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Abstract: Bromodomain-4 (BRD-4) is a key enzyme in post-translational modifications, transcriptional
activation, and many other cellular processes. Its inhibitors find their therapeutic usage in cancer,
acute heart failure, and inflammation to name a few. In the present study, a dataset of 980 molecules
with a significant diversity of structural scaffolds and composition was selected to develop a balanced
QSAR model possessing high predictive capability and mechanistic interpretation. The model was
built as per the OECD (Organisation for Economic Co-operation and Development) guidelines and
fulfills the endorsed threshold values for different validation parameters (R2

tr = 0.76, Q2
LMO = 0.76,

and R2
ex = 0.76). The present QSAR analysis identified that anti-BRD-4 activity is associated with

structural characters such as the presence of saturated carbocyclic rings, the occurrence of carbon
atoms near the center of mass of a molecule, and a specific combination of planer or aromatic nitrogen
with ring carbon, donor, and acceptor atoms. The outcomes of the present analysis are also supported
by X-ray-resolved crystal structures of compounds with BRD-4. Thus, the QSAR model effectively
captured salient as well as unreported hidden pharmacophoric features. Therefore, the present study
successfully identified valuable novel pharmacophoric features, which could be beneficial for the
future optimization of lead/hit compounds for anti-BRD-4 activity.

Keywords: QSAR; BRD-4; pharmacophoric features; X-ray

1. Introduction

Cancer and heart failure are major causes of mortality [1], health complications, and
social and economic problems for millions of people around the globe. Researchers have
identified different chemotherapeutic methods to minimise heart failure as well as the onset,
growth, and survival of cancer cells [1]. However, different serious health issues initiated
or echoed by different anti-cancer and cardiac drugs are of great concerns. Therefore, the
quest for a harmless and effective anti-cancer and cardiac drug is an important goal for the
research and development laboratories of pharmaceutical companies and academic insti-
tutions. For this, researchers generally prefer to inhibit any irregularity occurring during
a vital cellular process. A good number of recent studies have confirmed that reversible
lysine acetylation (RAL) is a dynamic process responsible for protein post-translational
modifications, transcriptional activation, and other cellular processes [2–11]. Therefore,
any anomaly with RAL could lead to the initiation of malignancy or its survival [7,12]. RAL
is regulated by three types of epigenetic regulatory proteins [12,13]: (1) histone acetyltrans-
ferases (HATs) acetylate lysine, (2) Histone deacetylases (HDACs), and (3) bromodomain
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(BRD) family of proteins. HATs are responsible for acetylation of lysine residues on histone
tails and thereby behave as “writers”, whereas the reverse is true for HDACs and sirtuins,
which work as “erasers” that are accountable for the elimination of the acetyl group from
acetylated lysine (KAc) [14]. The Bromodomain and Extra-terminal (BET) family selectively
recognises and links with acetylated lysine residues in histones H3 and H4 [15–17]; thus,
they function as “readers”. The BET proteins, viz., BRD2, BRD3, and BRD-4, and bromod-
omain testis-specific protein (BRDT) are widely recognised as druggable target proteins for
regulating cellular epigenetics [15]. Therefore, intruding interactions between BET proteins
and acetylated lysine have attracted many researchers to develop better therapeutics for
various human diseases including cancer, acute heart failure, and inflammation [2–11].

BRD-4, also called mitotic chromosomal-associated protein (MCAP), Fshrg4, or Hunk1,
is ubiquitously expressed and plays a crucial role in a number of DNA-centered pro-
cesses [15]. It is generally localised in the nucleus and regulates transcription by RNA
polymerase II through a positive transcriptional elongation factor complex [15]. Struc-
turally, it comprises two highly conserved N-terminal bromodomains (BD1 and BD2), an
ET domain, and a C-terminal domain (CTD) [7]. Furthermore, BRD-4 contains a set of
four helices: αZ, αA, αB, and αC. αZ and αA helices are connected through the ZA loop,
whereas the BC loop connects the αB and αC helices [11,18]. Together, the four helices and
the two loops create an active acetyl-lysine binding pocket (see Figure 1) [11,18]. The active
site also consists of a hydrophobic WPF shelf (Trp81, Pro82, and Phe83), ZA loop, Tyr97,
Asn140, and Met149 [11,18]. The majority of BRD-4 inhibitors compete with histone H4 to
imitate the interactions with Tyr97 and Asn140 [3]. The WPF shelf is believed to play an
important role in deciding the selectivity for BET bromodomains [6].
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number of BRD-4 inhibitors are in clinical or pre-clinical trials (see Figure 2) [2,19,20]. 

