrolysis and inactivates its antibacterial
activity against Listeria monocytogenes due to the presence of the carbonyl function, which is
common in all β-lactam antibiotics. On the other hand, compound 14 has listericidal activity
with a specific mechanism that needs more computational studies and biological assays for
prediction; from blind docking/virtual screening studies, the mode of binding interaction
is the same as that of LYS216, which is bound with the nitrogen of pyrazole for the ligand
12 and the oxygen for Ampicillin with the same binding affinity of −7.1 Kcal/mol. On the
other hand, ligand 14 has a lower −7.0 Kcal/mol value with amino acids such as ILE203
and LYS242.

http://tox.charite.de/protox_II/
http://tox.charite.de/protox_II/
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