Figure 1. X-ray resolved structure of BRD-4 using pdb 5UVT (a) without molecular surface and
(b) with molecular surface (green: carbon; red: oxygen; blue: nitrogen).

Recent studies indicate that the inhibition of BRD-4 is a good strategy, and a good
number of BRD-4 inhibitors are in clinical or pre-clinical trials (see Figure 2) [2,19,20].

However, the quest for a safer and effective BRD-4 inhibitor with an optimum ADMET
(Absorption, Distribution, Metabolism, Excretion, and Toxicity) profile with a retention of
potency is still in progress. For this, it is essential to know the prominent and concealed
pharmacophoric features associated with BRD-4 inhibitors. To achieve this goal, a good
number of researchers have reported SAR (Structure Activity Relationships) and QSAR
(Quantitative SAR) analyses of BRD-4 inhibitors. Tahir et al. [21] developed a CoMSIA
(3D-QSAR) model with an R2

tr (coefficient of determination) = 0.982 and R2
cv (or Q2

loo)
(cross-validated coefficient of determination for leave-one-out) = 0.500 for a dataset of
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60 quinolinone and quinazolinone derivatives as BRD-4 inhibitors. Tong et al. [22] reported
four 3D-QSAR models possessing R2

tr = 0.912 to 0.963 and R2
cv = 0.574 to 0.759 for the BRD-

4 inhibitory activity of 4,5-dihydro-[1,2,4]triazolo[4,3-f]pteridine derivatives. Obadawo and
co-workers [23] performed QSAR modelling (R2

tr = 0.93 and R2
cv = 0.70) for 40 different

substituted 4-Phenylisoquinolinones as potent BET bromodomain (BRD-4-BD1) inhibitors.
Speck-Planche and Scotti [6] performed multi-target QSAR for bromodomain inhibitors
using linear discriminant analysis and artificial neural networks. Their binary classification
(active/inactive), which is based on a fragment-based topological approach, and analysis
led to the identification of a good number of pharmacophoric features. However, the
fragment-based topological approach involved the use of SMILES of molecules and thereby
lacks the inclusion of 3D information. Thus, even though these studies are successful in
identifying easily visible pharmacophoric features, they are based on small datasets with
limited variations in structures, binary classification, lack thorough validation and general
applicability, and provide partial mechanistic interpretations.
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A literature survey reveals that BRD-4 inhibitors possess structural isomerism (posi-
tional, chain, etc.), variations in central scaffolds, and their chemical space is very broad [6,7];
therefore, many concealed or hidden correlations of pharmacophoric features cannot be
identified by visual inspection [24]. In such a situation, there is a need to accomplish
thorough QSAR analysis using a larger dataset of BRD-4 inhibitors. In the present work, we
have performed QSAR analysis of 980 structurally diverse BRD-4 inhibitors. The developed
QSAR model possesses a balance of excellent predictive ability with in-depth mechanis-
tic interpretations, which are reinforced by reported X-ray-resolved structures of BRD-4
inhibitors with the target enzyme.

2. Results

The present QSAR analysis is based on a dataset covering a broad chemical space and
data range owing to the inclusion of structurally diverse compounds with experimentally
measured IC50 in the range of 1 nM to 15 µM. Consequently, this helped us in developing
an appropriately validated genetic algorithm multi-linear regression (GA-MLR) model
for gathering or extending exhaustive information about the pharmacophoric traits that
govern the desired bio-activity (Descriptive QSAR) and also possessing acceptable external
predictive capability (Predictive QSAR) [25–27]. The seven variable-based GA-MLR QSAR
model (see model-A), along with selected internal and external validation parameters (see
Supplementary Material for additional parameters), is as follows.

Model-A: pIC50 = 4.27 (±0.156) + 0.093 (±0.017) * fsp3CringC2B + 0.108 (±0.014) *
com_C_4A + 0.391 (±0.066) * Saturated_Carbo_Rings + 0.428 (±0.036) * fsulfonSaroC8B +
0.625 (±0.059) * flipoacc3B + 0.921 (±0.067) * fsp3OaroN6B—0.367 (±0.063) * fplaNN4B.
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Validation of Model-A: Method of splitting = Random, No. of descriptors = 7,
Ntraining = 785, Ntest = 195, R2

tr = 0.762, R2
adj. = 0.760, RMSEtr = 0.389, MAEtr = 0.326,

CCCtr = 0.865, s = 0.391, F = 355.446, R2
cv (Q2loo) = 0.757, RMSEcv = 0.393, MAEcv = 0.329,

CCCcv = 0.862, Q2
LMO = 0.756, R2

Yscr = 0.009, Q2
Yscr = −0.012, RMSEex = 0.392, MAEex = 0.323,

R2
ex = 0.762, Q2-F1 = 0.762, Q2-F2 = 0.760, Q2-F3 = 0.758, CCCex = 0.860.

A multitude of statistical validation parameters and analysis of associated graphs
has been recommended by different researchers to confirm the statistical robustness and
external prediction ability of a QSAR model [28–39]. The same approach has been fol-
lowed in the present work. A high value of R2

tr, R2
adj., R2

cv (Q2loo), R2
ex, Q2-Fn, CCCex,

etc., and a small value of LOF (lack-of-fit), RMSEtr, MAEtr, R2
Yscr (R2 for Y-scrambling),

etc., along with different graphs (Figure 3a–d) related to model-A support the external
predictive ability, statistical robustness, and point outs the lack of chancy correlation
for model-A [28–38]. Moreover, the Williams plot [40–44] point outs that the majority of
molecules (929 molecules) are within the applicability domain; thus, the model is sta-
tistically acceptable (see Figure 3b). The outliers with high leverage have been labeled
in Figure 3b. Therefore, it fulfills all the Organisation for Economic Co-operation and
Development (OECD) endorsed guidelines for generating a thriving QSAR model.
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Figure 3. Different graphs associated with the model: (a) experimental vs. predicted pIC50 (the
solid line represents the regression line); (b) experimental vs. residuals values; (c) Williams plot
for applicability domain (the vertical solid line represents h * = 0.031 and horizontal dashed lines
represent the upper and lower boundaries for standard residuals); (d) Y-randomization.

The descriptions of seven molecular descriptors constituting model-A have been
tabulated in Table 1.
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Table 1. Details of molecular descriptors present in model-A.

Variable Description Software Used
for Calculation

fsp3CringC2B Frequency of occurrence of ring carbon atoms exactly at 2 bonds
from sp3-hybridised carbon atoms PyDescriptor [45]

com_C_4A Total number of carbon atoms within 4 Å from centre of mass
(com) of molecule

PyDescriptor

Saturated_Carbo_Rings Total number of saturated rings containing carbon atoms only DataWarrior [46]

fsulfonSaroC8B Frequency of occurrence of aromatic carbon atoms exactly at 8
bonds from sulphur atoms of Sulfone group PyDescriptor

fsp3OaroN6B Frequency of occurrence of aromatic nitrogen atoms exactly at 6
bonds from sp3-hybridised oxygen atoms PyDescriptor

flipoacc3B Frequency of occurrence of H-bond acceptor atoms exactly at 3
bonds from lipophilic atoms PyDescriptor

fplaNN4B Frequency of occurrence of nitrogen atoms exactly at 4 bonds
from planer nitrogen atoms PyDescriptor

Interestingly, five molecular descriptors, viz., com_C_4A, fsp3CringC2B, flipoacc3B,
fsulfonSaroC8B, and Saturated_Carbo_Rings, comprise the presence of different types of
carbon atoms, which indicates the importance of carbon atoms in deciding BRD-4 inhibitory
activity. The same is true for nitrogen, which is a part of three molecular descriptors, viz.,
flipoacc3B, fplaNN4B, and fsp3OaroN6B. Since, in general, the presence of carbon increases
lipophilicity whereas nitrogen is attributed to significantly influence the pharmacological
and hydrophilic profile, therefore, a balance of an appropriate number of carbons for
lipophilicity and nitrogen is necessary to obtain adequate BRD-4 inhibitory activity. Of the
seven descriptors in model-A, six have positive coefficients and only one has a negative
coefficient. The effects of descriptors and their role in deciding the BRD-4 inhibitory profile
have been discussed in more detail with relevant examples in the Discussion section.

3. Discussion
Mechanistic Interpretation of QSAR Model

An appropriately validated relationship between prominent structural features or
molecular descriptors of the molecules with the bioactivity enlarges knowledge about
mechanism of action of molecules, reasons for their specificity, and pharmacophoric
atoms/groups accountable for the desired bioactivity [20,26,39]. In the present analy-
sis, although we have equated the IC50 values of different molecules in a relationship with
a specific molecular descriptor (or feature), a synergistic or reverse effect of other molecular
descriptors or unknown factors having a superseding influence in deciding the overall IC50
value of a molecule cannot be ignored. That is, a single molecular descriptor or feature
neither decides nor completely explains the experimental IC50 value for such a large and
structurally diverse set of molecules. In other words, the effective use of a validated QSAR
model depends on the synergetic consideration of constituent molecular descriptors. The
newly developed QSAR model-A comprises seven descriptors.

The molecular descriptor fsp3CringC2B represents the frequency of occurrence of
ring carbon atoms exactly at two bonds from sp3-hybridised carbon atoms. If the same
ring carbon atom was also present at less than two bonds from any other sp3-hybridised
carbon atoms, then it was excluded while calculating fsp3CringC2B. Its positive coeffi-
cient in model-A and also a correlation of 0.30 with pIC50 indicate that increasing such
a combination of ring and sp3-hybridised carbon atoms could lead to better inhibitory
activities for BRD-4. For example, a comparison of molecule 736 with 737 indicates the
significant influence of ring carbon atoms (shown using green dots in Figure 4a,b) at exactly
two bonds from sp3-hybridised carbon atoms. This is further supported by their reported
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X-ray resolved structures with BRD-4. Molecule 736 (pdb: 5z1s [47]) has an additional
water-mediated interaction with receptors with a distance of 3.37 Å (see Figure 4c) due to
the -OCH3 group present in the benzoxazinone ring. The same -OCH3 group is responsible
for increasing the value of fsp3CringC2B for 736, but it is absent in 737 (pdb: 5z1r [47]).
The difference in IC50 for the following pairs of molecules further support the influence of
fsp3CringC2B on the activity profile: 255 with 499, 725 with 716, 231 with 240, and 89 with
105, to mention a few.

From this discussion, it appears that ring carbon atoms alone are important. However,
replacing fsp3CringC2B by number of ring carbon atoms as a descriptor in model-A reduced
the statistical performance from R2

tr = 0.76 to 0.73. In addition, the number of ring carbon
atoms has a correlation of 0.27 with pIC50. Therefore, fsp3CringC2B is a better descriptor
than the number of ring carbon atoms.
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Figure 4. Comparison of BRD-4 inhibitory activity of molecule 736 with 737 with respect to
fsp3CringC2B: (a,b) 2D representation of 736 and 737; (c,d) X-ray-resolved structures of 737 (pdb:
5z1r) and 736 (pdb: 5z1s). Cyan coloured spheres represent water molecules, and dashed lines signify
interactions and distances in Å.

com_C_4A, which stands for total number of carbon atoms within 4 Å from centre
of mass (com) of molecule, has a positive coefficient in model-A. Therefore, increasing
the value of com_C_4A leads to better inhibitory activities. This observation is supported
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by the fact that it has a correlation of 0.404 with pIC50, and molecules with IC50 < 10 nM
(29 molecules) possess a high value of com_C_4A. In addition, a simple comparison of the
following pairs of the molecules strengthens this observation: 620 with 621, 720 with 710,
724 with 717, 526 with 518, and 691 with 692, and 595 with 596. At first glance, it looks as if
com_C_4A is pointing out the importance of the number of carbon atoms. However, nC
(number of carbon atoms) has a correlation of 0.29 with pIC50 and substituting com_C_4A
by nC led to a decrease in statistical performance of model-A from R2

tr = 0.76 to 0.69.
Therefore, com_C_4A is a better choice as a variable for model-A.

As the presence of carbon is generally associated with the increased lipophilicity of
a molecule, therefore, com_C_4A indicates that the lipophilic part must be concentrated
near the com of the molecule for better activities. This in turn provides a crucial hint
about the active site of BRD-4. It appears that a significant portion of the active site of
BRD-4 is reasonably lipophilic in nature. This is supported by the fact that the active site
of BRD-4 consists of a hydrophobic WPF shelf (see Figure 1) [11,18]. Thus, the findings
of the present QSAR analysis are supported by the reported X-ray-resolved structure of
BRD-4 enzyme. In addition, the pharmacophore model, depicted in Figure 5, generated
using most active molecule 297, again points out the presence of a lipophilic region near
the com of the molecule.
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Figure 5. Pharmacophore model using most active molecule 207 (red: H-bond acceptor; blue: H-bond
donor; green: hydrophobic region). Distances are shown using yellow dashed lines and figures
indicate the distances in Å for different regions from center of mass. The black sphere represents the
position of the center of mass of molecule.

Another descriptor that also point outs the importance of lipophilicity of a molecule is
flipoacc3B, which represents the frequency of occurrence of H-bond acceptor atoms exactly
at three bonds from lipophilic atoms. However, an acceptor atom was excluded while
calculating flipoacc3B if it is also present within two or less bonds from same or any other
lipophilic atom. Evidently, the lipophilic part of a molecule close to H-bond acceptor moiety
(O or N atoms) plays a crucial role in deciding the inhibitory effect for BRD-4. This is once
again visible in the pharmacophore model depicted in Figure 6. A simple comparison of
the following pairs of molecules supports this observation: 812 with 823, 7 with 8, and 4
with 10.

An easily interpretable and influential molecular descriptor is Saturated_Carbo_Rings,
which corresponds to total number of saturated carbocyclic rings. It has positive coefficient
in model-A; therefore, increasing such rings is beneficial. A comparison of IC50 for 411 with
384 (see Figure 6), 137 with 127, 73 with 67, 131 with 124, 60 with 61, 570 with 573, and 572,
230 with 247 is in favour of this observation.

The importance of Saturated_Carbo_Rings in model-A indicates that the lipophilicity
and flexibility of a molecule are the actual factors governing an activity profile. It is
noteworthy that clogP, which represents molecular lipophilicity, has a correlation of 0.193
with pIC50, whereas Saturated_Carbo_Rings has 0.240. Thus, Saturated_Carbo_Rings
is a better choice, as it pinpoints the specific feature or part of the molecule (saturated
carbocyclic rings), which is correlated with the activity due to its lipophilic nature, whereas
clogP is a molecular property. A plausible reason could be the crucial role played by
hydrophobic zones such as saturated carbocyclic rings at the periphery or outer part of
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molecule as a proxy for BRD4 selectivity through their interaction with the WPF shelf [6].
Therefore, saturated carbocyclic rings should be retained in future optimizations for better
activity profiles. Thus, the present work is successful in identifying the significance of
saturated carbocyclic rings as a novel unreported pharmacophore feature associated with
BRD-4 inhibitory activity.
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The molecular descriptor fsulfonSaroC8B (frequency of occurrence of aromatic carbon
atoms exactly at eight bonds from sulphur atoms of Sulfone (-SO2-) group) has a positive
coefficient in model-A. Consequently, increasing the value of fsulfonSaroC8B, favours
binding with BRD-4. It is to be noted that if the same aromatic carbon atom is also present
at ≤7 bonds from a sulphur atom of same or different Sulfone group through any path, then
it was excluded while calculating fsulfonSaroC8B. Obviously, this descriptor signifies the
importance of the Sulfone group (a highly polar group) and its correlation with aromatic
rings (a lipophilic moiety) in deciding the binding with BRD-4. This is clearly reflected in
the difference in the activity of the following pairs of molecules: 715 with 718, 723 with 724,
714 with 715, 707 with 716, 936 with 941, and 942 with 943. Recent studies indicate that
Sulfone moiety is present in a cleft near the ZA-loop and establishes an H-bond with the
-CONH- (amide) of backbone [19].

fsp3OaroN6B stands for the frequency of occurrence of aromatic nitrogen atoms
exactly at six bonds from sp3-hybridised oxygen atom. If the same aromatic nitrogen
atom is also present at ≤5 bonds from the same or any other sp3-hybridised oxygen atom
through any path, then it was excluded while calculating fsp3OaroN6B. For example, 79
with 609, 81 with 620, and 614 with 615, to mention a few. In our previous study [20],
we identified a similar descriptor notringO_acc_6B (total number of all non-ring Oxygen
atoms present within a distance of six bonds from H-bond acceptor atoms) as an important
pharmacophoric feature that governs the binding affinity (Ki) of a molecule for BRD-4. Thus,
a consensus between the previous and the present study indicates that a molecule must
have an H-bond acceptor (preferably aromatic nitrogen) at a distance of six bonds from a
sp3-hybridised oxygen atom (non-ring oxygen favoured). This observation is supported by
the difference in the activity of molecule S1, S2, and S3 [48] (see Figure 7). To add further,
the sp3-hybridised oxygen atom is present as a linker between two aromatic rings or as an
-OR (alkoxy) group in a good number of molecules [20].
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Figure 7. Effect of fsp3OaroN6B on BRD-4 inhibitory activity.

The only descriptor with a negative coefficient in model-A is fplaNN4B, which cor-
responds to frequency of occurrence of nitrogen atoms exactly at 4 bonds from planer
nitrogen atoms. If the same nitrogen atom is also present at ≤3 bonds from the same or
any other planer nitrogen atom through any path, then it was excluded while calculating
fplaNN4B. The following pairs of molecules have a significant difference in their activities,
which could be attributed to the presence of fplaNN4B as a structural feature: 945 with 954,
936 with 944, 411 with 385, 170 with 171, 722 with 714, 563 with 577, 737 with 734, 239 with
240. Therefore, such a combination of nitrogen atoms should be avoided to have better
inhibition of BRD-4.

4. Materials and Methods

The present work follows the standard procedure recommended by OECD and differ-
ent researchers to perform QSAR analysis [49–51]. All the software were used with default
settings to obtain a QSAR model possessing a balance of predictive ability and mecha-
nistic interpretation; however, some settings were changed, which have been reported at
appropriate places. The different steps are as follows.

Step-1: Collection of data and curation: The present work commenced with the
collection of a large dataset of 2026 experimentally tested BRD-4 inhibitors from a free
and publicly available database BindingDB (https://www.bindingdb.org/bind/index.jsp,
accessed on 16 March 2022). A QSAR analysis is significantly influenced by the quality
of data, its composition, and its appropriate curation before further processing [50,52–54].
Therefore, in the next step, data curation was performed [55], which involved the removal
of duplicate entries, organometallic compounds, salts, molecules with ambiguous IC50
values, etc. This reduced the dataset to 980 molecules only. The reduced dataset still
consists of molecules with experimental IC50 (nM) in the range 1 nM to 15 µM and the
presence of diverse scaffolds such as heterocyclic rings, positional isomers, stereoisomers,
etc., enhancing the chemical space and consequently widening the applicability of the
newly developed model. The SMILES (Simplified Molecular Input Line Entry System)
notations, including experimental IC50 and pIC50 (=−log10IC50) of all the molecules used
in the present work, are available in Supplementary Materials. For the sake of convenience,
representative examples have been presented in Figure 8 to depict the structural diversity
of the current dataset.

In Table 2, five most and least active molecules have been included as examples only
along with their SMILES notation: IC50 (nM) and pIC50 (M).

Step-2: In the next step, SMILES notations were used to develop the optimised 3D
structures (semi-empirical PM3 method) of the molecules, accomplished using OpenBabel
2.4 [56] and MOPAC 2012 (openmopac.net) using default settings.

Step-3: A QSAR model achieves a balance of mechanistic interpretation and predictive
ability if a good number of diverse molecular descriptors are calculated, followed by
adequate pruning to reduce the chances of overfitting from noisy redundant descriptors [57].
The next step involved the calculation of myriad number of 1D- to 3D-molecular descriptors
for all molecules. For this, PyDescriptor [45] and DataWarrior [46] were used, which

https://www.bindingdb.org/bind/index.jsp
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generated more than 40,000 molecular descriptors for a single molecule. Obviously, the
descriptor pool contained a good number of redundant molecular descriptors; therefore,
highly correlated (|R| > 0.95) and nearly constant (>98%) variables were removed using
QSARINS 2.2.4 [58]. This considerably decreased the size of set of molecular descriptor
pool from 30,000 to 4326, which still contained a variety of molecular descriptors.
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Table 2. SMILES notation and IC50 (nM) and pIC50 (M) of five most and least active molecules of the
selected data set.

SN Ligand SMILES IC50
(nM)

pIC50
(M)

207 Cn1cc2-c3cc(CS(C)(=O)=O)ccc3N(Cc3c[nH]c(=O)c1c23)c1ccccn1 1 9
692 Cn1cc2-c3cc(CS(C)(=O)=O)ccc3N(Cc3c[nH]c(c23)c1=O)c1ccc(F)cc1 1.5 8.824
158 CCS(=O)(=O)c1ccc2Oc3ccc(F)cc3CCCCOc3cc(=O)n(C)cc3-c2c1 2 8.699
570 COc1cc2c(cc1-c1c(C)noc1C)[nH]c1nc(C)nc(Nc3cc(nn3C)C3CC3)c21 2 8.699
688 Cn1cc2CN(c3ccc(F)cc3)c3ccc(CS(C)(=O)=O)cc3-c3c[nH]c(=O)c1c23 2.5 8.602
633 CC(=O)N1CCc2c(C1)c(nn2C1CCOCC1)-c1cccc2c(Cl)cncc12 14,000 4.854
242 CC(=O)N1CCc2c(C1)c(Nc1cccc(C)c1)nn2C1CC1 15,000 4.824
385 Cc1noc(C)c1-c1ccc(C)c(c1)S(=O)(=O)NC1CCNCC1 15,000 4.824
634 CCc1cncc2c(cccc12)-c1nn(C2CCOCC2)c2CCN(Cc12)C(C)=O 15,000 4.824
721 CNC(=O)c1cn(C)c(=O)c2ccccc12 15,000 4.824

4.1. Splitting the Data Set into Training and External Sets and Subjective Feature Selection (SFS)

For developing a useful QSAR model and its appropriate validation, it is essen-
tial to divide the dataset into training and external (also called as prediction or test set)
sets [50,52–54,59]. Consequently, in the present work, the dataset was randomly divided
into training (80% = 785 molecules) and external (20% = 195 molecules) sets to minimise
any bias. The only purpose of the training set was to choose suitable number of variables
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(molecular descriptors), whereas the external set was employed only for validation pur-
pose, i.e., external validation of the model (Predictive QSAR). Genetic Algorithm (GA) and
multi-linear regression (MLR) available in QSARINS 2.2.4 were used for model building.
For this, Q2

LOO was used as a fitness function, and the number of generations was set to
10,000. A decisive step in QSAR modelling is to select the optimum number of molecular
descriptors for model building to avoid over-fitting and to obtain acceptable interpretabil-
ity. Consequently, the heuristic search involved building multiple models from univariate
to multivariate with the successive addition of molecular descriptors until there was an
increase in the value of Q2

LOO, which is called the breaking point [39,60]. A 2D graph
between the number of molecular descriptors involved in the models and Q2

LOO values
has been depicted in Figure 9. The number of variables matching with the breaking point
was considered optimal for model building as there was no improvement in the statistical
performance of model upon the inclusion of additional molecular descriptors. The analysis
led to the matching of breaking points with seven variables. Therefore, QSAR models with
more than seven descriptors were excluded.
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4.2. Building Regression Model and Its Validation

Appropriate validations involving cross/inter validation, external validation,
Y-randomization analysis, and applicability domain (Williams plot) are necessary to esti-
mate the reliability and general applicability of a QSAR model [25,31,33,50,61]. A properly
validated QSAR model finds its usage for QSAR-based virtual screening, lead/hit optimiza-
tion, decision making, etc. The following validation parameters and their recommended
threshold values are usually used to assess a model [39,60]: R2

tr (coefficient of determi-
nation) ≥ 0.6; Q2

loo (cross-validated coefficient of determination for leave-one-out) ≥ 0.5;
Q2

LMO (cross-validated coefficient of determination for leave-many-out) ≥ 0.6, R2 > Q2;
R2

ex (external coefficient of determination) ≥ 0.6; CCC (Concordance Correlation Coeffi-
cient) ≥ 0.80; Q2-Fn ≥ 0.60; high values of external validation parameters R2

ex, Q2
F1, Q2

F2,
and Q2

F3, with low values of R2
Yscr (coefficient of determination for Y-randomization);

RMSE (Root mean square error); MAE (Mean absolute error); RMSEtr < RMSEcv. The for-
mulae for calculating these statistical parameters are available in Supplementary Materials.
In the present analysis, a Williams plot was used to assess the applicability domain of the
newly developed QSAR model.
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4.3. Pharmacophore Model

For pharmacophore modelling, the 3D-optimised structure of the most active molecule,
207, was selected. The model was generated using LIQUID [62,63], a free and easy to use
PyMOL plugin, using default settings, except that the contour region was set to 3 for
H-bond donor/acceptor and hydrophobic regions.

4.4. Other Experimental Details

The reported X-ray resolved structures (pdb 5z1r and 5z1s) were downloaded from
Protein Data Bank (www.rcsb.org accessed on 13 April 2022). PyMOL version 2.4 has been
used for the depiction of molecular interactions between the compounds and the protein.

5. Conclusions

In the present study, a seven-descriptor-based and rigorously validated GA–MLR
QSAR model with R2

tr = 0.79, Q2
LMO = 0.79, and R2

ex = 0.78 was derived to identify the
significant pharmacophoric features that influence BRD-4 inhibitory activity. As mentioned
earlier, it is essential to perceive salient and visually unrecognizable pharmacophoric
features linked with BRD-4 inhibitory activity for different chemical scaffolds. The analysis
indicates that the presence of ring carbon and nitrogen atoms, occurrence of carbon atoms
near the center of mass of a molecule, specific combination of planer nitrogen with ring
carbon, donor and acceptor atoms, etc., are prominent features to be retained in future
optimizations. On the other hand, a combination of nitrogen atoms with planer nitrogen
atoms exactly at four bonds should be avoided for better BRD-4 inhibitory activity. The
reported crystal structures of BRD-4 inhibitors strengthen these observations. The present
study efficaciously captured and reported novel pharmacophoric features and has a good
balance of predictive ability and mechanistic interpretations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15060745/s1.
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